Upload ModularStarEncoder
Browse files- config.json +0 -1
- modularStarEncoder.py +12 -7
config.json
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
"conditional_size": 4,
|
12 |
"embedding_dropout": 0.1,
|
13 |
"eos_token_id": 0,
|
14 |
-
"pad_token_id": 0,
|
15 |
"hidden_act": "gelu_pytorch_tanh",
|
16 |
"hidden_size": 1024,
|
17 |
"initializer_range": 0.018042,
|
|
|
11 |
"conditional_size": 4,
|
12 |
"embedding_dropout": 0.1,
|
13 |
"eos_token_id": 0,
|
|
|
14 |
"hidden_act": "gelu_pytorch_tanh",
|
15 |
"hidden_size": 1024,
|
16 |
"initializer_range": 0.018042,
|
modularStarEncoder.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from transformers import Starcoder2Model
|
2 |
import sys
|
3 |
-
from
|
4 |
import os
|
5 |
from dataclasses import dataclass
|
6 |
from typing import Optional, Tuple, Union
|
@@ -92,10 +92,11 @@ class ModularStarEncoderOutput(ModelOutput):
|
|
92 |
heads.
|
93 |
"""
|
94 |
|
|
|
|
|
95 |
loss: Optional[torch.FloatTensor] = None
|
96 |
prediction_logits: torch.FloatTensor = None
|
97 |
seq_relationship_logits: torch.FloatTensor = None
|
98 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
99 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
100 |
|
101 |
|
@@ -316,12 +317,16 @@ class ModularStarEncoder(StarEncoder2PreTrainedModel):
|
|
316 |
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
317 |
return ((total_loss,) + output) if total_loss is not None else output
|
318 |
|
|
|
|
|
|
|
319 |
return ModularStarEncoderOutput(
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
325 |
)
|
326 |
|
327 |
|
|
|
1 |
from transformers import Starcoder2Model
|
2 |
import sys
|
3 |
+
from config import ModularStarEncoderConfig
|
4 |
import os
|
5 |
from dataclasses import dataclass
|
6 |
from typing import Optional, Tuple, Union
|
|
|
92 |
heads.
|
93 |
"""
|
94 |
|
95 |
+
last_hidden_state: Optional[torch.FloatTensor] = None
|
96 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
97 |
loss: Optional[torch.FloatTensor] = None
|
98 |
prediction_logits: torch.FloatTensor = None
|
99 |
seq_relationship_logits: torch.FloatTensor = None
|
|
|
100 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
101 |
|
102 |
|
|
|
317 |
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
318 |
return ((total_loss,) + output) if total_loss is not None else output
|
319 |
|
320 |
+
|
321 |
+
last_hidden_state= outputs.hidden_states[-1]
|
322 |
+
|
323 |
return ModularStarEncoderOutput(
|
324 |
+
last_hidden_state = last_hidden_state,
|
325 |
+
hidden_states = outputs.hidden_states,
|
326 |
+
loss = total_loss,
|
327 |
+
prediction_logits = prediction_scores,
|
328 |
+
seq_relationship_logits = seq_relationship_score,
|
329 |
+
attentions = outputs.attentions,
|
330 |
)
|
331 |
|
332 |
|