--- library_name: peft base_model: jingyeom/seal3.1.6n_7b tags: - axolotl - generated_from_trainer model-index: - name: 7b377ecd-7e77-465c-afcc-cba370b9c5e5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
# 7b377ecd-7e77-465c-afcc-cba370b9c5e5 This model is a fine-tuned version of [jingyeom/seal3.1.6n_7b](https://huggingface.co/jingyeom/seal3.1.6n_7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000214 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 1.9465 | | 0.8747 | 0.0293 | 50 | 1.2186 | | 0.8156 | 0.0586 | 100 | 1.1785 | | 0.8325 | 0.0880 | 150 | 1.0621 | | 0.7726 | 0.1173 | 200 | 1.0214 | | 0.7815 | 0.1466 | 250 | 0.9988 | | 0.8154 | 0.1759 | 300 | 0.9346 | | 0.6438 | 0.2052 | 350 | 0.8879 | | 0.7983 | 0.2345 | 400 | 0.8639 | | 0.6763 | 0.2639 | 450 | 0.8545 | | 0.7375 | 0.2932 | 500 | 0.8523 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1