Commit
·
6333913
1
Parent(s):
4989262
Update README.md
Browse files
README.md
CHANGED
@@ -41,6 +41,347 @@ We develop fine-tuning recipe using SpeechBrain toolkit available at
|
|
41 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
42 |
If you wish to use fairseq framework, the following code snippet can be used to load our pretrained model
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Evaluation
|
46 |
|
|
|
41 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
42 |
If you wish to use fairseq framework, the following code snippet can be used to load our pretrained model
|
43 |
|
44 |
+
'''
|
45 |
+
"""This lobe enables the integration of fairseq pretrained wav2vec models.
|
46 |
+
|
47 |
+
Reference: https://arxiv.org/abs/2006.11477
|
48 |
+
Reference: https://arxiv.org/abs/1904.05862
|
49 |
+
FairSeq >= 1.0.0 needs to be installed: https://fairseq.readthedocs.io/en/latest/
|
50 |
+
|
51 |
+
Authors
|
52 |
+
* Titouan Parcollet 2021
|
53 |
+
* Salima Mdhaffar 2021
|
54 |
+
"""
|
55 |
+
|
56 |
+
import torch
|
57 |
+
import torch.nn.functional as F
|
58 |
+
from torch import nn
|
59 |
+
from speechbrain.utils.data_utils import download_file
|
60 |
+
import pdb
|
61 |
+
|
62 |
+
# We check if fairseq is installed.
|
63 |
+
try:
|
64 |
+
import fairseq
|
65 |
+
except ImportError:
|
66 |
+
MSG = "Please install Fairseq to use pretrained wav2vec\n"
|
67 |
+
MSG += "E.G. run: pip install fairseq"
|
68 |
+
raise ImportError(MSG)
|
69 |
+
|
70 |
+
|
71 |
+
class FairseqWav2Vec2(nn.Module):
|
72 |
+
"""This lobe enables the integration of fairseq pretrained wav2vec2.0 models.
|
73 |
+
|
74 |
+
Source paper: https://arxiv.org/abs/2006.11477
|
75 |
+
FairSeq >= 1.0.0 needs to be installed:
|
76 |
+
https://fairseq.readthedocs.io/en/latest/
|
77 |
+
|
78 |
+
The model can be used as a fixed features extractor or can be finetuned. It
|
79 |
+
will download automatically the model if a url is given (e.g FairSeq
|
80 |
+
repository from GitHub).
|
81 |
+
|
82 |
+
Arguments
|
83 |
+
---------
|
84 |
+
pretrained_path : str
|
85 |
+
Path of the pretrained wav2vec2 model. It can be a url or a local path.
|
86 |
+
save_path : str
|
87 |
+
Path and filename of the downloaded model.
|
88 |
+
input_norm : bool (default: None)
|
89 |
+
If True, a layer_norm (affine) will be applied to the input waveform.
|
90 |
+
By default, it is extracted from the checkpoint of the downloaded model
|
91 |
+
in order to match the pretraining conditions. However, if this information
|
92 |
+
is not given in the checkpoint, it has to be given manually.
|
93 |
+
output_norm : bool (default: True)
|
94 |
+
If True, a layer_norm (affine) will be applied to the output obtained
|
95 |
+
from the wav2vec model.
|
96 |
+
freeze : bool (default: True)
|
97 |
+
If True, the model is frozen. If False, the model will be trained
|
98 |
+
alongside with the rest of the pipeline.
|
99 |
+
pretrain : bool (default: True)
|
100 |
+
If True, the model is pretrained with the specified source.
|
101 |
+
If False, the randomly-initialized model is instantiated.
|
102 |
+
dropout : float (default: None)
|
103 |
+
If different from None (0.0 to 1.0), it will override the given fairseq
|
104 |
+
dropout rates. This is useful if the wav2vec2 model has been trained
|
105 |
+
without dropout and one wants to reactivate it for downstream task
|
106 |
+
fine-tuning (better performance observed).
|
107 |
+
|
108 |
+
Example
|
109 |
+
-------
|
110 |
+
>>> inputs = torch.rand([10, 600])
|
111 |
+
>>> model_url = "https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt"
|
112 |
+
>>> save_path = "models_checkpoints/wav2vec2.pt"
|
113 |
+
>>> model = FairseqWav2Vec2(model_url, save_path)
|
114 |
+
>>> outputs = model(inputs)
|
115 |
+
>>> outputs.shape
|
116 |
+
torch.Size([10, 100, 768])
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
pretrained_path,
|
122 |
+
save_path,
|
123 |
+
input_norm=None,
|
124 |
+
output_norm=True,
|
125 |
+
freeze=True,
|
126 |
+
pretrain=True,
|
127 |
+
dropout=None,
|
128 |
+
encoder_dropout = None,
|
129 |
+
output_all_hiddens=False,
|
130 |
+
tgt_layer=None,
|
131 |
+
include_CNN_layer=True,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
|
135 |
+
# Download the pretrained wav2vec2 model. It can be local or online.
|
136 |
+
download_file(pretrained_path, save_path)
|
137 |
+
|
138 |
+
# During pretraining dropout might be set to 0. However, we might want
|
139 |
+
# to apply dropout when fine-tuning on a downstream task. Hence we need
|
140 |
+
# to modify the fairseq cfg to activate dropout (if requested).
|
141 |
+
overrides={}
|
142 |
+
if encoder_dropout is not None:
|
143 |
+
overrides = {
|
144 |
+
"model": {
|
145 |
+
"encoder_layerdrop": encoder_dropout,
|
146 |
+
}
|
147 |
+
}
|
148 |
+
if not freeze:
|
149 |
+
if dropout is not None and encoder_dropout is not None:
|
150 |
+
overrides = {
|
151 |
+
"model": {
|
152 |
+
"dropout": dropout,
|
153 |
+
"encoder_layerdrop": encoder_dropout,
|
154 |
+
"dropout_input": dropout,
|
155 |
+
"attention_dropout": dropout,
|
156 |
+
}
|
157 |
+
}
|
158 |
+
elif dropout is not None:
|
159 |
+
overrides = {
|
160 |
+
"model": {
|
161 |
+
"dropout": dropout,
|
162 |
+
"dropout_input": dropout,
|
163 |
+
"attention_dropout": dropout,
|
164 |
+
}
|
165 |
+
}
|
166 |
+
(
|
167 |
+
model,
|
168 |
+
cfg,
|
169 |
+
task,
|
170 |
+
) = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
171 |
+
[save_path], arg_overrides=overrides
|
172 |
+
)
|
173 |
+
|
174 |
+
# wav2vec pretrained models may need the input waveform to be normalized
|
175 |
+
# Hence, we check if the model has be trained with or without it.
|
176 |
+
# If the information isn't contained in the checkpoint IT HAS TO BE GIVEN
|
177 |
+
# BY THE USER.
|
178 |
+
if input_norm is None:
|
179 |
+
if hasattr(cfg["task"], "normalize"):
|
180 |
+
self.normalize = cfg["task"].normalize
|
181 |
+
elif hasattr(cfg, "normalize"):
|
182 |
+
self.normalize = cfg.normalize
|
183 |
+
else:
|
184 |
+
self.normalize = False
|
185 |
+
else:
|
186 |
+
self.normalize = input_norm
|
187 |
+
|
188 |
+
model = model[0]
|
189 |
+
self.model = model
|
190 |
+
self.freeze = freeze
|
191 |
+
self.output_norm = output_norm
|
192 |
+
|
193 |
+
if self.freeze:
|
194 |
+
self.model.eval()
|
195 |
+
# Freeze parameters
|
196 |
+
for param in model.parameters():
|
197 |
+
param.requires_grad = False
|
198 |
+
else:
|
199 |
+
self.model.train()
|
200 |
+
for param in model.parameters():
|
201 |
+
param.requires_grad = True
|
202 |
+
|
203 |
+
# Randomly initialized layers if pretrain is False
|
204 |
+
if not (pretrain):
|
205 |
+
self.reset_layer(self.model)
|
206 |
+
|
207 |
+
# Following the fairseq implementation of downstream training,
|
208 |
+
# we remove some modules that are unnecessary.
|
209 |
+
self.remove_pretraining_modules()
|
210 |
+
self.output_all_hiddens = output_all_hiddens
|
211 |
+
self.tgt_layer = tgt_layer
|
212 |
+
self.include_CNN_layer = include_CNN_layer
|
213 |
+
|
214 |
+
def forward(self, wav):
|
215 |
+
"""Takes an input waveform and return its corresponding wav2vec encoding.
|
216 |
+
|
217 |
+
Arguments
|
218 |
+
---------
|
219 |
+
wav : torch.Tensor (signal)
|
220 |
+
A batch of audio signals to transform to features.
|
221 |
+
"""
|
222 |
+
|
223 |
+
# If we freeze, we simply remove all grads and features from the graph.
|
224 |
+
if self.freeze:
|
225 |
+
with torch.no_grad():
|
226 |
+
return self.extract_features(wav).detach()
|
227 |
+
|
228 |
+
return self.extract_features(wav)
|
229 |
+
|
230 |
+
def extract_features(self, wav):
|
231 |
+
"""Extracts the wav2vect embeddings"""
|
232 |
+
# We normalize the input signal if needed.
|
233 |
+
if self.normalize:
|
234 |
+
wav = F.layer_norm(wav, wav.shape)
|
235 |
+
|
236 |
+
# Extract wav2vec output
|
237 |
+
if self.tgt_layer=="CNN": #initial embeddings from conv
|
238 |
+
out = self.model.extract_features(wav, padding_mask=None, mask=False)
|
239 |
+
out = self.model.post_extract_proj(out['features'])
|
240 |
+
elif isinstance(self.tgt_layer, int):
|
241 |
+
out = self.model.extract_features(wav, padding_mask=None, mask=False, layer=self.tgt_layer)['x']
|
242 |
+
else: #
|
243 |
+
out = self.model.extract_features(wav, padding_mask=None, mask=False, layer=self.tgt_layer)
|
244 |
+
if self.output_all_hiddens or isinstance(self.tgt_layer, list):
|
245 |
+
out = self.aggregate_features(out, include_CNN_layer=self.include_CNN_layer) # 13, B, T, D
|
246 |
+
if isinstance(self.tgt_layer, list):
|
247 |
+
out = out[self.tgt_layer]
|
248 |
+
else:
|
249 |
+
out = out['x']
|
250 |
+
|
251 |
+
# We normalize the output if required
|
252 |
+
if self.output_norm:
|
253 |
+
out = F.layer_norm(out, out.shape)
|
254 |
+
|
255 |
+
return out
|
256 |
+
|
257 |
+
def aggregate_features(self, out, include_CNN_layer=True):
|
258 |
+
features = []
|
259 |
+
if include_CNN_layer:
|
260 |
+
features = [self.model.post_extract_proj(out['features'])]
|
261 |
+
self.model.layerdrop = 0
|
262 |
+
for i in range(len(out['layer_results'])):
|
263 |
+
curr_feature = out['layer_results'][i][0].transpose(0,1)
|
264 |
+
features.append(curr_feature)
|
265 |
+
features = torch.stack(features)
|
266 |
+
return features
|
267 |
+
|
268 |
+
|
269 |
+
def reset_layer(self, model):
|
270 |
+
"""Reinitializes the parameters of the network"""
|
271 |
+
if hasattr(model, "reset_parameters"):
|
272 |
+
model.reset_parameters()
|
273 |
+
for child_layer in model.children():
|
274 |
+
if model != child_layer:
|
275 |
+
self.reset_layer(child_layer)
|
276 |
+
|
277 |
+
def remove_pretraining_modules(self):
|
278 |
+
""" Remove uneeded modules. Inspired by the same fairseq function."""
|
279 |
+
|
280 |
+
self.model.quantizer = None
|
281 |
+
self.model.project_q = None
|
282 |
+
self.model.target_glu = None
|
283 |
+
self.model.final_proj = None
|
284 |
+
|
285 |
+
|
286 |
+
class FairseqWav2Vec1(nn.Module):
|
287 |
+
"""This lobes enables the integration of fairseq pretrained wav2vec1.0 models.
|
288 |
+
|
289 |
+
Arguments
|
290 |
+
---------
|
291 |
+
pretrained_path : str
|
292 |
+
Path of the pretrained wav2vec1 model. It can be a url or a local path.
|
293 |
+
save_path : str
|
294 |
+
Path and filename of the downloaded model.
|
295 |
+
output_norm : bool (default: True)
|
296 |
+
If True, a layer_norm (affine) will be applied to the output obtained
|
297 |
+
from the wav2vec model.
|
298 |
+
freeze : bool (default: True)
|
299 |
+
If True, the model is frozen. If False, the model will be trained
|
300 |
+
alongside with the rest of the pipeline.
|
301 |
+
pretrain : bool (default: True)
|
302 |
+
If True, the model is pretrained with the specified source.
|
303 |
+
If False, the randomly-initialized model is instantiated.
|
304 |
+
|
305 |
+
Example
|
306 |
+
-------
|
307 |
+
>>> inputs = torch.rand([10, 600])
|
308 |
+
>>> model_url = ""
|
309 |
+
>>> save_path = "models_checkpoints/wav2vec.pt"
|
310 |
+
>>> model = FairseqWav2Vec1(model_url, save_path)
|
311 |
+
>>> outputs = model(inputs)
|
312 |
+
>>> outputs.shape
|
313 |
+
torch.Size([10, 100, 512])
|
314 |
+
"""
|
315 |
+
|
316 |
+
def __init__(
|
317 |
+
self,
|
318 |
+
pretrained_path,
|
319 |
+
save_path,
|
320 |
+
output_norm=True,
|
321 |
+
freeze=True,
|
322 |
+
pretrain=True,
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
self.freeze = freeze
|
326 |
+
self.output_norm = output_norm
|
327 |
+
|
328 |
+
# Download the pretrained wav2vec1 model. It can be local or online.
|
329 |
+
download_file(pretrained_path, save_path)
|
330 |
+
|
331 |
+
(
|
332 |
+
model,
|
333 |
+
cfg,
|
334 |
+
task,
|
335 |
+
) = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
336 |
+
[pretrained_path]
|
337 |
+
)
|
338 |
+
|
339 |
+
self.model = model
|
340 |
+
self.model = self.model[0]
|
341 |
+
if self.freeze:
|
342 |
+
model.eval()
|
343 |
+
|
344 |
+
# Randomly initialized layers if pretrain is False
|
345 |
+
if not (pretrain):
|
346 |
+
self.reset_layer(self.model)
|
347 |
+
|
348 |
+
def forward(self, wav):
|
349 |
+
"""Takes an input waveform and return its corresponding wav2vec encoding.
|
350 |
+
|
351 |
+
Arguments
|
352 |
+
---------
|
353 |
+
wav : torch.Tensor (signal)
|
354 |
+
A batch of audio signals to transform to features.
|
355 |
+
"""
|
356 |
+
|
357 |
+
# If we freeze, we simply remove all grads and features from the graph.
|
358 |
+
if self.freeze:
|
359 |
+
with torch.no_grad():
|
360 |
+
return self.extract_features(wav).detach()
|
361 |
+
|
362 |
+
return self.extract_features(wav)
|
363 |
+
|
364 |
+
def extract_features(self, wav):
|
365 |
+
"""Extracts the wav2vect embeddings"""
|
366 |
+
|
367 |
+
out = self.model.feature_extractor(wav)
|
368 |
+
out = self.model.feature_aggregator(out).squeeze(0)
|
369 |
+
out = out.transpose(2, 1)
|
370 |
+
|
371 |
+
# We normalize the output if required
|
372 |
+
if self.output_norm:
|
373 |
+
out = F.layer_norm(out, out.shape)
|
374 |
+
|
375 |
+
return out
|
376 |
+
|
377 |
+
def reset_layer(self, model):
|
378 |
+
"""Reinitializes the parameters of the network"""
|
379 |
+
if hasattr(model, "reset_parameters"):
|
380 |
+
model.reset_parameters()
|
381 |
+
for child_layer in model.children():
|
382 |
+
if model != child_layer:
|
383 |
+
self.reset_layer(child_layer)
|
384 |
+
'''
|
385 |
|
386 |
# Evaluation
|
387 |
|