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Abstract

Chain-of-Thought (CoT) significantly enhances formal reasoning capabilities in Large Language
Models (LLMs) by training them to explicitly generate intermediate reasoning steps. While LLMs
readily benefit from such techniques, improving reasoning in Small Language Models (SLMs) remains
challenging due to their limited model capacity. Recent work by Deepseek-R1 (Luo et al., 2025)
demonstrates that distillation from LLM-generated synthetic data can substantially improve the rea-
soning ability of SLM. However, the detailed modeling recipe is not disclosed. In this work, we present
a systematic training recipe for SLMs that consists of four steps: (1) large-scale mid-training on di-
verse distilled long-CoT data, (2) supervised fine-tuning on high-quality long-CoT data, (3) Rollout
DPO leveraging a carefully curated preference dataset, and (4) Reinforcement Learning (RL) with
Verifiable Reward. We apply our method on Phi-4-Mini, a compact 3.8B-parameter model. The
resulting Phi-4-Mini-Reasoning model exceeds, on math reasoning tasks, much larger reasoning
models, e.g., outperforming DeepSeek-R1-Distill-Qwen-7B by 3.2 points and DeepSeek-R1-Distill-
Llama-8B by 7.7 points on Math-500. Our results validate that a carefully designed training recipe,
with large-scale high-quality CoT data, is effective to unlock strong reasoning capabilities even in
resource-constrained small models.
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Figure 1: Math benchmark performance of Phi-4-Mini-Reasoning.
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1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across numerous natural
language processing tasks, while their reasoning ability often deteriorates when confronting intricate,
multi-step problems, where simply outputting an answer without intermediate steps leads to significant
performance gaps (Wei et al., 2022). The Chain-of-Thought (CoT) approach addresses this challenge
by explicitly prompting models to generate a sequence of logical steps prior to arriving at a final an-
swer, thereby significantly enhancing their reasoning capacities (Kojima et al., 2022; Wei et al., 2022).
Incorporating this reasoning process during inference has established the paradigm of test-time scaling,
which further elevates performance in complex reasoning tasks (Snell et al., 2024; Welleck et al., 2024;
OpenAl, 2024).

Enhancing reasoning abilities is inherently easier for larger LLMs due to their extensive capacity,
whereas it remains challenging for Small Language Models (SLMs). Fortunately, Deepseek-R1 (Guo
et al., 2025) indicates that non-logits-level distillation—effectively supervised fine-tuning (SF'T) of SLMs
using synthetic data generated by more capable models—can markedly improve SLM reasoning perfor-
mance. For instance, such an approach could elevate MATH-500 (Lightman et al., 2023) accuracy of
Llama-8B (Grattafiori et al., 2024) from 44.4% to 89.1% . Following this breakthrough, numerous efforts,
including Bespoke-Stratos-7B (Labs, 2025) and OpenThinker-7B (OpenThoughts, 2025), have aimed to
replicate these results. Despite this enthusiasm, debates persist regarding the primary focus of training.
Deepscaler (Luo et al., 2025) suggests scaling RL like GRPO (Shao et al., 2024) for reasoning gains,
while S1 and LIMO (Muennighoff et al., 2025; Ye et al., 2025b) emphasize the quality and diversity
of reasoning datasets, revealing that even datasets as small as fewer than 1K examples can enhance
reasoning performance.

Rather than focusing on isolated techniques that individually benefit training, we systematically
explore a training paradigm specifically tailored for SLMs, where limited model capacity makes reasoning
improvements particularly challenging. Our methodology consists of two stages of distillation, followed
by rollout-based preference learning that also reuses wrong LLM-generated samples, and concludes with
RL using a verifiable reward. Initially, we employ distillation as a mid-training mechanism to embed
foundational reasoning capabilities. We then apply distillation again in a fine-tuning phase to further
improve model generalization. During LLM rollout sampling for distillation, some incorrect outputs are
typically discarded; however, we re-purpose these discarded samples to create a customized preference
dataset, which is used for preference learning applied on top of the distilled model. Finally, we fine-tune
the model using reinforcement learning with a verifiable reward signal based on final answer correctness.
To ensure stable training, we introduce several targeted improvements, including prompt optimization,
reward re-balancing via oversampling and filtering, and temperature annealing during exploration.

We validate our proposed approach using Phi-4-Mini (Microsoft et al., 2025), a compact 3.8-billion-
parameter model, resulting in Phi-4-Mini-Reasoning, which outperforms other reasoning models
nearly twice its size, such as DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.

2 Background

Small language models (SLMs) have demonstrated significant potential for strong reasoning capabilities.
For example, Qwen-1.5B can achieve 83.9% accuracy on the Math-500 (Lightman et al., 2023) benchmark
simply by distilling 800K examples from DeepSeek-R1 (Guo et al., 2025). Distillation has emerged as a
powerful tool to enhance the reasoning abilities of SLMs; however, the optimal distillation strategy for
small models remains underexplored. Recent studies provide complementary insights: Luo et al. (2025)
suggests that gradually increasing generation length via reinforcement learning can further improve



distilled models, while Muennighoff et al. (2025) and Ye et al. (2025b) emphasize that data diversity
and quality, rather than quantity alone, are critical to success. Despite these advances, a comprehensive
understanding of an effective distillation recipe for SLMs is still lacking. Moreover, naively applying
isolated techniques can lead to degraded performance. For instance, directly distilling SIK (Muennighoff
et al., 2025) or LIMO (Ye et al., 2025b) datasets onto Phi-4-Mini results in a significant drop in reasoning
performance. This observation suggests that SLMs, due to their limited capacity, require substantially
more carefully designed data and training strategies to develop robust reasoning capabilities compared
to their larger counterparts. Detailed results illustrating this phenomenon are shown in Table 1.

Model AIME 2024 MATH-500 GPQA Diamond
Phi-4-Mini 10.0 71.8 36.9
Phi-4-Mini + LIMO 6.7 57.8 24.8
Phi-4-Mini + S1K 3.0 47.0 26.3
Phi-4-Mini-Reasoning (with our full recipe) 57.5 94.6 52.0

Table 1: Pass@1 performance of Phi-4-Mini under different distillation settings. Naively using a small amount
of high-quality data leads to significant performance degradation, highlighting the necessity of a comprehensive
training recipe.

Hence, our goal is to develop a comprehensive and efficient recipe for training SLMs. We first observe
that non-reasoning SLMs require an initial mid-training stage to absorb a large volume of reasoning
trajectories before any additional techniques are applied. However, several key questions remain: How
much mid-training data is necessary? What subsequent techniques—such as careful distillation, preference
learning, or reinforcement learning—should be employed next? In this work, we systematically address
these questions and propose a complete recipe for building high-performing reasoning SLMs.

3 Multi-Stage Continual Training for Reasoning

Here, we systematically introduce our complete training recipe rather than exploring individual com-
ponents. Taking a pre-trained SLM as a base, we improve its formal reasoning capability by first
performing a multi-stage continual training using a curated CoT reasoning dataset and then running
RL with verifiable rewards.

3.1 Distillation as Mid-Training

In the first stage, we frame distillation as mid-training. Specifically, we train the base model with next
token prediction on an extensive corpus of synthetic chain-of-thought (CoT) data, which covers questions
from diverse domains and varying levels of difficulty. The CoT-style answers for these questions are
sampled by the Deepseek-R1 model (Guo et al., 2025), after which we apply rejection sampling to retain
only the correct answers. More details on our data generation methodology are presented in Section 4.
We pair each question with its corresponding correct CoT answer and train the base model using the
standard causal language modeling objective. We train the model under a packing mode, i.e., multiple
short examples are packed in the same input sequence to increase training efficiency. The goal of this
mid-training step is to equip the small base model with general CoT reasoning capabilities that are not
explicitly learned during model mid-training. We find it effective to allow mid-training to iteratively use
as much CoT training data as possible until model performance saturates on a validation dataset.



3.2 Distillation as Supervised Fine-tuning

After learning extensive and diverse reasoning chains, our next step involves selecting a compact, yet
representative, subset from the mid-training dataset for subsequent fine-tuning. Fine-tuning is performed
in a non-packing mode where we teach the model to decide where to stop generating. As it has been
shown that higher-quality data can notably improve model performance and generalization capabilities
and enable the model to better answer complex questions (Xu et al., 2024a; Zhou et al., 2023; Ye
et al., 2025b; Muennighoff et al., 2025), we have constructed a combined dataset spanning diverse math
domains, with difficulty levels exceeding the ‘college level’. More details about data categorization are
described in Section 4.

3.3 Rollout Preference Learning

In the previous two stages, the model is trained exclusively on accepted generations, filtering out rollouts
containing incorrect answers. However, are the rejected rollouts entirely devoid of value? In this stage,
we use rejected rollouts to enhance model performance. The quality of rejected data is important for
preference learning, as pointed out by Xu et al. (2024b),. Specifically, incorrect responses with minor
nuances compared to their correct counterparts provide effective candidates for constructing informative
preference pairs. To ensure data quality, we retained the questions that are categorized as ‘high-school’
level math or above, determined by GPT-40-mini (Achiam et al., 2023). The preference dataset is then
constructed by designating correct answers as preferred rollouts and incorrect answers as dis-preferred
rollouts for each question. Finally, we apply Direct Preference Optimization (DPO) (Rafailov et al.,
2023) to the model:
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where 7. is the reference model, ¥, and y; are preferred and dis-preferred rollouts, respectively.
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3.4 RL with Verifiable Reward

Although DPO improves the model’s alignment and reasoning ability using curated preference pairs,
DPO is limited as an offline learning method using a fixed dataset. To improve model’s reasoning
capability through online learning, we perform RL on the distilled and preference-trained model. In
what follows, we describe the RL algorithms we have experimented and the RL training recipe.

Proximal Policy Optimization (PPO) PPO (Schulman et al., 2017) has been successfully applied
to fine-tuning LLMs via RLHF. The algorithm employs a clipped surrogate objective to limit each
policy update so that it stays close to the previous policy. This clipping mechanism avoids overly large
importance sampling ratios, which both stabilizes learning and enhances sample efficiency. PPO seeks
to maximize
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and ¢ is sampled from the data distribution D, e controls the clipping range, and A; denotes the
advantage estimate at time step t. To compute A;, PPO uses the Generalized Advantage Estimator



(GAE) (Schulman et al., 2015). Given a value function V' and a reward function R, the estimator is
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Group-based Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024) estimates its
baseline by comparing rewards within a batch of G model responses, reducing the critic’s cost and
improving model training stability. Concretely, for each question ¢, it samples a set of candidate responses
G {0;}%, under the old policy 7g_,,, then computes their rewards {R;}$,. The normalized advantage is
computed as

old?’

_ R —mean(Ry,...,Rg) 5)
Std(Rl,...,RG') ’

GRPO then maximizes a clipped-surrogate objective, averaged over the group, with an additional KL-

penalty toward a reference policy mryef:
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where € is the clipping parameter and § weights the KL-penalty.

Verifiable Reward Reinforcement learning with verifiable reward (RLVR) has shown to be very
effective in training models for various reasoning tasks (Guo et al., 2025; Ye et al., 2025a). Following
prior work (Guo et al., 2025), the reward for a verifiable task is defined as a function of the accuracy of
the model’s final answer. Concretely,

+1, ifverify(y,y),
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where y denotes the ground-truth answer and g the response of the model.

Our RL Recipe In our pilot study of applying GRPO to train our base model, we have observed
three issues that affect the stability and effectiveness of model training.

1. High Variance in Response Lengths Although the base model, after mid-training, is already
able to generate reasonable CoT responses, we have observed substantial variability in response
lengths within the same GRPO sampling group. For the same prompt, positively rewarded re-
sponses ranged from approximately 12k to 20k tokens. Directly optimizing the model for the
standard GRPO objective on such length-heterogeneous responses induces instability. Zhang et al.
(2025) reports a similar phenomenon when training a model on both mathematical and coding
tasks.

2. Vanishing Gradients under Uniform Rewards GRPO’s reliance on advantage estimates
makes it susceptible to the vanishing gradient problem of all sampled responses in a group re-
ceiving identical rewards, yielding zero variance in the returns. The DAPO framework (Yu et al.)
addresses this problem by oversampling and filtering out prompts whose response accuracies are
exactly 0 or 1, thereby preserving non-zero advantage signals. However, we find in our experiments
that we need to address the following two problems when applying DAPO to our model:



(i) The model is sensitive to intra-group length discrepancies: responses with intermediate ac-
curacies (e.g., 0.1 or 0.9) still provoke unstable gradient magnitudes due to response-length
variance.

(ii) For difficult math tasks, attaining even a single positively rewarded sample (by prompting
the model) requires expanding the GRPO batch size to 128. This imbalance between positive
and negative training signals impedes RL convergence.

We hypothesize that these issues become more prominent for small language models, where the
RL stability is more likely to be fragile, compared to LLMs.

. Exploration—Exploitation Tradeoff Effective exploration is essential for discovering high-reward

policies in RL. While a sampling temperature of 1.0 or higher is employed to encourage explorations,
a lower temperature (e.g. 0.6) is typically used to constrain output variance on math and coding
tasks. In our experiments, we have observed a substantial performance gap resulting from this
divergence between the exploration used during training and the exploitation settings applied at
evaluation.

To address the aforementioned challenges, we introduce a set of methods to improve the stability

and effectiveness of RL training:

4

1. Prompt Optimization We perform multiple rounds of sampling using multiple candidate prompts

intended for RL training using the distilled model. Then only those prompts whose generated re-
sponses exhibit relatively uniform token lengths are retained. This method mitigates the instability
induced by high intra-group response length variance during GRPO optimization.

. Reward Rebalancing through Oversampling and Filtering Inspired by DAPO (Yu et al.),

for difficult prompts, we first conduct oversampling to ensure sufficient diversity in the response
group. We then re-balance the group by retaining all positive-reward responses and randomly
sampling an equal number of negative-reward responses. To further reduce the length variance
and avoid instability from overly easy prompts, we filter out prompts whose group-level accuracy
exceeds a certain threshold (e.g., 50%).

. Temperature Annealing To seek the best tradeoff between exploration and exploitation during

the course of model training, we introduce temperature annealing. We initialize the sampling
temperature as 1.0 and linearly decay it over the first 50% of training steps down to 0.6. For
the remaining training steps, the temperature is fixed as 0.6. This strategy encourages broader
exploration in the early stage of RL while gradually transitioning toward the exploitation in the
well-known state-action subspace.

Synthetic CoT Data Generation

To support distillation and rollout-based preference learning, we construct a large-scale reasoning dataset
composed of LLM-generated synthesized reasoning trajectories. Specifically, we aggregate multiple pub-
lic datasets—such as Bespoke (Labs, 2025), Openthoughts (OpenThoughts, 2025), and OpenR1-Math
(HuggingFace, 2025)—along with several in-house seed datasets. For datasets that already include rea-
soning trajectories, we directly use the provided annotations. For datasets lacking such trajectories, we
retain only the math questions and generate new chain-of-thought answers using DeepSeek-R1 (671B).
For each question, we sample approximately eight rollouts. An overview of the data sources is provided



Data Resource Size  Reasoning

AquaRAT (Ling et al., 2017) 98K b 4
Ape210K (Zhao et al., 2020) 210K X
MetaMathQA (Yu et al., 2023) 395K X
MathInstruct (Yue et al., 2023) 262K X
TAL-SCQ5K (TAL-SCQ5K, 2023) 5K X
OpenR1-Math (HuggingFace, 2025) 220K

Bespoke-Stratos-17k (Labs, 2025) 17K

OpenThoughts-114K (OpenThoughts, 2025) 114K

Table 2: Overview of the data resources used for constructing the reasoning dataset. For non-reasoning data, we
only use the questions and sample answers from Deepseek R1.

in Table 2. In total, we collect around 10 million rollouts across 1.6 million samples, including contri-
butions from public datasets. For math questions that are verifiable, we first apply a math-verification
tool to assess the correctness of the answers. However, as automatic verification can sometimes fail to
validate complex solutions—leading to false negatives—we additionally employ GPT-40-mini to re-verify
rollouts initially flagged as incorrect. To maintain dataset balance, we annotate each data sample with
attributes including the domain category, the difficulty level, and the presence of repetitive patterns. Do-
main categories cover a wide range of areas such as algebra, geometry, theory, probability, and calculus.
Difficulty levels are categorized as elementary school, middle school, high school, college, and graduate
level. The mid-training phase leverages the full dataset, while subsequent training steps operate on
selected subsets.

5 Experiment

5.1 Evaluation

We evaluate our model on three mathematical reasoning tasks: AIME24 (MAA, 2024), Math-500 (Light-
man et al., 2023), and GPQA Diamond (Rein et al.). For evaluation, the generation parameters are
set with a temperature of 0.6, top, of 0.95, and a maximum sequence length of 32K. For each task, we
conduct 3 runs and report the average performance across these trials.

5.2 Baselines

We compare our Phi-4-Mini-Reasoning model with ol-mini and several leading open-source, small-
scale reasoning models, including DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), Bespoke-Stratos-7B
(Labs, 2025), and OpenThinker-7B (OpenThoughts, 2025).

5.3 Training Settings

For the first two distillation stages, we use a batch size of 128, a learning rate of le-5, a total of 5 training
epochs, and a warmup ratio of 0.1. During the first stage, the sequence length is set to 16K with packing
strategy, whereas in the second stage the sequence length is extended to 20K without packing. For the
Rollout DPO phase, we use a learning rate of 5e-7 for a single training epoch, with a sequence length of
16K. During the RL stage, a learning rate of 5e-7 and a sequence length of 25k are used to encourage
model exploration.



5.4 Results

The overall results are presented in Table 3. Phi-4-Mini-Reasoning, despite having only 3.8 bil-
lion parameters, outperforms all open-source baseline models, including those nearly twice its size. In
addition, we provide an ablation study to demonstrate the contribution of each training stage to the
performance of Phi-4-Mini-Reasoning.

Model AIME MATH-500 GPQA Diamond
ol-mini* 63.6 90.0 60.0
DeepSeek-R1-Distill-Qwen-7B 53.3 91.4 49.5
DeepSeek-R1-Distill-Llama-8B 43.3 86.9 47.3
Bespoke-Stratos-7B* 20.0 82.0 37.8
OpenThinker-7B* 31.3 83.0 42.4
Llama-3.2-3B-Instruct 6.7 44.4 25.3
Phi-4-Mini 10.0 71.8 36.9
+ Distill Mid-training 30.0 82.9 42.6
+ Distill Fine-tuning 43.3 89.3 48.3
+ Roll-Out DPO 50.0 93.6 49.0
+ RL (Phi-4-Mini-Reasoning) || 57.5 94.6 52.0

Table 3: Pass@l CoT Reasoning results of Phi-4-Mini-Reasoning compared with larger 7B reasoning models
and OpenAl models. An asterisk (*) indicates results taken directly from the published reports, while the remaining
results were reproduced in our work.

5.5 Ablations

In this section, we conduct ablation studies to understand the impact of our distillation training on the
model’s reasoning capability and compare the training stability of our RL recipe with DAPO.

To measure the reasoning boundary of an LLM, we use the pass@k metric. For each problem, we
sample k outputs from the model. The pass@k value for a question is 1 if at least one of the k samples
passes verification; otherwise, it is 0. The average passQk over the dataset reflects the proportion of
problems that the model can solve within k& attempts. As shown in Figure 2a, our distillation pipeline
serves as an effective approach for injecting reasoning-related knowledge into the model. After the
distillation phase, pass@k scores are substantially improved, indicating that distillation successfully
extends the reasoning capability boundary of the base LLM. This lays a strong foundation for subsequent
RL training. Building on this, RL fine-tuning further improves performance, providing an additional
boost of approximately 7 points on average and further refining the model’s abilities.

We also compare our RL training method against DAPO. As shown in Figure 2b, DAPO does not
perform well in our setting: the consensus@16 metric on the AIME dataset consistently degrades as
training progresses. In contrast, our RL training technique exhibits greater stability and consistently
yields meaningful improvements over the base model.

5.6 Safety Statement

Phi-4-Mini-Reasoning was developed in accordance with Microsoft’s responsible Al principles. Poten-
tial safety risks in the model’s responses were assessed using the Azure Al Foundry’s Risk and Safety
Evaluation framework, focusing on harmful content, direct jailbreak, and model groundedness. The
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Figure 2: (a) Pass@k curves on AIME 2024 for the base model, the Roll-Out DPO model, and the model with
additional RL training. Rollout DPO significantly improves Pass@k, extending the model’s reasoning capabilities.
Further RL training yields additional gains. (b) Comparison between DAPO and our RL training method, evalu-
ated by cons@16 accuracy on AIME 2024. Our RL training approach demonstrates better stability.

Phi-4-Mini-Reasoning Model Card contains additional information about our approach to safety and
responsible Al considerations that developers should be aware of when using this model.

6 Conclusion

We present a multi-stage training paradigm to enhance reasoning capabilities in small language models
(SLMs), combining large-scale distillation, rollout preference learning, and reinforcement learning with
verifiable rewards. Applied to Phi-4-Mini, our approach produces Phi-4-Mini-Reasoning, a compact
3.8-billion-parameter model that outperforms open-source reasoning models nearly twice its size. We
demonstrate that a carefully coordinated sequence of training stages is essential for unlocking robust
reasoning in SLMs. Our results show that small models, when trained with deliberate data selection and
training strategies, can match or even exceed the capabilities of much larger models. We believe that this
work provides a blueprint for developing efficient, high-performing models under resource constraints.
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