Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- PPO first try.zip +3 -0
- PPO first try/_stable_baselines3_version +1 -0
- PPO first try/data +94 -0
- PPO first try/policy.optimizer.pth +3 -0
- PPO first try/policy.pth +3 -0
- PPO first try/pytorch_variables.pth +3 -0
- PPO first try/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO first try.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12122bb85d42f25631bf2b72e01445fd728e6662a2035412752283bda3f69a81
|
3 |
+
size 144154
|
PPO first try/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO first try/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f729d7a8680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f729d7a8710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f729d7a87a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f729d7a8830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f729d7a88c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f729d7a8950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f729d7a89e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f729d7a8a70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f729d7a8b00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f729d7a8b90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f729d7a8c20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f729d7fc540>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653142182.3039844,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgNeXvVxzbrqYnBe2q8OUM+5Rcrjvdzw1AACAPwAAgD+mh4S9jw4guuQHurrN5ls079knOqDZ1zkAAIA/AACAP5qfKLzDLTi6sPZgO0eigDj12wU71+QFugAAgD8AAIA/GkSGvakPlD/D/3K9NvrVviMGxb2CZ/c8AAAAAAAAAACzeUk99vQduiLs07oCtDK2Ko+hOo5A+TkAAIA/AACAP80EDLtxHXS56Pgkuo/tobbeRrm7eTlJOQAAgD8AAIA/TfYUPSl4cbolSEM8cPyOttYIQLpiqYW1AACAPwAAgD9mVF+89mAzuqXFXTxgyIk8DyDquiYicD0AAIA/AACAP6DuVL4X5IE/GAvQvnLwx76Ucsi+QgY0vgAAAAAAAAAAzUYIvKQgcrnSfvs52nWetedipjj/0xO5AACAPwAAgD9mrr284Tiyus2HerorRxI1gQoEOjYVjzkAAIA/AACAP1qgAL7Xhje73hQOu7oZj7i4E8k8pe89OgAAgD8AAIA/ZuTcPEhLnLqYxE24gO9Is9eEJTkVmW03AACAPwAAgD9mBkk74TCQuiDlQDsKsmQ4gAO5Oq6c5rkAAIA/AACAP7P6db3DSXy6gtK5uoamwbWqOEm6M+PYOQAAgD8AAIA/ZhAzvFw7RrrtyYQ5yfXis1xZirvGU5m4AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjC/a44XJY0CUhpRSlIwBbJRN6AOMAXSUR0CY9v7PppvhdX2UKGgGaAloD0MIPpKSHgarYkCUhpRSlGgVTegDaBZHQJj4iphnanJ1fZQoaAZoCWgPQwjYnlkSIAJiQJSGlFKUaBVN6ANoFkdAmPpTKYAsCnV9lChoBmgJaA9DCAkYXd4cSmVAlIaUUpRoFU3oA2gWR0CY/OG/N7jUdX2UKGgGaAloD0MI/b0UHrRlYkCUhpRSlGgVTegDaBZHQJj/q0a6z3R1fZQoaAZoCWgPQwibVDTWfqplQJSGlFKUaBVN6ANoFkdAmQHxvR7Z4HV9lChoBmgJaA9DCOmayTdbQ2JAlIaUUpRoFU3oA2gWR0CZAkPoV2zOdX2UKGgGaAloD0MIH6LRHcQoY0CUhpRSlGgVTegDaBZHQJkGpJL/S6V1fZQoaAZoCWgPQwiQ+BVruApgQJSGlFKUaBVN6ANoFkdAmQuy2x6fJ3V9lChoBmgJaA9DCFvR5jh3R3BAlIaUUpRoFU0rA2gWR0CZC9nwXqJNdX2UKGgGaAloD0MII8DpXbwyZUCUhpRSlGgVTegDaBZHQJki6D15B1N1fZQoaAZoCWgPQwh9yjFZ3D5kQJSGlFKUaBVN6ANoFkdAmSRR19v0iHV9lChoBmgJaA9DCMf0hCWe+2JAlIaUUpRoFU3oA2gWR0CZJJHYpUgkdX2UKGgGaAloD0MIyenr+RpkYUCUhpRSlGgVTegDaBZHQJku6kxh2GJ1fZQoaAZoCWgPQwhvnBTmPVFgQJSGlFKUaBVN6ANoFkdAmVrmsNlRQHV9lChoBmgJaA9DCBowSPq0yWFAlIaUUpRoFU3oA2gWR0CZW/7mdRR/dX2UKGgGaAloD0MIv9U6cbkhY0CUhpRSlGgVTegDaBZHQJlg2PHT7VJ1fZQoaAZoCWgPQwiPq5FdaQxnQJSGlFKUaBVN6ANoFkdAmWJlklNUO3V9lChoBmgJaA9DCErwhjSqjGRAlIaUUpRoFU3oA2gWR0CZZDwJgLJCdX2UKGgGaAloD0MImaCGb2HAY0CUhpRSlGgVTegDaBZHQJlm++tbLU11fZQoaAZoCWgPQwjPEI5Zdn5iQJSGlFKUaBVN6ANoFkdAmWn4fW+XaHV9lChoBmgJaA9DCKZ/SSpTLWZAlIaUUpRoFU3oA2gWR0CZbEubI91VdX2UKGgGaAloD0MIamrZWt+LYkCUhpRSlGgVTegDaBZHQJlsn3WWhRJ1fZQoaAZoCWgPQwjfNH12wFZlQJSGlFKUaBVN6ANoFkdAmXDPf0mMO3V9lChoBmgJaA9DCDEjvD2IpGBAlIaUUpRoFU3oA2gWR0CZdcImPYFrdX2UKGgGaAloD0MIe6Lrwo+GZkCUhpRSlGgVTegDaBZHQJl16BH09Qp1fZQoaAZoCWgPQwg0g/jADnpiQJSGlFKUaBVN6ANoFkdAmY46nFYMfHV9lChoBmgJaA9DCGB3uvPE3WJAlIaUUpRoFU3oA2gWR0CZj59RrJr+dX2UKGgGaAloD0MIWFcFajFZZ0CUhpRSlGgVTegDaBZHQJmP3YL9deJ1fZQoaAZoCWgPQwgXgEbp0nBnQJSGlFKUaBVN6ANoFkdAmZq3evZAZHV9lChoBmgJaA9DCLZMhuP5XmFAlIaUUpRoFU3oA2gWR0CZxpNt65XmdX2UKGgGaAloD0MIqi11kNcrXECUhpRSlGgVTegDaBZHQJnHsUqQRwt1fZQoaAZoCWgPQwjmdcQhm+lhQJSGlFKUaBVN6ANoFkdAmcywOOKfnXV9lChoBmgJaA9DCJusUQ/Rz2ZAlIaUUpRoFU3oA2gWR0CZzj5lOGj9dX2UKGgGaAloD0MIaqM6HUhnZkCUhpRSlGgVTegDaBZHQJnQEvHtF8Z1fZQoaAZoCWgPQwhUG5yIfi1lQJSGlFKUaBVN6ANoFkdAmdLRHLA573V9lChoBmgJaA9DCFZ/hGFAlmdAlIaUUpRoFU3oA2gWR0CZ1dwudwvQdX2UKGgGaAloD0MIN1FLcyt8XUCUhpRSlGgVTegDaBZHQJnYVGBnSOR1fZQoaAZoCWgPQwjsMZHS7JdjQJSGlFKUaBVN6ANoFkdAmdinljmSyXV9lChoBmgJaA9DCC8yAb9Gc2dAlIaUUpRoFU3oA2gWR0CZ3JwudwvQdX2UKGgGaAloD0MIqYdodIc8YUCUhpRSlGgVTegDaBZHQJnhR6E8JUp1fZQoaAZoCWgPQwgmcOtunq1kQJSGlFKUaBVN6ANoFkdAmeFsrRSgoXV9lChoBmgJaA9DCDbK+s3ESWhAlIaUUpRoFU3oA2gWR0CZ9xZeRgZ1dX2UKGgGaAloD0MI9kArMGQfZkCUhpRSlGgVTegDaBZHQJn4dhhH9WJ1fZQoaAZoCWgPQwh2+kFdJIBjQJSGlFKUaBVN6ANoFkdAmfizuF6Av3V9lChoBmgJaA9DCFdCd0kcOGFAlIaUUpRoFU3oA2gWR0CaAwVE/jbSdX2UKGgGaAloD0MIjEtV2uKzZECUhpRSlGgVTegDaBZHQJovL4agmJF1fZQoaAZoCWgPQwjLoUW2c+hhQJSGlFKUaBVN6ANoFkdAmjBM5n13+3V9lChoBmgJaA9DCMwNhjos82VAlIaUUpRoFU3oA2gWR0CaNUv2Xb/PdX2UKGgGaAloD0MINXo1QGnuY0CUhpRSlGgVTegDaBZHQJo27FhoduJ1fZQoaAZoCWgPQwi3mJ8bGr1lQJSGlFKUaBVN6ANoFkdAmjjMV+I/JXV9lChoBmgJaA9DCCqqfqXz2GJAlIaUUpRoFU3oA2gWR0CaO3ybhFVldX2UKGgGaAloD0MI/+cwX96rYUCUhpRSlGgVTegDaBZHQJo+c9C/oJR1fZQoaAZoCWgPQwh4CyQo/mljQJSGlFKUaBVN6ANoFkdAmkDLGaQV9HV9lChoBmgJaA9DCE2BzM4iU2ZAlIaUUpRoFU3oA2gWR0CaQSGbTc7AdX2UKGgGaAloD0MIg9pv7cQhY0CUhpRSlGgVTegDaBZHQJpFO16Vt411fZQoaAZoCWgPQwikx+9t+gNnQJSGlFKUaBVN6ANoFkdAmkngMlTm4nV9lChoBmgJaA9DCM4AF2TLp1xAlIaUUpRoFU3oA2gWR0CaSgKvmozfdX2UKGgGaAloD0MIVpkprT/pY0CUhpRSlGgVTegDaBZHQJpe8w35vcd1fZQoaAZoCWgPQwhgdk8eFqZcQJSGlFKUaBVN6ANoFkdAmmBC3CsOonV9lChoBmgJaA9DCJRnXg47EmJAlIaUUpRoFU3oA2gWR0CaYIBBzFMqdX2UKGgGaAloD0MIsI7jh0orYUCUhpRSlGgVTegDaBZHQJpq/Njbzsh1fZQoaAZoCWgPQwjp8BDGz8xhQJSGlFKUaBVN6ANoFkdAmndRF/hESnV9lChoBmgJaA9DCIcW2c53gmFAlIaUUpRoFU3oA2gWR0CamBV8CxNZdX2UKGgGaAloD0MI/wdYq3ZVNkCUhpRSlGgVS9toFkdAmptlB6a9b3V9lChoBmgJaA9DCPeOGhPiVWJAlIaUUpRoFU3oA2gWR0CanO7Dl5nldX2UKGgGaAloD0MImL1sO222ZkCUhpRSlGgVTegDaBZHQJqealJpWWB1fZQoaAZoCWgPQwh6jPLMyzVdQJSGlFKUaBVN6ANoFkdAmqA1XeWOZXV9lChoBmgJaA9DCN0m3CtzVGFAlIaUUpRoFU3oA2gWR0Caos274BV/dX2UKGgGaAloD0MIEaj+QaSHZkCUhpRSlGgVTegDaBZHQJqlrJIUahp1fZQoaAZoCWgPQwjXFwltOWFmQJSGlFKUaBVN6ANoFkdAmqf0FfReC3V9lChoBmgJaA9DCODaiZKQMGlAlIaUUpRoFU3oA2gWR0CaqFRHf/FSdX2UKGgGaAloD0MIF7mnq7vJYECUhpRSlGgVTegDaBZHQJqsZsoDxLF1fZQoaAZoCWgPQwjNkgA1NXVkQJSGlFKUaBVN6ANoFkdAmrEye7L+xXV9lChoBmgJaA9DCFml9EyvwmJAlIaUUpRoFU3oA2gWR0CasVSDyvs7dX2UKGgGaAloD0MIQS0GD1OvY0CUhpRSlGgVTegDaBZHQJrFT8FY+0R1fZQoaAZoCWgPQwg7i96pAPVhQJSGlFKUaBVN6ANoFkdAmsZ+J53Tu3V9lChoBmgJaA9DCBDJkGPrQmhAlIaUUpRoFU3oA2gWR0CaxrY1pCa7dX2UKGgGaAloD0MI+BisOJV1ckCUhpRSlGgVTesBaBZHQJrJLGecx0x1fZQoaAZoCWgPQwjajqm7shRpQJSGlFKUaBVN6ANoFkdAmtwkEPlMiHV9lChoBmgJaA9DCNaPTfIj/GRAlIaUUpRoFU3oA2gWR0Ca3TjWTX8PdX2UKGgGaAloD0MI2nOZmgQoYkCUhpRSlGgVTegDaBZHQJr/+a+evp11fZQoaAZoCWgPQwj4ja89s3llQJSGlFKUaBVN6ANoFkdAmwFdYB/7SHV9lChoBmgJaA9DCAPQKF16mmNAlIaUUpRoFU3oA2gWR0CbAr20iQkpdX2UKGgGaAloD0MINuSfGcSvZECUhpRSlGgVTegDaBZHQJsEW9Ba9sd1fZQoaAZoCWgPQwhyjGSP0JhhQJSGlFKUaBVN6ANoFkdAmwa8DW9UTHV9lChoBmgJaA9DCPn02JaBomNAlIaUUpRoFU3oA2gWR0CbCW6JZW7wdX2UKGgGaAloD0MIH4SAfImbY0CUhpRSlGgVTegDaBZHQJsL9bor4Fl1fZQoaAZoCWgPQwitUQ/R6LFiQJSGlFKUaBVN6ANoFkdAmxBU5p8F6nV9lChoBmgJaA9DCK6ek9436mNAlIaUUpRoFU3oA2gWR0CbFUR6nivQdX2UKGgGaAloD0MI36eq0ECAZ0CUhpRSlGgVTegDaBZHQJsVaF36hxp1fZQoaAZoCWgPQwgnTYOieWxNQJSGlFKUaBVLz2gWR0CbHl4Ju2qldX2UKGgGaAloD0MIUDblCm+ickCUhpRSlGgVTc0BaBZHQJsg5A7gbZR1fZQoaAZoCWgPQwhe2JqtPFRkQJSGlFKUaBVN6ANoFkdAmynlOKwY+HV9lChoBmgJaA9DCHJNgczOcWZAlIaUUpRoFU3oA2gWR0CbKxTEzfrKdX2UKGgGaAloD0MIVUyln/CIYUCUhpRSlGgVTegDaBZHQJsrUwUQCjl1fZQoaAZoCWgPQwj4b16c+OFkQJSGlFKUaBVN6ANoFkdAmy2cgdOqN3V9lChoBmgJaA9DCDz59NiWO1JAlIaUUpRoFUvOaBZHQJsvmh+OOsF1fZQoaAZoCWgPQwhuwOeHETZkQJSGlFKUaBVN6ANoFkdAm0AjBMzuW3V9lChoBmgJaA9DCFuzlZf8UGFAlIaUUpRoFU3oA2gWR0CbQTPTXrdFdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO first try/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:001e5f9e81201309e4f66c3549ad7c01268fc5587d781575977ef79c7390004a
|
3 |
+
size 84829
|
PPO first try/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31287b5d9d55b11c5201eba56230514f6ba9932ed71afc84cda6aa5cc8009372
|
3 |
+
size 43201
|
PPO first try/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO first try/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 263.72 +/- 17.88
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f729d7a8680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f729d7a8710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f729d7a87a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f729d7a8830>", "_build": "<function ActorCriticPolicy._build at 0x7f729d7a88c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f729d7a8950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f729d7a89e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f729d7a8a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f729d7a8b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f729d7a8b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f729d7a8c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f729d7fc540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653142182.3039844, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAgNeXvVxzbrqYnBe2q8OUM+5Rcrjvdzw1AACAPwAAgD+mh4S9jw4guuQHurrN5ls079knOqDZ1zkAAIA/AACAP5qfKLzDLTi6sPZgO0eigDj12wU71+QFugAAgD8AAIA/GkSGvakPlD/D/3K9NvrVviMGxb2CZ/c8AAAAAAAAAACzeUk99vQduiLs07oCtDK2Ko+hOo5A+TkAAIA/AACAP80EDLtxHXS56Pgkuo/tobbeRrm7eTlJOQAAgD8AAIA/TfYUPSl4cbolSEM8cPyOttYIQLpiqYW1AACAPwAAgD9mVF+89mAzuqXFXTxgyIk8DyDquiYicD0AAIA/AACAP6DuVL4X5IE/GAvQvnLwx76Ucsi+QgY0vgAAAAAAAAAAzUYIvKQgcrnSfvs52nWetedipjj/0xO5AACAPwAAgD9mrr284Tiyus2HerorRxI1gQoEOjYVjzkAAIA/AACAP1qgAL7Xhje73hQOu7oZj7i4E8k8pe89OgAAgD8AAIA/ZuTcPEhLnLqYxE24gO9Is9eEJTkVmW03AACAPwAAgD9mBkk74TCQuiDlQDsKsmQ4gAO5Oq6c5rkAAIA/AACAP7P6db3DSXy6gtK5uoamwbWqOEm6M+PYOQAAgD8AAIA/ZhAzvFw7RrrtyYQ5yfXis1xZirvGU5m4AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjC/a44XJY0CUhpRSlIwBbJRN6AOMAXSUR0CY9v7PppvhdX2UKGgGaAloD0MIPpKSHgarYkCUhpRSlGgVTegDaBZHQJj4iphnanJ1fZQoaAZoCWgPQwjYnlkSIAJiQJSGlFKUaBVN6ANoFkdAmPpTKYAsCnV9lChoBmgJaA9DCAkYXd4cSmVAlIaUUpRoFU3oA2gWR0CY/OG/N7jUdX2UKGgGaAloD0MI/b0UHrRlYkCUhpRSlGgVTegDaBZHQJj/q0a6z3R1fZQoaAZoCWgPQwibVDTWfqplQJSGlFKUaBVN6ANoFkdAmQHxvR7Z4HV9lChoBmgJaA9DCOmayTdbQ2JAlIaUUpRoFU3oA2gWR0CZAkPoV2zOdX2UKGgGaAloD0MIH6LRHcQoY0CUhpRSlGgVTegDaBZHQJkGpJL/S6V1fZQoaAZoCWgPQwiQ+BVruApgQJSGlFKUaBVN6ANoFkdAmQuy2x6fJ3V9lChoBmgJaA9DCFvR5jh3R3BAlIaUUpRoFU0rA2gWR0CZC9nwXqJNdX2UKGgGaAloD0MII8DpXbwyZUCUhpRSlGgVTegDaBZHQJki6D15B1N1fZQoaAZoCWgPQwh9yjFZ3D5kQJSGlFKUaBVN6ANoFkdAmSRR19v0iHV9lChoBmgJaA9DCMf0hCWe+2JAlIaUUpRoFU3oA2gWR0CZJJHYpUgkdX2UKGgGaAloD0MIyenr+RpkYUCUhpRSlGgVTegDaBZHQJku6kxh2GJ1fZQoaAZoCWgPQwhvnBTmPVFgQJSGlFKUaBVN6ANoFkdAmVrmsNlRQHV9lChoBmgJaA9DCBowSPq0yWFAlIaUUpRoFU3oA2gWR0CZW/7mdRR/dX2UKGgGaAloD0MIv9U6cbkhY0CUhpRSlGgVTegDaBZHQJlg2PHT7VJ1fZQoaAZoCWgPQwiPq5FdaQxnQJSGlFKUaBVN6ANoFkdAmWJlklNUO3V9lChoBmgJaA9DCErwhjSqjGRAlIaUUpRoFU3oA2gWR0CZZDwJgLJCdX2UKGgGaAloD0MImaCGb2HAY0CUhpRSlGgVTegDaBZHQJlm++tbLU11fZQoaAZoCWgPQwjPEI5Zdn5iQJSGlFKUaBVN6ANoFkdAmWn4fW+XaHV9lChoBmgJaA9DCKZ/SSpTLWZAlIaUUpRoFU3oA2gWR0CZbEubI91VdX2UKGgGaAloD0MIamrZWt+LYkCUhpRSlGgVTegDaBZHQJlsn3WWhRJ1fZQoaAZoCWgPQwjfNH12wFZlQJSGlFKUaBVN6ANoFkdAmXDPf0mMO3V9lChoBmgJaA9DCDEjvD2IpGBAlIaUUpRoFU3oA2gWR0CZdcImPYFrdX2UKGgGaAloD0MIe6Lrwo+GZkCUhpRSlGgVTegDaBZHQJl16BH09Qp1fZQoaAZoCWgPQwg0g/jADnpiQJSGlFKUaBVN6ANoFkdAmY46nFYMfHV9lChoBmgJaA9DCGB3uvPE3WJAlIaUUpRoFU3oA2gWR0CZj59RrJr+dX2UKGgGaAloD0MIWFcFajFZZ0CUhpRSlGgVTegDaBZHQJmP3YL9deJ1fZQoaAZoCWgPQwgXgEbp0nBnQJSGlFKUaBVN6ANoFkdAmZq3evZAZHV9lChoBmgJaA9DCLZMhuP5XmFAlIaUUpRoFU3oA2gWR0CZxpNt65XmdX2UKGgGaAloD0MIqi11kNcrXECUhpRSlGgVTegDaBZHQJnHsUqQRwt1fZQoaAZoCWgPQwjmdcQhm+lhQJSGlFKUaBVN6ANoFkdAmcywOOKfnXV9lChoBmgJaA9DCJusUQ/Rz2ZAlIaUUpRoFU3oA2gWR0CZzj5lOGj9dX2UKGgGaAloD0MIaqM6HUhnZkCUhpRSlGgVTegDaBZHQJnQEvHtF8Z1fZQoaAZoCWgPQwhUG5yIfi1lQJSGlFKUaBVN6ANoFkdAmdLRHLA573V9lChoBmgJaA9DCFZ/hGFAlmdAlIaUUpRoFU3oA2gWR0CZ1dwudwvQdX2UKGgGaAloD0MIN1FLcyt8XUCUhpRSlGgVTegDaBZHQJnYVGBnSOR1fZQoaAZoCWgPQwjsMZHS7JdjQJSGlFKUaBVN6ANoFkdAmdinljmSyXV9lChoBmgJaA9DCC8yAb9Gc2dAlIaUUpRoFU3oA2gWR0CZ3JwudwvQdX2UKGgGaAloD0MIqYdodIc8YUCUhpRSlGgVTegDaBZHQJnhR6E8JUp1fZQoaAZoCWgPQwgmcOtunq1kQJSGlFKUaBVN6ANoFkdAmeFsrRSgoXV9lChoBmgJaA9DCDbK+s3ESWhAlIaUUpRoFU3oA2gWR0CZ9xZeRgZ1dX2UKGgGaAloD0MI9kArMGQfZkCUhpRSlGgVTegDaBZHQJn4dhhH9WJ1fZQoaAZoCWgPQwh2+kFdJIBjQJSGlFKUaBVN6ANoFkdAmfizuF6Av3V9lChoBmgJaA9DCFdCd0kcOGFAlIaUUpRoFU3oA2gWR0CaAwVE/jbSdX2UKGgGaAloD0MIjEtV2uKzZECUhpRSlGgVTegDaBZHQJovL4agmJF1fZQoaAZoCWgPQwjLoUW2c+hhQJSGlFKUaBVN6ANoFkdAmjBM5n13+3V9lChoBmgJaA9DCMwNhjos82VAlIaUUpRoFU3oA2gWR0CaNUv2Xb/PdX2UKGgGaAloD0MINXo1QGnuY0CUhpRSlGgVTegDaBZHQJo27FhoduJ1fZQoaAZoCWgPQwi3mJ8bGr1lQJSGlFKUaBVN6ANoFkdAmjjMV+I/JXV9lChoBmgJaA9DCCqqfqXz2GJAlIaUUpRoFU3oA2gWR0CaO3ybhFVldX2UKGgGaAloD0MI/+cwX96rYUCUhpRSlGgVTegDaBZHQJo+c9C/oJR1fZQoaAZoCWgPQwh4CyQo/mljQJSGlFKUaBVN6ANoFkdAmkDLGaQV9HV9lChoBmgJaA9DCE2BzM4iU2ZAlIaUUpRoFU3oA2gWR0CaQSGbTc7AdX2UKGgGaAloD0MIg9pv7cQhY0CUhpRSlGgVTegDaBZHQJpFO16Vt411fZQoaAZoCWgPQwikx+9t+gNnQJSGlFKUaBVN6ANoFkdAmkngMlTm4nV9lChoBmgJaA9DCM4AF2TLp1xAlIaUUpRoFU3oA2gWR0CaSgKvmozfdX2UKGgGaAloD0MIVpkprT/pY0CUhpRSlGgVTegDaBZHQJpe8w35vcd1fZQoaAZoCWgPQwhgdk8eFqZcQJSGlFKUaBVN6ANoFkdAmmBC3CsOonV9lChoBmgJaA9DCJRnXg47EmJAlIaUUpRoFU3oA2gWR0CaYIBBzFMqdX2UKGgGaAloD0MIsI7jh0orYUCUhpRSlGgVTegDaBZHQJpq/Njbzsh1fZQoaAZoCWgPQwjp8BDGz8xhQJSGlFKUaBVN6ANoFkdAmndRF/hESnV9lChoBmgJaA9DCIcW2c53gmFAlIaUUpRoFU3oA2gWR0CamBV8CxNZdX2UKGgGaAloD0MI/wdYq3ZVNkCUhpRSlGgVS9toFkdAmptlB6a9b3V9lChoBmgJaA9DCPeOGhPiVWJAlIaUUpRoFU3oA2gWR0CanO7Dl5nldX2UKGgGaAloD0MImL1sO222ZkCUhpRSlGgVTegDaBZHQJqealJpWWB1fZQoaAZoCWgPQwh6jPLMyzVdQJSGlFKUaBVN6ANoFkdAmqA1XeWOZXV9lChoBmgJaA9DCN0m3CtzVGFAlIaUUpRoFU3oA2gWR0Caos274BV/dX2UKGgGaAloD0MIEaj+QaSHZkCUhpRSlGgVTegDaBZHQJqlrJIUahp1fZQoaAZoCWgPQwjXFwltOWFmQJSGlFKUaBVN6ANoFkdAmqf0FfReC3V9lChoBmgJaA9DCODaiZKQMGlAlIaUUpRoFU3oA2gWR0CaqFRHf/FSdX2UKGgGaAloD0MIF7mnq7vJYECUhpRSlGgVTegDaBZHQJqsZsoDxLF1fZQoaAZoCWgPQwjNkgA1NXVkQJSGlFKUaBVN6ANoFkdAmrEye7L+xXV9lChoBmgJaA9DCFml9EyvwmJAlIaUUpRoFU3oA2gWR0CasVSDyvs7dX2UKGgGaAloD0MIQS0GD1OvY0CUhpRSlGgVTegDaBZHQJrFT8FY+0R1fZQoaAZoCWgPQwg7i96pAPVhQJSGlFKUaBVN6ANoFkdAmsZ+J53Tu3V9lChoBmgJaA9DCBDJkGPrQmhAlIaUUpRoFU3oA2gWR0CaxrY1pCa7dX2UKGgGaAloD0MI+BisOJV1ckCUhpRSlGgVTesBaBZHQJrJLGecx0x1fZQoaAZoCWgPQwjajqm7shRpQJSGlFKUaBVN6ANoFkdAmtwkEPlMiHV9lChoBmgJaA9DCNaPTfIj/GRAlIaUUpRoFU3oA2gWR0Ca3TjWTX8PdX2UKGgGaAloD0MI2nOZmgQoYkCUhpRSlGgVTegDaBZHQJr/+a+evp11fZQoaAZoCWgPQwj4ja89s3llQJSGlFKUaBVN6ANoFkdAmwFdYB/7SHV9lChoBmgJaA9DCAPQKF16mmNAlIaUUpRoFU3oA2gWR0CbAr20iQkpdX2UKGgGaAloD0MINuSfGcSvZECUhpRSlGgVTegDaBZHQJsEW9Ba9sd1fZQoaAZoCWgPQwhyjGSP0JhhQJSGlFKUaBVN6ANoFkdAmwa8DW9UTHV9lChoBmgJaA9DCPn02JaBomNAlIaUUpRoFU3oA2gWR0CbCW6JZW7wdX2UKGgGaAloD0MIH4SAfImbY0CUhpRSlGgVTegDaBZHQJsL9bor4Fl1fZQoaAZoCWgPQwitUQ/R6LFiQJSGlFKUaBVN6ANoFkdAmxBU5p8F6nV9lChoBmgJaA9DCK6ek9436mNAlIaUUpRoFU3oA2gWR0CbFUR6nivQdX2UKGgGaAloD0MI36eq0ECAZ0CUhpRSlGgVTegDaBZHQJsVaF36hxp1fZQoaAZoCWgPQwgnTYOieWxNQJSGlFKUaBVLz2gWR0CbHl4Ju2qldX2UKGgGaAloD0MIUDblCm+ickCUhpRSlGgVTc0BaBZHQJsg5A7gbZR1fZQoaAZoCWgPQwhe2JqtPFRkQJSGlFKUaBVN6ANoFkdAmynlOKwY+HV9lChoBmgJaA9DCHJNgczOcWZAlIaUUpRoFU3oA2gWR0CbKxTEzfrKdX2UKGgGaAloD0MIVUyln/CIYUCUhpRSlGgVTegDaBZHQJsrUwUQCjl1fZQoaAZoCWgPQwj4b16c+OFkQJSGlFKUaBVN6ANoFkdAmy2cgdOqN3V9lChoBmgJaA9DCDz59NiWO1JAlIaUUpRoFUvOaBZHQJsvmh+OOsF1fZQoaAZoCWgPQwhuwOeHETZkQJSGlFKUaBVN6ANoFkdAm0AjBMzuW3V9lChoBmgJaA9DCFuzlZf8UGFAlIaUUpRoFU3oA2gWR0CbQTPTXrdFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b382b0f818371040eeb8b9c70ff48b69cbf5b0226087ebd3ad1b7f6e5848f40d
|
3 |
+
size 215559
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.72266957948415, "std_reward": 17.884936608294726, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-21T14:44:08.860271"}
|