--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - axolotl - generated_from_trainer datasets: - mohit9999/all_news_finance_sm_1h2023_custom model-index: - name: all_news_finance_sm_1h2023_custom_model results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.7.0` ```yaml adapter: qlora base_model: meta-llama/Llama-2-7b-hf bf16: auto dataset_prepared_path: null datasets: - path: mohit9999/all_news_finance_sm_1h2023_custom type: alpaca debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: true eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: mohit9999/all_news_finance_sm_1h2023_custom_model learning_rate: 2e-5 load_in_4bit: true load_in_8bit: false logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_modules_to_save: - embed_tokens - lm_head lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 1 model_type: LlamaForCausalLM num_epochs: 2 optimizer: paged_adamw_8bit output_dir: ./outputs/lora-out pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 sdp_attention: true sequence_len: 512 special_tokens: null strict: false tf32: false tokenizer_type: LlamaTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 1 weight_decay: 0.0 xformers_attention: null ```

# all_news_finance_sm_1h2023_custom_model This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the mohit9999/all_news_finance_sm_1h2023_custom dataset. It achieves the following results on the evaluation set: - Loss: 3.7215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.3316 | 0.0150 | 1 | 3.8427 | | 4.0068 | 0.1955 | 13 | 3.7215 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0