import math from copy import deepcopy from typing import Union, Tuple, Sequence, Optional, List import torch import torch.nn as nn import torch.nn.functional as F from transformers.activations import PytorchGELUTanh from transformers.modeling_utils import PreTrainedModel from transformers.utils import is_flash_attn_2_available from .configuration_moonvit import MoonViTConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_varlen_func else: flash_attn_varlen_func = None def multihead_attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, q_cu_seqlens: Optional[torch.Tensor] = None, k_cu_seqlens: Optional[torch.Tensor] = None, ): """Multi-head attention using flash attention 2. Args: q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim), or (tot_seqlens, num_heads, head_dim) if packing. q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q. The first element should be 0 and the last element should be q.shape[0]. k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k. The first element should be 0 and the last element should be k.shape[0]. Returns: output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing, where dim = num_heads * head_dim """ # Unified format legal check assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims" assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]" assert ( k_cu_seqlens[-1] == k.shape[0] == v.shape[0] ), "k_cu_seqlens must sum to k.shape[0]" assert q.dtype in [ torch.bfloat16, torch.float16, ], f"unsupported dtype {q.dtype} for multihead attn" max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item() max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item() attn_out = flash_attn_varlen_func( q, k, v, q_cu_seqlens, k_cu_seqlens, max_seqlen_q, max_seqlen_k, causal=False, ) attn_out = attn_out.flatten(start_dim=-2) return attn_out def sdpa_attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, q_cu_seqlens: Optional[torch.Tensor] = None, k_cu_seqlens: Optional[torch.Tensor] = None, ) -> torch.Tensor: """SDPA attention. Args: q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim), or (tot_seqlens, num_heads, head_dim) if packing. """ seq_length = q.shape[0] attention_mask = torch.zeros( [1, seq_length, seq_length], device=q.device, dtype=torch.bool ) for i in range(1, len(q_cu_seqlens)): attention_mask[ ..., q_cu_seqlens[i - 1] : q_cu_seqlens[i], q_cu_seqlens[i - 1] : q_cu_seqlens[i], ] = True q = q.transpose(0, 1) k = k.transpose(0, 1) v = v.transpose(0, 1) attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0) attn_output = attn_output.transpose(0, 1) attn_output = attn_output.reshape(seq_length, -1) return attn_output def eager_attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, q_cu_seqlens: Optional[torch.Tensor] = None, k_cu_seqlens: Optional[torch.Tensor] = None, ) -> torch.Tensor: seq_length = q.shape[0] attention_mask = torch.zeros( [1, seq_length, seq_length], device=q.device, dtype=torch.bool ) for i in range(1, len(q_cu_seqlens)): attention_mask[ ..., q_cu_seqlens[i - 1] : q_cu_seqlens[i], q_cu_seqlens[i - 1] : q_cu_seqlens[i], ] = True q = q.transpose(0, 1) k = k.transpose(0, 1) v = v.transpose(0, 1) attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1]) attn_weight += attention_mask attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32).to(q.dtype) attn_output = attn_weight @ v attn_output = attn_output.transpose(0, 1) attn_output = attn_output.reshape(seq_length, -1) return attn_output VL_VISION_ATTENTION_FUNCTIONS = { "flash_attention_2": multihead_attention, "sdpa": sdpa_attention, "eager": eager_attention, } def _apply_rope_input_validation(x, freqs_cis): assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape) assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape) assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape) assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype def apply_rope( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor]: """ Args: (The leading dimensions of all inputs should be the same) xq: query, tensor of shape (..., num_heads, head_dim) xk: key, tensor of shape (..., num_heads, head_dim) freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid. Returns: xq_out, xk_out: tensors of shape (..., num_heads, head_dim) """ _apply_rope_input_validation(xq, freqs_cis) _apply_rope_input_validation(xk, freqs_cis) freqs_cis = freqs_cis.unsqueeze(-2) # ..., 1, head_dim/2 # ..., num_heads, head_dim/2 xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2)) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim return xq_out.type_as(xq), xk_out.type_as(xk) class Learnable2DInterpPosEmb(nn.Module): def __init__( self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic" ) -> None: super().__init__() self.height = height self.width = width self.interpolation_mode = interpolation_mode self.weight = nn.Parameter(torch.empty(height, width, dim)) self.reset_parameters() def reset_parameters(self): nn.init.normal_(self.weight) def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor: pos_embs = [] for shape in grid_hws.tolist(): if shape == self.weight.shape[:-1]: pos_embs.append(self.weight.flatten(end_dim=1)) else: pos_embs.append( F.interpolate( self.weight.permute((2, 0, 1)).unsqueeze(0), size=shape, mode=self.interpolation_mode, ) .squeeze(0) .permute((1, 2, 0)) .flatten(end_dim=1) ) out = x + torch.cat(pos_embs) return out class MoonVisionPatchEmbed(nn.Module): def __init__( self, out_dim: int, in_dim: int = 3, patch_size: Union[int, Tuple[int, int]] = (14, 14), pos_emb_height: int = 14, pos_emb_width: int = 14, ): super().__init__() assert isinstance( patch_size, (int, Sequence) ), f"Invalid patch_size type: {type(patch_size)}" if isinstance(patch_size, int): patch_size = (patch_size, patch_size) assert ( len(patch_size) == 2 ), f"Expected patch_size to be a tuple of 2, got {patch_size}" self.patch_size = patch_size self.proj = nn.Conv2d( in_dim, out_dim, kernel_size=patch_size, stride=patch_size ) self.pos_emb = Learnable2DInterpPosEmb( height=pos_emb_height, width=pos_emb_width, dim=out_dim ) def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor: """ Args: x (L, Channels): input tensor grid_hws (N, 2): grid height and width Returns: (L, Cout) tensor """ x = self.proj(x).view(x.size(0), -1) # apply positional embedding x = self.pos_emb(x, grid_hws) return x class Rope2DPosEmb(nn.Module): """2D rotary position embedding with multi-resolution support. This class is intended to be used in the following way: 1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis. 2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration. 3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation. The rope is shared across all attention layers and all heads. Refs: - RoFormer: https://arxiv.org/abs/2104.09864 - VisionLLaMA: https://arxiv.org/abs/2403.00522 - https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py Args: dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed) max_height (int): the maximum height of the 2D grid max_width (int): the maximum width of the 2D grid theta_base (float): the base of the theta device (str): the device to store the precomputed cis """ def __init__(self, dim: int, max_height: int, max_width: int, theta_base=10000): super().__init__() self.dim = dim assert self.dim % 4 == 0, "dim must be divisible by 4" self.max_height = max_height self.max_width = max_width self.theta_base = theta_base self.freqs_cis = None def extra_repr(self): return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}" def _precompute_freqs_cis(self, device: torch.device) -> torch.Tensor: """Calculate the cis(freqs) for each position in the 2D grid. Return: complex tensor of shape (max_height, max_width, dim//2) and value: height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim)) weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4)) note: `cis` is a mathematical notation defined by cis x = cos x + i sin x, """ N = self.max_height * self.max_width flat_pos = torch.arange(0, N).float().to(device) x_pos = flat_pos % self.max_width y_pos = flat_pos // self.max_width dim_range = ( torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(device) ) # C/4 freqs = 1.0 / (self.theta_base ** (dim_range / self.dim)) x_freqs = torch.outer(x_pos, freqs).float() # N, C/4 y_freqs = torch.outer(y_pos, freqs).float() # N, C/4 x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) # N, C/4 y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) # N, C/4 # N, C/4, 2 freqs_cis = torch.cat( [x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1 ) # max_height, max_width, C/2 freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1) return freqs_cis def get_freqs_cis(self, grid_hws: torch.Tensor) -> torch.Tensor: """ Args: grid_hws (torch.Tensor): grid height and width Returns: freqs_cis: tensor of shape (sum(t * height * width), dim//2) """ if self.freqs_cis is None: self.freqs_cis = self._precompute_freqs_cis(grid_hws.device) shapes = grid_hws.tolist() assert all( 1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes ), ( shapes, self.max_height, self.max_width, ) freqs_cis = torch.cat( [self.freqs_cis[:h, :w].reshape(-1, self.dim // 2) for h, w in shapes], dim=0, ) return freqs_cis class MLP2(nn.Module): """ Args: dims: [in_dim, hidden_dim, out_dim] bias: whether to use bias in linear layer. """ def __init__(self, dims: list[int], activation, bias=True): super().__init__() assert len(dims) == 3 self.fc0 = nn.Linear(dims[0], dims[1], bias=bias) self.fc1 = nn.Linear(dims[1], dims[2], bias=bias) self.activation = activation for m in [self.fc0, self.fc1]: nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features)) if m.bias is not None: nn.init.zeros_(m.bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc0(x) x = self.activation(x) return self.fc1(x) class MoonVitEncoderLayer(nn.Module): def __init__( self, num_heads: int, hidden_dim: int, mlp_dim: int, *, attn_implementation: str = "eager", activation=F.gelu, attn_bias: bool = False, ): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads self.attn_implementation = attn_implementation self.norm0 = nn.LayerNorm(hidden_dim) self.norm1 = nn.LayerNorm(hidden_dim) self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation) self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias) self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias) def attention_qkvpacked( self, x: torch.Tensor, cu_seqlens: torch.Tensor, rope_freqs_cis: Optional[torch.Tensor] = None, ): """ Args: x (torch.Tensor): (batch_size, seqlen, hidden_dim) cu_seqlens (torch.Tensor): """ xqkv = self.wqkv(x) qkv_shape = xqkv.size()[:-1] + ( 3, self.num_heads, self.hidden_size_per_attention_head, ) # xqkv: (batch_size, seqlen, 3, nheads, headdim) xqkv = xqkv.view(*qkv_shape) xq, xk, xv = torch.unbind(xqkv, dim=-3) xq, xk = apply_rope(xq, xk, rope_freqs_cis) attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation] attn_out = attn_func( xq, xk, xv, q_cu_seqlens=cu_seqlens, k_cu_seqlens=cu_seqlens ) attn_out = self.wo(attn_out) return attn_out def forward( self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rope_freqs_cis: Union[torch.Tensor, None] = None, ) -> torch.Tensor: """ Args: hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set Returns: output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input """ residual = hidden_states hidden_states = self.norm0(hidden_states) attn_out = self.attention_qkvpacked( hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis ) hidden_states = residual + attn_out residual = hidden_states hidden_states = self.mlp(self.norm1(hidden_states)) hidden_states = residual + hidden_states return hidden_states class MoonVitEncoder(nn.Module): def __init__( self, hidden_dim: int, num_layers: int, block_cfg: dict, ) -> None: super().__init__() self.rope_2d = Rope2DPosEmb( block_cfg["hidden_dim"] // block_cfg["num_heads"], 512, 512 ) self.blocks = nn.ModuleList( [MoonVitEncoderLayer(**block_cfg) for _ in range(num_layers)] ) self.final_layernorm = nn.LayerNorm(hidden_dim) def forward( self, hidden_states: torch.Tensor, grid_hws: torch.Tensor ) -> torch.Tensor: rope_freqs_cis = self.rope_2d.get_freqs_cis(grid_hws=grid_hws) lengths = torch.cat( ( torch.zeros(1, device=hidden_states.device, dtype=grid_hws.dtype), grid_hws[:, 0] * grid_hws[:, 1], ) ) cu_seqlens = lengths.cumsum(dim=0, dtype=torch.int32) for _, block in enumerate(self.blocks): hidden_states = block( hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis ) hidden_states = self.final_layernorm(hidden_states) return hidden_states def patch_merger( x: torch.Tensor, grid_hws: torch.Tensor, merge_kernel_size: list[int, int] = (2, 2), ) -> List[torch.Tensor]: d_model = x.size(-1) outputs = [] pre_sum = 0 for x_shape in grid_hws.tolist(): height, width = x_shape[0], x_shape[1] # Get the current sequence seq = x[pre_sum : pre_sum + height * width] # Reshape along self.merge_kernel_size and concat to the last dimension kernel_height, kernel_width = merge_kernel_size new_height, new_width = height // kernel_height, width // kernel_width reshaped_seq = seq.view( new_height, kernel_height, new_width, kernel_width, d_model ) reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous() padded_seq = reshaped_seq.view( new_height * new_width, kernel_height * kernel_width, -1 ) outputs.append(padded_seq) pre_sum += height * width return outputs class MoonVitPretrainedModel(PreTrainedModel): config_class = MoonViTConfig model_type = "moonvit" _no_split_modules = ["PackingTransformer"] _supports_flash_attn_2 = True _supports_sdpa = True def __init__(self, config: MoonViTConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) config = deepcopy(config) self.merge_kernel_size = config.merge_kernel_size self.patch_size = config.patch_size self.patch_embed = MoonVisionPatchEmbed( out_dim=config.hidden_size, patch_size=config.patch_size, pos_emb_height=config.init_pos_emb_height, pos_emb_width=config.init_pos_emb_width, ) self.encoder = MoonVitEncoder( hidden_dim=config.hidden_size, num_layers=config.num_hidden_layers, block_cfg={ "num_heads": config.num_attention_heads, "hidden_dim": config.hidden_size, "mlp_dim": config.intermediate_size, "activation": PytorchGELUTanh(), "attn_bias": True, "attn_implementation": config._attn_implementation, }, ) def forward( self, pixel_values: torch.Tensor, grid_hws: torch.Tensor ) -> torch.Tensor: """ Args: pixel_values (torch.Tensor): The input pixel values. grid_hws (torch.Tensor): The grid height and width. Returns: torch.Tensor: The output tokens. """ hidden_states = self.patch_embed(pixel_values, grid_hws) hidden_states = self.encoder(hidden_states, grid_hws) hidden_states = patch_merger( hidden_states, grid_hws, merge_kernel_size=self.merge_kernel_size ) return hidden_states