Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- stanfordnlp/imdb
|
4 |
+
metrics:
|
5 |
+
- perplexity
|
6 |
+
base_model:
|
7 |
+
- EuroBERT/EuroBERT-210m
|
8 |
+
pipeline_tag: fill-mask
|
9 |
+
tags:
|
10 |
+
- art
|
11 |
+
---
|
12 |
+
# Data Card for EuroBERT-210m-finetuned-imdb
|
13 |
+
|
14 |
+
## Model Overview
|
15 |
+
|
16 |
+
- **Model Name**: EuroBERT-210m-finetuned-imdb
|
17 |
+
- **Base Model**: EuroBERT-210m
|
18 |
+
- **Fine-tuned On**: IMDb dataset
|
19 |
+
- **Task**: Masked Language Modeling (MLM)
|
20 |
+
- **Training Objective**: Minimize Perplexity
|
21 |
+
|
22 |
+
## Dataset Details
|
23 |
+
|
24 |
+
- **Dataset Used**: IMDb
|
25 |
+
- **Dataset Version**: Default version from `datasets` library
|
26 |
+
- **Dataset Source**: Hugging Face `datasets`
|
27 |
+
- **Training Split**: `train`
|
28 |
+
- **Evaluation Split**: `test`
|
29 |
+
|
30 |
+
## Training & Evaluation
|
31 |
+
|
32 |
+
### Training Process
|
33 |
+
- The model was fine-tuned for three epochs using PyTorch and Hugging Face's `transformers` library.
|
34 |
+
- The optimizer and learning rate scheduler were set up within the `accelerate` framework.
|
35 |
+
|
36 |
+
### Evaluation Metrics
|
37 |
+
- The model was evaluated using **Perplexity (PPL)** on the test set.
|
38 |
+
- Results:
|
39 |
+
- **Epoch 0**: PPL = 12.63
|
40 |
+
- **Epoch 1**: PPL = 9.35
|
41 |
+
- **Epoch 2**: PPL = 8.12
|
42 |
+
|
43 |
+
## Model Usage
|
44 |
+
|
45 |
+
### Inference
|
46 |
+
The model can be used for masked token prediction using the following script:
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
51 |
+
|
52 |
+
def predict_masked_sentence(sentence, mask_token="<|mask|>"):
|
53 |
+
"""
|
54 |
+
Predicts top-1 tokens for all mask tokens in a sentence and returns the reconstructed text.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
sentence (str): Input sentence with mask tokens (e.g., "The movie was [MASK]!").
|
58 |
+
mask_token (str, optional): Token used as mask in the input sentence. Defaults to "<|mask|>".
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
str: Sentence with all mask tokens replaced by top-1 predictions.
|
62 |
+
"""
|
63 |
+
model_checkpoint = "milanvelinovski/EuroBERT-210m-finetuned-imdb"
|
64 |
+
model = AutoModelForMaskedLM.from_pretrained(model_checkpoint, trust_remote_code=True)
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, trust_remote_code=True)
|
66 |
+
|
67 |
+
sentence_with_model_mask = sentence.replace(mask_token, "<|mask|>")
|
68 |
+
inputs = tokenizer(sentence_with_model_mask, return_tensors="pt")
|
69 |
+
token_logits = model(**inputs).logits
|
70 |
+
|
71 |
+
mask_token_indices = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
72 |
+
top_tokens = [torch.topk(token_logits[0, idx, :], 1).indices.item() for idx in mask_token_indices]
|
73 |
+
|
74 |
+
text_parts = sentence.split(mask_token)
|
75 |
+
final_text = text_parts[0] + ''.join(tokenizer.decode([token]) + text_parts[i+1] for i, token in enumerate(top_tokens))
|
76 |
+
|
77 |
+
return final_text
|
78 |
+
|
79 |
+
text = "The protagonist's journey was <|mask|>, filled with <|mask|> obstacles that made the ending feel <|mask|>."
|
80 |
+
final_text = predict_masked_sentence(text)
|
81 |
+
print(final_text)
|
82 |
+
```
|
83 |
+
|
84 |
+
## Libraries Used
|
85 |
+
|
86 |
+
| Library | Version |
|
87 |
+
|-------------|----------|
|
88 |
+
| datasets | 3.3.1 |
|
89 |
+
| transformers| 4.49.0 |
|
90 |
+
| evaluate | 0.4.3 |
|
91 |
+
| accelerate | 1.2.1 |
|
92 |
+
| torch | 2.5.1+cu121 |
|
93 |
+
|
94 |
+
## Model Limitations
|
95 |
+
- The model is primarily trained for masked language modeling and may not generalize well to other NLP tasks.
|
96 |
+
- The perplexity scores indicate that further fine-tuning or hyperparameter optimization might improve performance.
|
97 |
+
- Model predictions are constrained by the IMDb dataset and may not generalize well to other domains.
|
98 |
+
|
99 |
+
## Citation
|
100 |
+
If you use this model, please cite:
|
101 |
+
```
|
102 |
+
@misc{EuroBERT-210m-finetuned-imdb,
|
103 |
+
author = {Milan Velinovski},
|
104 |
+
title = {EuroBERT-210m-finetuned-imdb},
|
105 |
+
year = {2025},
|
106 |
+
publisher = {Hugging Face},
|
107 |
+
url = {https://huggingface.co/milanvelinovski/EuroBERT-210m-finetuned-imdb}
|
108 |
+
}
|
109 |
+
```
|