Feature Extraction
Transformers
Safetensors
ModularStarEncoder
custom_code
andreagurioli1995 commited on
Commit
2b9cc07
·
verified ·
1 Parent(s): 342b610

Upload ModularStarEncoder

Browse files
Files changed (2) hide show
  1. config.json +0 -1
  2. modularStarEncoder.py +12 -7
config.json CHANGED
@@ -11,7 +11,6 @@
11
  "conditional_size": 4,
12
  "embedding_dropout": 0.1,
13
  "eos_token_id": 0,
14
- "pad_token_id": 0,
15
  "hidden_act": "gelu_pytorch_tanh",
16
  "hidden_size": 1024,
17
  "initializer_range": 0.018042,
 
11
  "conditional_size": 4,
12
  "embedding_dropout": 0.1,
13
  "eos_token_id": 0,
 
14
  "hidden_act": "gelu_pytorch_tanh",
15
  "hidden_size": 1024,
16
  "initializer_range": 0.018042,
modularStarEncoder.py CHANGED
@@ -1,6 +1,6 @@
1
  from transformers import Starcoder2Model
2
  import sys
3
- from .config import ModularStarEncoderConfig
4
  import os
5
  from dataclasses import dataclass
6
  from typing import Optional, Tuple, Union
@@ -92,10 +92,11 @@ class ModularStarEncoderOutput(ModelOutput):
92
  heads.
93
  """
94
 
 
 
95
  loss: Optional[torch.FloatTensor] = None
96
  prediction_logits: torch.FloatTensor = None
97
  seq_relationship_logits: torch.FloatTensor = None
98
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
99
  attentions: Optional[Tuple[torch.FloatTensor]] = None
100
 
101
 
@@ -316,12 +317,16 @@ class ModularStarEncoder(StarEncoder2PreTrainedModel):
316
  output = (prediction_scores, seq_relationship_score) + outputs[2:]
317
  return ((total_loss,) + output) if total_loss is not None else output
318
 
 
 
 
319
  return ModularStarEncoderOutput(
320
- loss=total_loss,
321
- prediction_logits=prediction_scores,
322
- seq_relationship_logits=seq_relationship_score,
323
- hidden_states=outputs.hidden_states,
324
- attentions=outputs.attentions,
 
325
  )
326
 
327
 
 
1
  from transformers import Starcoder2Model
2
  import sys
3
+ from config import ModularStarEncoderConfig
4
  import os
5
  from dataclasses import dataclass
6
  from typing import Optional, Tuple, Union
 
92
  heads.
93
  """
94
 
95
+ last_hidden_state: Optional[torch.FloatTensor] = None
96
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
97
  loss: Optional[torch.FloatTensor] = None
98
  prediction_logits: torch.FloatTensor = None
99
  seq_relationship_logits: torch.FloatTensor = None
 
100
  attentions: Optional[Tuple[torch.FloatTensor]] = None
101
 
102
 
 
317
  output = (prediction_scores, seq_relationship_score) + outputs[2:]
318
  return ((total_loss,) + output) if total_loss is not None else output
319
 
320
+
321
+ last_hidden_state= outputs.hidden_states[-1]
322
+
323
  return ModularStarEncoderOutput(
324
+ last_hidden_state = last_hidden_state,
325
+ hidden_states = outputs.hidden_states,
326
+ loss = total_loss,
327
+ prediction_logits = prediction_scores,
328
+ seq_relationship_logits = seq_relationship_score,
329
+ attentions = outputs.attentions,
330
  )
331
 
332