--- library_name: transformers license: mit base_model: ai-forever/sage-mt5-large tags: - generated_from_trainer model-index: - name: MT5_large_A_art results: [] --- # MT5_large_A_art This model is a fine-tuned version of [ai-forever/sage-mt5-large](https://huggingface.co/ai-forever/sage-mt5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.83229e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3300 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9979 | 0.0303 | 100 | 0.2649 | | 0.5176 | 0.0606 | 200 | 0.2170 | | 0.3916 | 0.0909 | 300 | 0.1973 | | 0.3356 | 0.1212 | 400 | 0.1928 | | 0.2993 | 0.1515 | 500 | 0.1937 | | 0.2783 | 0.1818 | 600 | 0.1919 | | 0.268 | 0.2121 | 700 | 0.1907 | | 0.2697 | 0.2424 | 800 | 0.1914 | | 0.2491 | 0.2726 | 900 | 0.1901 | | 0.2488 | 0.3029 | 1000 | 0.1888 | | 0.238 | 0.3332 | 1100 | 0.1861 | | 0.2414 | 0.3635 | 1200 | 0.1872 | | 0.2378 | 0.3938 | 1300 | 0.1857 | | 0.2286 | 0.4241 | 1400 | 0.1842 | | 0.2201 | 0.4544 | 1500 | 0.1849 | | 0.2217 | 0.4847 | 1600 | 0.1845 | | 0.2195 | 0.5150 | 1700 | 0.1835 | | 0.2137 | 0.5453 | 1800 | 0.1818 | | 0.2147 | 0.5756 | 1900 | 0.1822 | | 0.2246 | 0.6059 | 2000 | 0.1806 | | 0.2151 | 0.6362 | 2100 | 0.1806 | | 0.2179 | 0.6665 | 2200 | 0.1805 | | 0.2219 | 0.6968 | 2300 | 0.1806 | | 0.2126 | 0.7271 | 2400 | 0.1808 | | 0.2149 | 0.7573 | 2500 | 0.1802 | | 0.2137 | 0.7876 | 2600 | 0.1806 | | 0.2146 | 0.8179 | 2700 | 0.1803 | | 0.2078 | 0.8482 | 2800 | 0.1803 | | 0.2084 | 0.8785 | 2900 | 0.1805 | | 0.2153 | 0.9088 | 3000 | 0.1801 | | 0.2134 | 0.9391 | 3100 | 0.1799 | | 0.2169 | 0.9694 | 3200 | 0.1799 | | 0.2181 | 0.9997 | 3300 | 0.1799 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.1 - Tokenizers 0.21.0