|
|
|
"""DistilBERT.ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1qXwFT-lCqgfmQYxeJ7cb-iuvTLqLkiim |
|
""" |
|
|
|
|
|
import pandas as pd |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset, DataLoader |
|
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import classification_report |
|
from transformers import BertTokenizer |
|
|
|
|
|
|
|
file_path = 'spam_ham_dataset.csv' |
|
df = pd.read_csv(file_path) |
|
|
|
|
|
df['label_num'] = df['label'].map({'ham': 0, 'spam': 1}) |
|
|
|
|
|
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') |
|
|
|
|
|
encodings = tokenizer(df['text'].tolist(), padding=True, truncation=True, max_length=128, return_tensors="pt") |
|
labels = torch.tensor(df['label_num'].values) |
|
|
|
|
|
class SpamDataset(Dataset): |
|
def __init__(self, encodings, labels): |
|
self.encodings = encodings |
|
self.labels = labels |
|
|
|
def __len__(self): |
|
return len(self.labels) |
|
|
|
def __getitem__(self, idx): |
|
item = {key: val[idx] for key, val in self.encodings.items()} |
|
item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long) |
|
return item |
|
|
|
|
|
dataset = SpamDataset(encodings, labels) |
|
|
|
|
|
train_size = int(0.8 * len(dataset)) |
|
val_size = len(dataset) - train_size |
|
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size]) |
|
|
|
|
|
def collate_fn(batch): |
|
keys = batch[0].keys() |
|
return {key: torch.stack([b[key] for b in batch]) for key in keys} |
|
|
|
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, collate_fn=collate_fn) |
|
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False, collate_fn=collate_fn) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2) |
|
model.to(device) |
|
|
|
|
|
optimizer = optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.01) |
|
loss_fn = nn.CrossEntropyLoss() |
|
|
|
|
|
EPOCHS = 10 |
|
for epoch in range(EPOCHS): |
|
model.train() |
|
total_loss = 0 |
|
|
|
for batch in train_loader: |
|
optimizer.zero_grad() |
|
|
|
inputs = {key: val.to(device) for key, val in batch.items()} |
|
labels = inputs.pop("labels").to(device) |
|
|
|
outputs = model(**inputs) |
|
loss = loss_fn(outputs.logits, labels) |
|
|
|
loss.backward() |
|
optimizer.step() |
|
|
|
total_loss += loss.item() |
|
|
|
avg_loss = total_loss / len(train_loader) |
|
print(f"Epoch {epoch+1}, Loss: {avg_loss:.4f}") |
|
|
|
|
|
torch.save(model.state_dict(), "distilbert_spam_model.pt") |
|
|
|
|
|
model.eval() |
|
correct = 0 |
|
total = 0 |
|
with torch.no_grad(): |
|
for batch in val_loader: |
|
inputs = {key: val.to(device) for key, val in batch.items()} |
|
labels = inputs.pop("labels").to(device) |
|
|
|
outputs = model(**inputs) |
|
predictions = torch.argmax(outputs.logits, dim=1) |
|
correct += (predictions == labels).sum().item() |
|
total += labels.size(0) |
|
|
|
accuracy = correct / total |
|
print(f"Validation Accuracy: {accuracy:.4f}") |