monai
medical
File size: 3,677 Bytes
85339a7
 
 
 
 
 
 
 
 
9984ad0
85339a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9984ad0
 
85339a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b574bbe
85339a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b64c65
85339a7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{
    "imports": [
        "$import glob",
        "$import os"
    ],
    "bundle_root": ".",
    "output_dir": "$os.path.join(@bundle_root, 'eval')",
    "dataset_dir": "/workspace/data/medical/pathology",
    "testing_file": "$os.path.join(@bundle_root, 'testing.csv')",
    "wsi_reader": "cuCIM",
    "patch_size": [
        224,
        224
    ],
    "number_intensity_ch": 3,
    "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
    "network_def": {
        "_target_": "TorchVisionFCModel",
        "model_name": "resnet18",
        "num_classes": 1,
        "use_conv": true,
        "pretrained": true
    },
    "network": "$@network_def.to(@device)",
    "preprocessing": {
        "_target_": "Compose",
        "transforms": [
            {
                "_target_": "CastToTyped",
                "keys": "image",
                "dtype": "float32"
            },
            {
                "_target_": "ScaleIntensityRanged",
                "keys": "image",
                "a_min": 0.0,
                "a_max": 255.0,
                "b_min": -1.0,
                "b_max": 1.0
            },
            {
                "_target_": "ToTensord",
                "keys": "image"
            }
        ]
    },
    "datalist": {
        "_target_": "CSVDataset",
        "src": "@testing_file",
        "kwargs_read_csv": {
            "names": [
                "image"
            ],
            "header": null
        },
        "transform": {
            "_target_": "Lambdad",
            "keys": "image",
            "func": "$lambda x: os.path.join(@dataset_dir, 'testing/images', x + '.tif')"
        }
    },
    "dataset": {
        "_target_": "MaskedPatchWSIDataset",
        "data": "@datalist",
        "mask_level": 6,
        "patch_size": "@patch_size",
        "transform": "@preprocessing",
        "reader": "@wsi_reader"
    },
    "dataloader": {
        "_target_": "DataLoader",
        "dataset": "@dataset",
        "batch_size": 400,
        "shuffle": false,
        "num_workers": 8
    },
    "inferer": {
        "_target_": "SimpleInferer"
    },
    "postprocessing": {
        "_target_": "Compose",
        "transforms": [
            {
                "_target_": "EnsureTyped",
                "keys": "pred"
            },
            {
                "_target_": "Activationsd",
                "keys": "pred",
                "sigmoid": true
            },
            {
                "_target_": "ToNumpyd",
                "keys": "pred"
            }
        ]
    },
    "handlers": [
        {
            "_target_": "CheckpointLoader",
            "load_path": "$@bundle_root + '/models/model.pt'",
            "load_dict": {
                "model": "@network"
            }
        },
        {
            "_target_": "StatsHandler",
            "tag_name": "progress",
            "iteration_print_logger": "$lambda engine: print(f'image: \"{engine.state.batch[\"image\"].meta[\"name\"][0]}\", iter: {engine.state.iteration}/{engine.state.epoch_length}') if engine.state.iteration % 100 == 0 else None",
            "output_transform": "$lambda x: None"
        },
        {
            "_target_": "monai.handlers.ProbMapProducer",
            "output_dir": "@output_dir"
        }
    ],
    "evaluator": {
        "_target_": "SupervisedEvaluator",
        "device": "@device",
        "val_data_loader": "@dataloader",
        "network": "@network",
        "inferer": "@inferer",
        "postprocessing": "@postprocessing",
        "val_handlers": "@handlers",
        "amp": true,
        "decollate": false
    },
    "run": [
        "[email protected]()"
    ]
}