--- library_name: peft license: llama3.2 base_model: minpeter/Llama-3.2-1B-AlternateTokenizer-tool-chatml tags: - generated_from_trainer datasets: - minpeter/hermes-function-calling-v1-jsonl - minpeter/hermes-function-calling-v1-jsonl model-index: - name: output results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: minpeter/Llama-3.2-1B-AlternateTokenizer-tool-chatml # revision_of_model: 10f4b4db33e5221f75678044d524bdc2d8b5b056 load_in_8bit: false load_in_4bit: true strict: false lora_modules_to_save: - embed_tokens - lm_head datasets: # - path: teknium/OpenHermes-2.5 # type: chat_template # chat_template: chatml # field_messages: conversations # message_field_role: from # message_field_content: value # shards: 800 - path: minpeter/hermes-function-calling-v1-jsonl data_files: - func-calling-singleturn.jsonl - func-calling.jsonl type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value - path: minpeter/hermes-function-calling-v1-jsonl data_files: - glaive-function-calling-5k.jsonl type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value save_safetensors: true auto_resume_from_checkpoints: false save_steps: 200 chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./output adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: <|begin_of_text|> eos_token: <|im_end|> pad_token: <|end_of_text|> # <--- unsloth config ---> unsloth_lora_mlp: true unsloth_lora_qkv: true unsloth_lora_o: true ```

# output This model is a fine-tuned version of [minpeter/Llama-3.2-1B-AlternateTokenizer-tool-chatml](https://huggingface.co/minpeter/Llama-3.2-1B-AlternateTokenizer-tool-chatml) on the minpeter/hermes-function-calling-v1-jsonl and the minpeter/hermes-function-calling-v1-jsonl datasets. It achieves the following results on the evaluation set: - Loss: 0.3821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3359 | 0.0028 | 1 | 1.2171 | | 0.5638 | 0.4997 | 179 | 0.4399 | | 0.385 | 0.9993 | 358 | 0.3942 | | 0.2324 | 1.4969 | 537 | 0.3905 | | 0.1998 | 1.9965 | 716 | 0.3729 | | 0.0984 | 2.4941 | 895 | 0.3817 | | 0.2157 | 2.9937 | 1074 | 0.3821 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0