--- language: en license: mit tags: - summarization - t5 - text-to-text - model - fine-tuned --- # Fine-tuned T5 Model for Text Summarization This model is a fine-tuned version of the T5 model (`t5-small`) for text summarization tasks. It has been trained on a diverse set of text data to generate concise and coherent summaries from input text. ## Model Overview - **Model Type**: T5 (Text-to-Text Transfer Transformer) - **Base Model**: `t5-small` - **Task**: Text Summarization - **Language**: English (other languages may be supported depending on the dataset used) ## Intended Use This model is designed to summarize long documents, articles, or any form of textual content into shorter, coherent summaries. It can be used for tasks such as: - Summarizing news articles - Generating abstracts for academic papers - Condensing lengthy documents - Summarizing customer feedback or reviews ## Model Details - **Fine-Tuned On**: A custom dataset containing text and corresponding summaries. - **Input**: Text (e.g., news articles, papers, or long-form content) - **Output**: A concise summary of the input text ## How to Use To use this model for text summarization, you can follow the code example below: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration # Load the fine-tuned model and tokenizer model = T5ForConditionalGeneration.from_pretrained("username/fine_tuned_t5") tokenizer = T5Tokenizer.from_pretrained("username/fine_tuned_t5") # Input text for summarization input_text = "Your long input text here." # Tokenize and summarize inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) summary_ids = model.generate(inputs["input_ids"], max_length=150, num_beams=4, early_stopping=True) # Decode the summary summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary)