lijialudew commited on
Commit
cef5701
·
1 Parent(s): bc98ab0

Update quick start instructions

Browse files
Files changed (1) hide show
  1. README.md +36 -7
README.md CHANGED
@@ -48,7 +48,34 @@ Two pretrained ECAPA-TDNN speaker embeddings are available:
48
  ## Quick Start
49
 
50
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
- If you wish to use fairseq framework, the following code snippet provides two functions of loading our pretrained W2V2 model and extracting features.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  <pre><code>
54
  import torch
@@ -133,7 +160,7 @@ If you wish to use fairseq framework, the following code snippet provides two fu
133
  audio = audio.transpose(0,1).squeeze(1)
134
  features = extract_features(model, audio)
135
  </code></pre>
136
-
137
  # Evaluation
138
 
139
  <!-- This section describes the evaluation protocols and provides the results. -->
@@ -155,11 +182,13 @@ For more details of experiments and results, please refer to our paper.
155
  If you found this model helpful to you, please cite us as
156
 
157
  <pre><code>
158
- @article{li2023towards,
159
- title={Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio},
160
- author={Li, Jialu and Hasegawa-Johnson, Mark and McElwain, Nancy L},
161
- journal={Interspeech},
162
- year={2023}
 
 
163
  }
164
  </code></pre>
165
 
 
48
  ## Quick Start
49
 
50
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
+ To extract features from pretrained W2V2 model, first install fairseq and speechbrain framework
52
+ <pre><code>
53
+ pip install fairseq
54
+ pip install speechbrain
55
+ </code></pre>
56
+ Download [this code snippet (fairseq_wav2vec.py)](https://huggingface.co/lijialudew/wav2vec_LittleBeats_LENA/blob/main/fairseq_wav2vec.py) in this repo.
57
+ Download the pretrained or fine-tuned model weights.
58
+ Run the following sample code by importing the **FairseqWav2Vec2** class.
59
+
60
+ <pre><code>
61
+ from fairseq_wav2vec import FairseqWav2Vec2
62
+ import torch
63
+ inputs = torch.rand([10, 6000]) # input wav B x T
64
+ save_path = "your/path/to/LL_4300/checkpoint_best.pt"
65
+ # extract features from all transformer layers
66
+ model = FairseqWav2Vec2(save_path) # Output all features from 12 transformer layers with shapes of 12 x B x T' x D
67
+ # To extract features from a certain transformer layer
68
+ # model = FairseqWav2Vec2(save_path, output_all_hiddens = False, tgt_layer = [1]) # Output features from the first transformer layer
69
+ # to load W2V2 model fine-tuned on LENA and LB audio data
70
+ fine_tuned_path = "your/path/to/LL_4300_fine_tuned/save/CKPT+2022-11-26+14-06-17+00/wav2vec2.ckpt"
71
+ model._load_sb_pretrained_w2v2_parameters(fine_tuned_path)
72
+ # To extract wav2vec features
73
+ outputs = model(inputs)
74
+ print(outputs.shape)
75
+ </code></pre>
76
+
77
+
78
+ <!-- previous comments If you wish to use fairseq framework, the following code snippet provides two functions of loading our pretrained W2V2 model and extracting features.
79
 
80
  <pre><code>
81
  import torch
 
160
  audio = audio.transpose(0,1).squeeze(1)
161
  features = extract_features(model, audio)
162
  </code></pre>
163
+ -->
164
  # Evaluation
165
 
166
  <!-- This section describes the evaluation protocols and provides the results. -->
 
182
  If you found this model helpful to you, please cite us as
183
 
184
  <pre><code>
185
+ @inproceedings{li23e_interspeech,
186
+ author={Jialu Li and Mark Hasegawa-Johnson and Nancy L. McElwain},
187
+ title={{Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio}},
188
+ year=2023,
189
+ booktitle={Proc. INTERSPEECH 2023},
190
+ pages={1035--1039},
191
+ doi={10.21437/Interspeech.2023-460}
192
  }
193
  </code></pre>
194