Model save
Browse files- README.md +94 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- super_glue
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: superglue_rte-bert-base-uncased
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: super_glue
|
18 |
+
type: super_glue
|
19 |
+
config: rte
|
20 |
+
split: validation
|
21 |
+
args: rte
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.631768953068592
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# superglue_rte-bert-base-uncased
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 3.9334
|
36 |
+
- Accuracy: 0.6318
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 4
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 20
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 0.6845 | 1.0 | 623 | 0.6880 | 0.5379 |
|
68 |
+
| 0.6015 | 2.0 | 1246 | 0.8206 | 0.6426 |
|
69 |
+
| 0.5012 | 3.0 | 1869 | 1.4769 | 0.6354 |
|
70 |
+
| 0.4173 | 4.0 | 2492 | 1.7735 | 0.6570 |
|
71 |
+
| 0.078 | 5.0 | 3115 | 2.2116 | 0.6354 |
|
72 |
+
| 0.0732 | 6.0 | 3738 | 2.6033 | 0.6318 |
|
73 |
+
| 0.0703 | 7.0 | 4361 | 2.7944 | 0.6390 |
|
74 |
+
| 0.0543 | 8.0 | 4984 | 2.6007 | 0.6462 |
|
75 |
+
| 0.0505 | 9.0 | 5607 | 2.4168 | 0.6462 |
|
76 |
+
| 0.0412 | 10.0 | 6230 | 2.7503 | 0.6787 |
|
77 |
+
| 0.0303 | 11.0 | 6853 | 3.2166 | 0.6643 |
|
78 |
+
| 0.0214 | 12.0 | 7476 | 3.0135 | 0.6498 |
|
79 |
+
| 0.0416 | 13.0 | 8099 | 2.9919 | 0.6534 |
|
80 |
+
| 0.0252 | 14.0 | 8722 | 3.0985 | 0.6570 |
|
81 |
+
| 0.0122 | 15.0 | 9345 | 3.5950 | 0.6209 |
|
82 |
+
| 0.009 | 16.0 | 9968 | 3.5463 | 0.6354 |
|
83 |
+
| 0.0034 | 17.0 | 10591 | 3.6333 | 0.6570 |
|
84 |
+
| 0.0109 | 18.0 | 11214 | 3.6860 | 0.6426 |
|
85 |
+
| 0.0041 | 19.0 | 11837 | 3.9160 | 0.6354 |
|
86 |
+
| 0.0 | 20.0 | 12460 | 3.9334 | 0.6318 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.32.1
|
92 |
+
- Pytorch 1.13.0+cu117
|
93 |
+
- Datasets 2.15.0
|
94 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 438003505
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1be1db2adfe3d5918bb2b0b1cdfda58b5bdf89a554746c0ea91488700701c3a4
|
3 |
size 438003505
|