--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-large-dataset-model-v3 results: [] --- # vit-large-dataset-model-v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0465 | 0.36 | 500 | 0.1289 | 0.9612 | | 0.0253 | 0.71 | 1000 | 0.0983 | 0.9693 | | 0.008 | 1.07 | 1500 | 0.0957 | 0.9728 | | 0.0569 | 1.43 | 2000 | 0.0668 | 0.9793 | | 0.035 | 1.79 | 2500 | 0.0865 | 0.9752 | | 0.0034 | 2.14 | 3000 | 0.0748 | 0.9773 | | 0.0638 | 2.5 | 3500 | 0.0708 | 0.9805 | | 0.0195 | 2.86 | 4000 | 0.0782 | 0.9821 | | 0.0012 | 3.21 | 4500 | 0.0739 | 0.9820 | | 0.0013 | 3.57 | 5000 | 0.0680 | 0.9845 | | 0.0417 | 3.93 | 5500 | 0.0630 | 0.9850 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1