File size: 2,223 Bytes
308ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d258ba
308ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d258ba
308ab63
 
 
 
 
 
5d258ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308ab63
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: zlm_b64_le5_s8000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zlm_b64_le5_s8000

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3771

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7074        | 0.4188 | 500  | 0.6029          |
| 0.5916        | 0.8375 | 1000 | 0.4968          |
| 0.5206        | 1.2563 | 1500 | 0.4592          |
| 0.4979        | 1.6750 | 2000 | 0.4388          |
| 0.4852        | 2.0938 | 2500 | 0.4211          |
| 0.4615        | 2.5126 | 3000 | 0.4088          |
| 0.4521        | 2.9313 | 3500 | 0.4002          |
| 0.4431        | 3.3501 | 4000 | 0.3948          |
| 0.4393        | 3.7688 | 4500 | 0.3914          |
| 0.4271        | 4.1876 | 5000 | 0.3861          |
| 0.4317        | 4.6064 | 5500 | 0.3836          |
| 0.4265        | 5.0251 | 6000 | 0.3809          |
| 0.424         | 5.4439 | 6500 | 0.3794          |
| 0.4123        | 5.8626 | 7000 | 0.3786          |
| 0.4117        | 6.2814 | 7500 | 0.3776          |
| 0.4155        | 6.7002 | 8000 | 0.3771          |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1