---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- axolotl
- generated_from_trainer
datasets:
- mohit9999/all_news_finance_sm_1h2023_custom
model-index:
- name: all_news_finance_sm_1h2023_custom_model
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.7.0`
```yaml
adapter: qlora
base_model: meta-llama/Llama-2-7b-hf
bf16: auto
dataset_prepared_path: null
datasets:
- path: mohit9999/all_news_finance_sm_1h2023_custom
type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: true
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: mohit9999/all_news_finance_sm_1h2023_custom_model
learning_rate: 2e-5
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_modules_to_save:
- embed_tokens
- lm_head
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 1
model_type: LlamaForCausalLM
num_epochs: 2
optimizer: paged_adamw_8bit
output_dir: ./outputs/lora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sdp_attention: true
sequence_len: 512
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 1
weight_decay: 0.0
xformers_attention: null
```
# all_news_finance_sm_1h2023_custom_model
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the mohit9999/all_news_finance_sm_1h2023_custom dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7215
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.3316 | 0.0150 | 1 | 3.8427 |
| 4.0068 | 0.1955 | 13 | 3.7215 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0