Upload folder using huggingface_hub
Browse files- README.md +43 -0
- config.json +8 -0
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: cc-by-4.0
|
4 |
+
tags:
|
5 |
+
- gemma
|
6 |
+
- rag
|
7 |
+
- pdf
|
8 |
+
- question-answering
|
9 |
+
---
|
10 |
+
|
11 |
+
# RAG-DSE-PAST-PAPER-2012-ICT
|
12 |
+
|
13 |
+
Gemma 3 4B model fine-tuned for answering questions about DSE ICT 2012 past paper using RAG
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
|
17 |
+
This model is based on Gemma 3 4B and has been optimized for answering questions about PDF documents using Retrieval Augmented Generation (RAG).
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
You can use this model with the Transformers library:
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
25 |
+
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("khysam2022/RAG-DSE-PAST-PAPER-2012-ICT")
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("khysam2022/RAG-DSE-PAST-PAPER-2012-ICT")
|
28 |
+
|
29 |
+
# Example usage with RAG
|
30 |
+
prompt = "What is the main topic of this document?"
|
31 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
32 |
+
outputs = model.generate(**inputs, max_length=100)
|
33 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
+
print(response)
|
35 |
+
```
|
36 |
+
|
37 |
+
## Training Details
|
38 |
+
|
39 |
+
This model was adapted from Google's Gemma 3 4B model and fine-tuned for PDF question-answering.
|
40 |
+
|
41 |
+
## Limitations and Biases
|
42 |
+
|
43 |
+
This model inherits the limitations and biases of the base Gemma 3 model.
|
config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "gemma",
|
3 |
+
"architectures": [
|
4 |
+
"GemmaForCausalLM"
|
5 |
+
],
|
6 |
+
"name": "RAG-DSE-PAST-PAPER-2012-ICT",
|
7 |
+
"description": "Gemma 3 4B model fine-tuned for answering questions about DSE ICT 2012 past paper using RAG"
|
8 |
+
}
|