Commit
·
cef5701
1
Parent(s):
bc98ab0
Update quick start instructions
Browse files
README.md
CHANGED
@@ -48,7 +48,34 @@ Two pretrained ECAPA-TDNN speaker embeddings are available:
|
|
48 |
## Quick Start
|
49 |
|
50 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
<pre><code>
|
54 |
import torch
|
@@ -133,7 +160,7 @@ If you wish to use fairseq framework, the following code snippet provides two fu
|
|
133 |
audio = audio.transpose(0,1).squeeze(1)
|
134 |
features = extract_features(model, audio)
|
135 |
</code></pre>
|
136 |
-
|
137 |
# Evaluation
|
138 |
|
139 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
@@ -155,11 +182,13 @@ For more details of experiments and results, please refer to our paper.
|
|
155 |
If you found this model helpful to you, please cite us as
|
156 |
|
157 |
<pre><code>
|
158 |
-
@
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
163 |
}
|
164 |
</code></pre>
|
165 |
|
|
|
48 |
## Quick Start
|
49 |
|
50 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
51 |
+
To extract features from pretrained W2V2 model, first install fairseq and speechbrain framework
|
52 |
+
<pre><code>
|
53 |
+
pip install fairseq
|
54 |
+
pip install speechbrain
|
55 |
+
</code></pre>
|
56 |
+
Download [this code snippet (fairseq_wav2vec.py)](https://huggingface.co/lijialudew/wav2vec_LittleBeats_LENA/blob/main/fairseq_wav2vec.py) in this repo.
|
57 |
+
Download the pretrained or fine-tuned model weights.
|
58 |
+
Run the following sample code by importing the **FairseqWav2Vec2** class.
|
59 |
+
|
60 |
+
<pre><code>
|
61 |
+
from fairseq_wav2vec import FairseqWav2Vec2
|
62 |
+
import torch
|
63 |
+
inputs = torch.rand([10, 6000]) # input wav B x T
|
64 |
+
save_path = "your/path/to/LL_4300/checkpoint_best.pt"
|
65 |
+
# extract features from all transformer layers
|
66 |
+
model = FairseqWav2Vec2(save_path) # Output all features from 12 transformer layers with shapes of 12 x B x T' x D
|
67 |
+
# To extract features from a certain transformer layer
|
68 |
+
# model = FairseqWav2Vec2(save_path, output_all_hiddens = False, tgt_layer = [1]) # Output features from the first transformer layer
|
69 |
+
# to load W2V2 model fine-tuned on LENA and LB audio data
|
70 |
+
fine_tuned_path = "your/path/to/LL_4300_fine_tuned/save/CKPT+2022-11-26+14-06-17+00/wav2vec2.ckpt"
|
71 |
+
model._load_sb_pretrained_w2v2_parameters(fine_tuned_path)
|
72 |
+
# To extract wav2vec features
|
73 |
+
outputs = model(inputs)
|
74 |
+
print(outputs.shape)
|
75 |
+
</code></pre>
|
76 |
+
|
77 |
+
|
78 |
+
<!-- previous comments If you wish to use fairseq framework, the following code snippet provides two functions of loading our pretrained W2V2 model and extracting features.
|
79 |
|
80 |
<pre><code>
|
81 |
import torch
|
|
|
160 |
audio = audio.transpose(0,1).squeeze(1)
|
161 |
features = extract_features(model, audio)
|
162 |
</code></pre>
|
163 |
+
-->
|
164 |
# Evaluation
|
165 |
|
166 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
|
|
182 |
If you found this model helpful to you, please cite us as
|
183 |
|
184 |
<pre><code>
|
185 |
+
@inproceedings{li23e_interspeech,
|
186 |
+
author={Jialu Li and Mark Hasegawa-Johnson and Nancy L. McElwain},
|
187 |
+
title={{Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio}},
|
188 |
+
year=2023,
|
189 |
+
booktitle={Proc. INTERSPEECH 2023},
|
190 |
+
pages={1035--1039},
|
191 |
+
doi={10.21437/Interspeech.2023-460}
|
192 |
}
|
193 |
</code></pre>
|
194 |
|