{ "satlas_amazon": { "path": "saved_models/Satlas_Amazon_epoch30.pth", "max_batch_size": 4, "name": "[SATLAS] Amazon Rainforest RGB Segmentation Model", "dataset_details": { "name": "Amazon and Atlantic Forest image datasets for semantic segmentation", "url": "https://zenodo.org/records/4498086", "dataset_sizes": { "train": 499, "validation": 100, "test": 20 } }, "model_details": { "name": "Sentinel2_SwinB_SI_RGB", "based_on": "https://github.com/allenai/satlaspretrain_models/", "size_MB": 360, "epochs": 30, "num_classes": 2, "labels": [ "background", "forest" ], "colormap": [ [ 0, 0, 0 ], [ 255, 255, 255 ] ], "band_input": [ "b04", "b03", "b02" ], "allowed_image_input_sizes": [ 512, 1024 ] }, "evaluation_details": [ { "IOU": 0.9160570203553283, "IOU mean": 0.9160291616082962, "IOU per Class": [ 0.91449968, 0.91755865 ] }, { "F1_score Micro": 0.9561897277832025, "F1_score Macro": 0.9561738858131004, "F1_score Weighted": 0.9561771721318983, "F1_score per Class": [ 0.95534064, 0.95700713 ] }, { "Accuracy": 0.9561897277832031, "Accuracy per Class": [ 0.95618973, 0.95618973 ] } ] }, "satlas_atlantic": { "path": "saved_models/Satlas_Atlantic_epoch30.pth", "max_batch_size": 4, "name": "[SATLAS] Atlantic Forest RGB Segmentation Model", "dataset_details": { "name": "Amazon and Atlantic Forest image datasets for semantic segmentation", "url": "https://zenodo.org/records/4498086", "dataset_sizes": { "train": 485, "validation": 100, "test": 20 } }, "model_details": { "name": "Sentinel2_SwinB_SI_RGB", "based_on": "https://github.com/allenai/satlaspretrain_models/", "size_MB": 360, "epochs": 30, "num_classes": 2, "labels": [ "background", "forest" ], "colormap": [ [ 0, 0, 0 ], [ 255, 255, 255 ] ], "band_input": [ "b04", "b03", "b02" ], "allowed_image_input_sizes": [ 512 ] }, "evaluation_details": [ { "IOU": 0.7196257145523254, "IOU mean": 0.6484626133206366, "IOU per Class": [ 0.80662864, 0.49029659 ] }, { "F1_score Micro": 0.8369562149047846, "F1_score Macro": 0.7754754405349589, "F1_score Weighted": 0.8189807462232752, "F1_score per Class": [ 0.89296563, 0.65798525 ] }, { "Accuracy": 0.8369562149047851, "Accuracy per Class": [ 0.83695621, 0.83695621 ] } ] }, "aitlas_amazon": { "path": "saved_models/Aitlas_Amazon.pth.tar", "max_batch_size": 4, "name": "[AiTLAS] Amazon Rainforest RGB Segmentation Model", "dataset_details": { "name": "Amazon Rainforest dataset for semantic segmentation", "url": "https://zenodo.org/record/3233081#.YTYm_44zaUk", "dataset_sizes": { "train": 30, "validation": 15, "test": 15 } }, "model_details": { "name": "DeepLabV3", "based_on": "https://pytorch.org/vision/stable/models/generated/torchvision.models.segmentation.deeplabv3_resnet101.html#torchvision.models.segmentation.deeplabv3_resnet101", "size_MB": 714, "epochs": 40, "num_classes": 2, "labels": [ "background", "forest" ], "colormap": [ [ 0, 0, 0 ], [ 255, 255, 255 ] ], "band_input": [ "b04", "b03", "b02" ], "allowed_image_input_sizes": [ 512, 1024 ] }, "evaluation_details": [ { "IOU": 0.8456317740088586, "IOU mean": 0.8461749415609907, "IOU per Class": [ 0.86789375, 0.82445613 ] }, { "F1_score Micro": 0.916360225173279, "F1_score Macro": 0.9165290964209294, "F1_score Weighted": 0.9170950470624333, "F1_score per Class": [ 0.92927529, 0.90378291 ] }, { "Accuracy": 0.9142213185628255, "Accuracy per Class": [ 0.92842763, 0.900015 ] } ] }, "satlas_rgb1": { "path": "saved_models/Satlas_RGB1_epoch70.pth", "max_batch_size": 4, "name": "[SATLAS] Pretrain RGB1 Segmentation Model", "dataset_details": { "name": "satlas-pretrain", "url": "https://huggingface.co/allenai/satlas-pretrain", "dataset_sizes": { "train": 5656, "validation": 0, "test": 3702 } }, "model_details": { "name": "Sentinel2_SwinB_SI_RGB", "based_on": "https://github.com/allenai/satlaspretrain_models/", "size_MB": 360, "epochs": 100, "num_classes": 12, "labels": [ "background", "water", "developed", "tree", "shrub", "grass", "crop", "bare", "snow", "wetland", "mangroves", "moss" ], "colormap": [ [ 0, 0, 0 ], [ 0, 0, 255 ], [ 255, 0, 0 ], [ 0, 192, 0 ], [ 200, 170, 120 ], [ 0, 255, 0 ], [ 255, 255, 0 ], [ 128, 128, 128 ], [ 255, 255, 255 ], [ 0, 255, 255 ], [ 255, 0, 255 ], [ 128, 0, 128 ] ], "band_input": [ "b04", "b03", "b02" ], "allowed_image_input_sizes": [ 512 ] }, "evaluation_details": [ { "IOU": 0.5275466621413074, "IOU mean": 0.2715683931795421, "IOU per Class": [ 0.00184679, 0.60037727, 0.62003255, 0.59362291, 0.3538088, 0.3514771, 0.56063167, 0.08482253, 0.0, 0.04415439, 0.04804671, 0.0 ] }, { "F1_score Micro": 0.6907110273172209, "F1_score Macro": 0.3631975989561942, "F1_score Weighted": 0.6797870030724643, "F1_score per Class": [ 0.00368677, 0.75029467, 0.7654569, 0.74499796, 0.52268651, 0.52013771, 0.71846763, 0.15638047, 0.0, 0.08457444, 0.09168811, 0.0 ] }, { "Accuracy": 0.9530891218036011, "Accuracy per Class": [ 0.98762772, 0.96266946, 0.87371605, 0.91505114, 0.98472297, 0.85838085, 0.87827618, 0.98283258, 0.99993557, 0.99454291, 0.9994683, 0.99984574 ] } ] }, "satlas_rgb2": { "path": "saved_models/Satlas_RGB2_epoch100.pth", "max_batch_size": 4, "name": "[SATLAS] Pretrain RGB2 Segmentation Model", "dataset_details": { "name": "satlas-pretrain", "url": "https://huggingface.co/allenai/satlas-pretrain", "dataset_sizes": { "train": 5656, "validation": 0, "test": 3702 } }, "model_details": { "name": "Sentinel2_SwinB_SI_RGB", "based_on": "https://github.com/allenai/satlaspretrain_models/", "size_MB": 360, "epochs": 100, "num_classes": 12, "labels": [ "background", "water", "developed", "tree", "shrub", "grass", "crop", "bare", "snow", "wetland", "mangroves", "moss" ], "colormap": [ [ 0, 0, 0 ], [ 0, 0, 255 ], [ 255, 0, 0 ], [ 0, 192, 0 ], [ 200, 170, 120 ], [ 0, 255, 0 ], [ 255, 255, 0 ], [ 128, 128, 128 ], [ 255, 255, 255 ], [ 0, 255, 255 ], [ 255, 0, 255 ], [ 128, 0, 128 ] ], "band_input": [ "b04", "b03", "b02" ], "allowed_image_input_sizes": [ 512 ] }, "evaluation_details": [ { "IOU": 0.5370197470568344, "IOU mean": 0.2659677640863532, "IOU per Class": [ 0.01173397, 0.60826667, 0.6536582, 0.59330671, 0.31323594, 0.30890341, 0.57659089, 0.07976055, 0.0, 0.0193646, 0.02679223, 0.0 ] }, { "F1_score Micro": 0.6987805434317255, "F1_score Macro": 0.3527779273804717, "F1_score Weighted": 0.6810396803904013, "F1_score per Class": [ 0.02319576, 0.75642514, 0.79056022, 0.7447489, 0.47704443, 0.47200337, 0.73144009, 0.14773747, 0.0, 0.03799347, 0.05218627, 0.0 ] }, { "Accuracy": 0.954061534111508, "Accuracy per Class": [ 0.98761703, 0.96330009, 0.88053672, 0.91707112, 0.98515703, 0.85860067, 0.87937035, 0.98291298, 0.99993557, 0.99491056, 0.99948055, 0.99984574 ] } ] }, "satlas_ms1": { "path": "saved_models/Satlas_MS_tci-b08_epoch150.pth", "max_batch_size": 4, "name": "[SATLAS] Pretrain Multiband 1 Segmentation Model", "dataset_details": { "name": "satlas-pretrain", "url": "https://huggingface.co/allenai/satlas-pretrain", "dataset_sizes": { "train": 5656, "validation": 0, "test": 3702 } }, "model_details": { "name": "Sentinel2_SwinB_SI_MS", "based_on": "https://github.com/allenai/satlaspretrain_models/", "size_MB": 360, "epochs": 150, "num_classes": 12, "labels": [ "background", "water", "developed", "tree", "shrub", "grass", "crop", "bare", "snow", "wetland", "mangroves", "moss" ], "colormap": [ [ 0, 0, 0 ], [ 0, 0, 255 ], [ 255, 0, 0 ], [ 0, 192, 0 ], [ 200, 170, 120 ], [ 0, 255, 0 ], [ 255, 255, 0 ], [ 128, 128, 128 ], [ 255, 255, 255 ], [ 0, 255, 255 ], [ 255, 0, 255 ], [ 128, 0, 128 ] ], "band_input": [ "b04", "b03", "b02", "b08" ], "allowed_image_input_sizes": [ 512 ] }, "evaluation_details": [ { "IOU": 0.5955503340933298, "IOU mean": 0.33532558894753084, "IOU per Class": [ 0.0700686, 0.70265891, 0.67547708, 0.64202161, 0.30332007, 0.45834114, 0.63441801, 0.15785859, 0.0, 0.16057524, 0.21916782, 0.0 ] }, { "F1_score Micro": 0.746514003811419, "F1_score Macro": 0.4436594011755825, "F1_score Weighted": 0.7400464110919467, "F1_score per Class": [ 0.13096095, 0.82536661, 0.80631014, 0.78198923, 0.46545753, 0.62857877, 0.77632283, 0.27267336, 0.0, 0.27671664, 0.35953676, 0.0 ] }, { "Accuracy": 0.9592796749367105, "Accuracy per Class": [ 0.98665794, 0.97175842, 0.88690899, 0.9251064, 0.98533753, 0.87516222, 0.90463571, 0.98145686, 0.99993557, 0.99500728, 0.99954343, 0.99984574 ] } ] }, "satlas_ms2": { "path": "saved_models/Satlas_MS_tci-b08-b11-b12_epoch40.pth", "max_batch_size": 4, "name": "[SATLAS] Pretrain Multiband 2 Segmentation Model", "dataset_details": { "name": "satlas-pretrain", "url": "https://huggingface.co/allenai/satlas-pretrain", "dataset_sizes": { "train": 5656, "validation": 0, "test": 3702 } }, "model_details": { "name": "Sentinel2_SwinB_SI_MS", "based_on": "https://github.com/allenai/satlaspretrain_models/", "size_MB": 360, "epochs": 40, "num_classes": 12, "labels": [ "background", "water", "developed", "tree", "shrub", "grass", "crop", "bare", "snow", "wetland", "mangroves", "moss" ], "colormap": [ [ 0, 0, 0 ], [ 0, 0, 255 ], [ 255, 0, 0 ], [ 0, 192, 0 ], [ 200, 170, 120 ], [ 0, 255, 0 ], [ 255, 255, 0 ], [ 128, 128, 128 ], [ 255, 255, 255 ], [ 0, 255, 255 ], [ 255, 0, 255 ], [ 128, 0, 128 ] ], "band_input": [ "b04", "b03", "b02", "b08", "b11", "b12" ], "allowed_image_input_sizes": [ 512 ] }, "evaluation_details": [ { "IOU": 0.60043309802374, "IOU mean": 0.32071053807724903, "IOU per Class": [ 0.02531206, 0.69731785, 0.66974011, 0.64281531, 0.26527911, 0.48739856, 0.64375257, 0.12220778, 0.0, 0.10071356, 0.19398955, 0.0 ] }, { "F1_score Micro": 0.750338266267014, "F1_score Macro": 0.4199611489820694, "F1_score Weighted": 0.7417369196227206, "F1_score per Class": [ 0.04937435, 0.82167032, 0.80220881, 0.7825777, 0.41932109, 0.65537049, 0.78327186, 0.21779885, 0.0, 0.18299686, 0.32494346, 0.0 ] }, { "Accuracy": 0.960807917334036, "Accuracy per Class": [ 0.98736844, 0.97197588, 0.88759186, 0.9271481, 0.98558033, 0.88199576, 0.91012261, 0.98355426, 0.99993557, 0.99504554, 0.99953092, 0.99984574 ] } ] } }