matthieulel commited on
Commit
6ea00ff
·
verified ·
1 Parent(s): 3909d69

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.7273
24
+ - Accuracy: 0.8563
25
+ - Precision: 0.8544
26
+ - Recall: 0.8563
27
+ - F1: 0.8548
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.0846 | 0.99 | 62 | 0.8092 | 0.7272 | 0.7246 | 0.7272 | 0.7101 |
62
+ | 0.7867 | 2.0 | 125 | 0.6366 | 0.7988 | 0.7996 | 0.7988 | 0.7895 |
63
+ | 0.6835 | 2.99 | 187 | 0.5315 | 0.8207 | 0.8195 | 0.8207 | 0.8157 |
64
+ | 0.586 | 4.0 | 250 | 0.4611 | 0.8489 | 0.8468 | 0.8489 | 0.8452 |
65
+ | 0.5263 | 4.99 | 312 | 0.4753 | 0.8399 | 0.8421 | 0.8399 | 0.8400 |
66
+ | 0.5341 | 6.0 | 375 | 0.4551 | 0.8427 | 0.8433 | 0.8427 | 0.8386 |
67
+ | 0.4743 | 6.99 | 437 | 0.4639 | 0.8382 | 0.8433 | 0.8382 | 0.8391 |
68
+ | 0.4573 | 8.0 | 500 | 0.4771 | 0.8360 | 0.8422 | 0.8360 | 0.8345 |
69
+ | 0.4368 | 8.99 | 562 | 0.4731 | 0.8472 | 0.8450 | 0.8472 | 0.8452 |
70
+ | 0.4022 | 10.0 | 625 | 0.4736 | 0.8540 | 0.8528 | 0.8540 | 0.8516 |
71
+ | 0.4005 | 10.99 | 687 | 0.4542 | 0.8551 | 0.8554 | 0.8551 | 0.8547 |
72
+ | 0.3514 | 12.0 | 750 | 0.5543 | 0.8467 | 0.8527 | 0.8467 | 0.8471 |
73
+ | 0.3565 | 12.99 | 812 | 0.5318 | 0.8506 | 0.8535 | 0.8506 | 0.8493 |
74
+ | 0.3717 | 14.0 | 875 | 0.5059 | 0.8579 | 0.8582 | 0.8579 | 0.8574 |
75
+ | 0.3343 | 14.99 | 937 | 0.5235 | 0.8472 | 0.8492 | 0.8472 | 0.8474 |
76
+ | 0.3053 | 16.0 | 1000 | 0.5226 | 0.8591 | 0.8571 | 0.8591 | 0.8567 |
77
+ | 0.2607 | 16.99 | 1062 | 0.5654 | 0.8591 | 0.8579 | 0.8591 | 0.8572 |
78
+ | 0.2814 | 18.0 | 1125 | 0.5622 | 0.8546 | 0.8541 | 0.8546 | 0.8537 |
79
+ | 0.2735 | 18.99 | 1187 | 0.6185 | 0.8506 | 0.8525 | 0.8506 | 0.8508 |
80
+ | 0.2673 | 20.0 | 1250 | 0.6210 | 0.8574 | 0.8544 | 0.8574 | 0.8550 |
81
+ | 0.2595 | 20.99 | 1312 | 0.6334 | 0.8422 | 0.8415 | 0.8422 | 0.8399 |
82
+ | 0.2583 | 22.0 | 1375 | 0.6565 | 0.8540 | 0.8545 | 0.8540 | 0.8527 |
83
+ | 0.239 | 22.99 | 1437 | 0.6859 | 0.8455 | 0.8458 | 0.8455 | 0.8447 |
84
+ | 0.2174 | 24.0 | 1500 | 0.6709 | 0.8591 | 0.8581 | 0.8591 | 0.8581 |
85
+ | 0.2288 | 24.99 | 1562 | 0.7437 | 0.8444 | 0.8426 | 0.8444 | 0.8419 |
86
+ | 0.2305 | 26.0 | 1625 | 0.7048 | 0.8529 | 0.8497 | 0.8529 | 0.8505 |
87
+ | 0.2071 | 26.99 | 1687 | 0.7152 | 0.8540 | 0.8527 | 0.8540 | 0.8529 |
88
+ | 0.2282 | 28.0 | 1750 | 0.7273 | 0.8568 | 0.8559 | 0.8568 | 0.8554 |
89
+ | 0.209 | 28.99 | 1812 | 0.7213 | 0.8557 | 0.8534 | 0.8557 | 0.8540 |
90
+ | 0.2078 | 29.76 | 1860 | 0.7273 | 0.8563 | 0.8544 | 0.8563 | 0.8548 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0bf978cbe8c0b88a768c23d3d1e3db53636df8b1119c557a36945f6629cd034c
3
  size 780935472
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ea34e7e3f14435df24b6fac0241f8ba972610f4ce6ad62e4fd57723d2b221a4
3
  size 780935472