File size: 1,180 Bytes
772d223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
language: en
license: cc-by-4.0
tags:
  - gemma
  - rag
  - pdf
  - question-answering
---

# RAG-DSE-PAST-PAPER-2012-ICT

Gemma 3 4B model fine-tuned for answering questions about DSE ICT 2012 past paper using RAG

## Model Description

This model is based on Gemma 3 4B and has been optimized for answering questions about PDF documents using Retrieval Augmented Generation (RAG).

## Usage

You can use this model with the Transformers library:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("khysam2022/RAG-DSE-PAST-PAPER-2012-ICT")
model = AutoModelForCausalLM.from_pretrained("khysam2022/RAG-DSE-PAST-PAPER-2012-ICT")

# Example usage with RAG
prompt = "What is the main topic of this document?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Training Details

This model was adapted from Google's Gemma 3 4B model and fine-tuned for PDF question-answering.

## Limitations and Biases

This model inherits the limitations and biases of the base Gemma 3 model.