Model save
Browse files- README.md +98 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-galaxy10-decals
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-galaxy10-decals
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.7273
|
24 |
+
- Accuracy: 0.8563
|
25 |
+
- Precision: 0.8544
|
26 |
+
- Recall: 0.8563
|
27 |
+
- F1: 0.8548
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- gradient_accumulation_steps: 4
|
51 |
+
- total_train_batch_size: 256
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_ratio: 0.1
|
55 |
+
- num_epochs: 30
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
61 |
+
| 1.0846 | 0.99 | 62 | 0.8092 | 0.7272 | 0.7246 | 0.7272 | 0.7101 |
|
62 |
+
| 0.7867 | 2.0 | 125 | 0.6366 | 0.7988 | 0.7996 | 0.7988 | 0.7895 |
|
63 |
+
| 0.6835 | 2.99 | 187 | 0.5315 | 0.8207 | 0.8195 | 0.8207 | 0.8157 |
|
64 |
+
| 0.586 | 4.0 | 250 | 0.4611 | 0.8489 | 0.8468 | 0.8489 | 0.8452 |
|
65 |
+
| 0.5263 | 4.99 | 312 | 0.4753 | 0.8399 | 0.8421 | 0.8399 | 0.8400 |
|
66 |
+
| 0.5341 | 6.0 | 375 | 0.4551 | 0.8427 | 0.8433 | 0.8427 | 0.8386 |
|
67 |
+
| 0.4743 | 6.99 | 437 | 0.4639 | 0.8382 | 0.8433 | 0.8382 | 0.8391 |
|
68 |
+
| 0.4573 | 8.0 | 500 | 0.4771 | 0.8360 | 0.8422 | 0.8360 | 0.8345 |
|
69 |
+
| 0.4368 | 8.99 | 562 | 0.4731 | 0.8472 | 0.8450 | 0.8472 | 0.8452 |
|
70 |
+
| 0.4022 | 10.0 | 625 | 0.4736 | 0.8540 | 0.8528 | 0.8540 | 0.8516 |
|
71 |
+
| 0.4005 | 10.99 | 687 | 0.4542 | 0.8551 | 0.8554 | 0.8551 | 0.8547 |
|
72 |
+
| 0.3514 | 12.0 | 750 | 0.5543 | 0.8467 | 0.8527 | 0.8467 | 0.8471 |
|
73 |
+
| 0.3565 | 12.99 | 812 | 0.5318 | 0.8506 | 0.8535 | 0.8506 | 0.8493 |
|
74 |
+
| 0.3717 | 14.0 | 875 | 0.5059 | 0.8579 | 0.8582 | 0.8579 | 0.8574 |
|
75 |
+
| 0.3343 | 14.99 | 937 | 0.5235 | 0.8472 | 0.8492 | 0.8472 | 0.8474 |
|
76 |
+
| 0.3053 | 16.0 | 1000 | 0.5226 | 0.8591 | 0.8571 | 0.8591 | 0.8567 |
|
77 |
+
| 0.2607 | 16.99 | 1062 | 0.5654 | 0.8591 | 0.8579 | 0.8591 | 0.8572 |
|
78 |
+
| 0.2814 | 18.0 | 1125 | 0.5622 | 0.8546 | 0.8541 | 0.8546 | 0.8537 |
|
79 |
+
| 0.2735 | 18.99 | 1187 | 0.6185 | 0.8506 | 0.8525 | 0.8506 | 0.8508 |
|
80 |
+
| 0.2673 | 20.0 | 1250 | 0.6210 | 0.8574 | 0.8544 | 0.8574 | 0.8550 |
|
81 |
+
| 0.2595 | 20.99 | 1312 | 0.6334 | 0.8422 | 0.8415 | 0.8422 | 0.8399 |
|
82 |
+
| 0.2583 | 22.0 | 1375 | 0.6565 | 0.8540 | 0.8545 | 0.8540 | 0.8527 |
|
83 |
+
| 0.239 | 22.99 | 1437 | 0.6859 | 0.8455 | 0.8458 | 0.8455 | 0.8447 |
|
84 |
+
| 0.2174 | 24.0 | 1500 | 0.6709 | 0.8591 | 0.8581 | 0.8591 | 0.8581 |
|
85 |
+
| 0.2288 | 24.99 | 1562 | 0.7437 | 0.8444 | 0.8426 | 0.8444 | 0.8419 |
|
86 |
+
| 0.2305 | 26.0 | 1625 | 0.7048 | 0.8529 | 0.8497 | 0.8529 | 0.8505 |
|
87 |
+
| 0.2071 | 26.99 | 1687 | 0.7152 | 0.8540 | 0.8527 | 0.8540 | 0.8529 |
|
88 |
+
| 0.2282 | 28.0 | 1750 | 0.7273 | 0.8568 | 0.8559 | 0.8568 | 0.8554 |
|
89 |
+
| 0.209 | 28.99 | 1812 | 0.7213 | 0.8557 | 0.8534 | 0.8557 | 0.8540 |
|
90 |
+
| 0.2078 | 29.76 | 1860 | 0.7273 | 0.8563 | 0.8544 | 0.8563 | 0.8548 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.37.2
|
96 |
+
- Pytorch 2.3.0
|
97 |
+
- Datasets 2.19.1
|
98 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 780935472
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ea34e7e3f14435df24b6fac0241f8ba972610f4ce6ad62e4fd57723d2b221a4
|
3 |
size 780935472
|