Commit
·
89a2768
1
Parent(s):
a60d3dc
commit again
Browse files- README.md +16 -40
- config.json +1 -1
- first_train.zip +2 -2
- first_train/data +21 -21
- first_train/policy.optimizer.pth +1 -1
- first_train/policy.pth +1 -1
- first_train/system_info.txt +3 -3
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,45 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': False
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 50000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 128
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'mshibatatt/ppo-LunarLander-v2'
|
58 |
-
'batch_size': 512
|
59 |
-
'minibatch_size': 128}
|
60 |
-
```
|
61 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 254.91 +/- 41.42
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0591ac6ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0591ac6d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0591ac6dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0591ac6e50>", "_build": "<function ActorCriticPolicy._build at 0x7f0591ac6ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0591ac6f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0591aca040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0591aca0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0591aca160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0591aca1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0591aca280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0591aca310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0591b23ab0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1628896, "_total_timesteps": 10000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675842769229604433, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8394368, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsmSO5d1qcUCUhpRSlIwBbJRLwYwBdJRHQKLeX86V+ql1fZQoaAZoCWgPQwj9bOS6qWZwQJSGlFKUaBVLsmgWR0Ci3mHfMwDedX2UKGgGaAloD0MITaHzGnuWcECUhpRSlGgVS51oFkdAot69JpWV/3V9lChoBmgJaA9DCKZgjbPpBXBAlIaUUpRoFUu9aBZHQKLfBU83dbh1fZQoaAZoCWgPQwh2cLA3MdNxQJSGlFKUaBVL0GgWR0Ci3x114gRsdX2UKGgGaAloD0MITG2pg7zocECUhpRSlGgVS8BoFkdAot8whUzbe3V9lChoBmgJaA9DCAqi7gMQRnNAlIaUUpRoFUvsaBZHQKLfSBvrGBF1fZQoaAZoCWgPQwh5BaInZUxxQJSGlFKUaBVLrmgWR0Ci32FLnLaFdX2UKGgGaAloD0MIuTR+4dVAckCUhpRSlGgVS65oFkdAot9qA2AG0XV9lChoBmgJaA9DCOV+h6JAoXBAlIaUUpRoFUu8aBZHQKLfsDOkcjt1fZQoaAZoCWgPQwjuzATD+UlxQJSGlFKUaBVLlWgWR0Ci38R7qptKdX2UKGgGaAloD0MIRzgteBENcUCUhpRSlGgVS6xoFkdAot/LYkE9uHV9lChoBmgJaA9DCH5WmSmtfXJAlIaUUpRoFUuraBZHQKLgGQtjCpF1fZQoaAZoCWgPQwjBN02fXXNwQJSGlFKUaBVLtmgWR0Ci4CSbQTmGdX2UKGgGaAloD0MINBKhEWxec0CUhpRSlGgVS8loFkdAouBNTgl4T3V9lChoBmgJaA9DCPWEJR4QgnJAlIaUUpRoFUvuaBZHQKLgbB0p3HJ1fZQoaAZoCWgPQwg6AyMva29xQJSGlFKUaBVLxGgWR0Ci4HUdRzikdX2UKGgGaAloD0MIOXtntNWDckCUhpRSlGgVS+RoFkdAouDfzreImHV9lChoBmgJaA9DCMWsF0P563BAlIaUUpRoFUu+aBZHQKLg62H+Idl1fZQoaAZoCWgPQwg5nPnVnPJwQJSGlFKUaBVLxmgWR0Ci4WTrmhdudX2UKGgGaAloD0MIJXfYROYUcUCUhpRSlGgVS8JoFkdAouF4uCf6GnV9lChoBmgJaA9DCJD5gEAnrHRAlIaUUpRoFUvDaBZHQKLhletSydF1fZQoaAZoCWgPQwhlwi/183VxQJSGlFKUaBVLy2gWR0Ci4dszVMEidX2UKGgGaAloD0MIqd4a2Gq7cECUhpRSlGgVS5toFkdAouHm1jRUm3V9lChoBmgJaA9DCMVW0LRErXNAlIaUUpRoFUvXaBZHQKLiMCdz4lB1fZQoaAZoCWgPQwjU78LWLHpxQJSGlFKUaBVL22gWR0Ci4lORkmQbdX2UKGgGaAloD0MIdJZZhKLscECUhpRSlGgVS8RoFkdAouJ9enhsInV9lChoBmgJaA9DCN8YAoAjv3JAlIaUUpRoFUvQaBZHQKLilgTAWSF1fZQoaAZoCWgPQwh7wac5uQFwQJSGlFKUaBVLt2gWR0Ci4tRVQyh0dX2UKGgGaAloD0MIgo5WteRXcUCUhpRSlGgVS85oFkdAouLzgZTAFnV9lChoBmgJaA9DCHOdRlpqinBAlIaUUpRoFUu7aBZHQKLjDbmlqJx1fZQoaAZoCWgPQwhB740hwHxxQJSGlFKUaBVLwWgWR0Ci4xqqfe1sdX2UKGgGaAloD0MI8db5t4s2cUCUhpRSlGgVS99oFkdAouM6YNRWLnV9lChoBmgJaA9DCKn1fqOdRHBAlIaUUpRoFUu2aBZHQKLjcry1/lR1fZQoaAZoCWgPQwgwgzEiUctxQJSGlFKUaBVLnGgWR0Ci48+8PFvRdX2UKGgGaAloD0MIFjQtsTKIckCUhpRSlGgVS89oFkdAouPTwhGH6HV9lChoBmgJaA9DCKs97IWC03BAlIaUUpRoFUu3aBZHQKLkDrnDBM11fZQoaAZoCWgPQwivljszQUJzQJSGlFKUaBVLxWgWR0Ci5C4xtYSydX2UKGgGaAloD0MIDcfzGVBYbkCUhpRSlGgVS59oFkdAouRt0FKTS3V9lChoBmgJaA9DCJPIPsgy7HJAlIaUUpRoFUu5aBZHQKLkfWhh6Sl1fZQoaAZoCWgPQwghQIaOHYtzQJSGlFKUaBVLtmgWR0Ci5H3Y+Sr6dX2UKGgGaAloD0MIz9iXbDyMcUCUhpRSlGgVS5loFkdAouULQb+98XV9lChoBmgJaA9DCNUkeEPaiXFAlIaUUpRoFUvUaBZHQKLlZbW3BpJ1fZQoaAZoCWgPQwhfYFYoUo1xQJSGlFKUaBVLw2gWR0Ci5W7mEGqxdX2UKGgGaAloD0MICkyndVuAcUCUhpRSlGgVS6JoFkdAouV+0ojOcHV9lChoBmgJaA9DCFN1j2xuJnNAlIaUUpRoFUuwaBZHQKLljC0ngHh1fZQoaAZoCWgPQwhLPKBsCsFwQJSGlFKUaBVLs2gWR0Ci5bQcYIjXdX2UKGgGaAloD0MIWrqCbUTWcECUhpRSlGgVS99oFkdAouXD9hqj8HV9lChoBmgJaA9DCCfcK/MW93FAlIaUUpRoFUusaBZHQKLmBHJ9y951fZQoaAZoCWgPQwin6bMDLnlyQJSGlFKUaBVLzmgWR0Ci5kX2ugYhdX2UKGgGaAloD0MIVU/mHz0/ckCUhpRSlGgVS5loFkdAouaFxlxwQ3V9lChoBmgJaA9DCM/Yl2x84nBAlIaUUpRoFUu7aBZHQKLmozUqhDh1fZQoaAZoCWgPQwjSG+4j95FzQJSGlFKUaBVLvWgWR0Ci5qbIcR16dX2UKGgGaAloD0MIlUVhF0XYcECUhpRSlGgVS8ZoFkdAoucPUvwmV3V9lChoBmgJaA9DCF8Lem9MGnJAlIaUUpRoFUuraBZHQKLnFDgIhQp1fZQoaAZoCWgPQwjB49u7Rq1yQJSGlFKUaBVLsGgWR0Ci5yckt29tdX2UKGgGaAloD0MIZDvfT819ckCUhpRSlGgVS71oFkdAoudIjW07bXV9lChoBmgJaA9DCLxYGCIn2XBAlIaUUpRoFUuyaBZHQKLntODaoMt1fZQoaAZoCWgPQwikObLyiwdyQJSGlFKUaBVLu2gWR0Ci6D6WX1J2dX2UKGgGaAloD0MIAIxn0BAcckCUhpRSlGgVS9NoFkdAouiibz9S/HV9lChoBmgJaA9DCBsQIa6cTT5AlIaUUpRoFUthaBZHQKLootU4rBl1fZQoaAZoCWgPQwixaaUQCNJwQJSGlFKUaBVLv2gWR0Ci6LDZlFtsdX2UKGgGaAloD0MIVrYPecuFckCUhpRSlGgVS85oFkdAoujfKdQO4HV9lChoBmgJaA9DCAoPml13w3JAlIaUUpRoFUvaaBZHQKLo527nPmh1fZQoaAZoCWgPQwgzMshdhPBxQJSGlFKUaBVL4GgWR0Ci6PME7nxKdX2UKGgGaAloD0MIQxoVOBlRcECUhpRSlGgVS6RoFkdAoukZE8aGYnV9lChoBmgJaA9DCCEGuvYFn3JAlIaUUpRoFUvJaBZHQKLpY/s3Q2N1fZQoaAZoCWgPQwimXrcIzAJ0QJSGlFKUaBVL4GgWR0Ci6W5aePJadX2UKGgGaAloD0MI2NR5VPw2cUCUhpRSlGgVS7toFkdAoul+CNCJGnV9lChoBmgJaA9DCAyR09czXXNAlIaUUpRoFUu1aBZHQKLptVy3kPt1fZQoaAZoCWgPQwgnMQisHNhxQJSGlFKUaBVL2mgWR0Ci6cy8rZrYdX2UKGgGaAloD0MIrOXOTPAmcUCUhpRSlGgVS8ZoFkdAounro+wC83V9lChoBmgJaA9DCDcbKzHPKXJAlIaUUpRoFUvaaBZHQKLqNFXJYDF1fZQoaAZoCWgPQwiLUdfaO3hxQJSGlFKUaBVLomgWR0Ci6nyQxN7CdX2UKGgGaAloD0MICKwcWiS2cUCUhpRSlGgVS6FoFkdAouqgU34sVnV9lChoBmgJaA9DCA9FgT5RoHNAlIaUUpRoFUvZaBZHQKLq1nQpnYh1fZQoaAZoCWgPQwhRo5BkFh1xQJSGlFKUaBVLw2gWR0Ci6tVTBInSdX2UKGgGaAloD0MIkSv1LAiLckCUhpRSlGgVS8JoFkdAourcILPUrnV9lChoBmgJaA9DCEhOJm7VEnJAlIaUUpRoFUvNaBZHQKLrIl3yI551fZQoaAZoCWgPQwjcEOM1b7NyQJSGlFKUaBVL0WgWR0Ci6ycYAKfGdX2UKGgGaAloD0MIX9BCAkb2bkCUhpRSlGgVS6poFkdAousz8P4EfXV9lChoBmgJaA9DCN52obkOhHFAlIaUUpRoFUvjaBZHQKLrd8ma6SV1fZQoaAZoCWgPQwjFknL3Of1vQJSGlFKUaBVLrmgWR0Ci63nVwxWUdX2UKGgGaAloD0MI5US7CmlIckCUhpRSlGgVS9ZoFkdAouuMzXSSeXV9lChoBmgJaA9DCPCl8KBZhG9AlIaUUpRoFUutaBZHQKLrkQ2dd3V1fZQoaAZoCWgPQwi4PxcN2QVyQJSGlFKUaBVL2mgWR0Ci66Hl4keIdX2UKGgGaAloD0MIcjEG1nGlcECUhpRSlGgVS71oFkdAouvg2uPmxXV9lChoBmgJaA9DCAcj9gmgXG9AlIaUUpRoFUuqaBZHQKLr/EPUayd1fZQoaAZoCWgPQwiI1oo2BzVwQJSGlFKUaBVLpGgWR0Ci7DG4AjptdX2UKGgGaAloD0MIm+Wy0fkxcECUhpRSlGgVS6ZoFkdAouxbmnwXqXV9lChoBmgJaA9DCNXMWgqIK3FAlIaUUpRoFUvBaBZHQKLs7/2Cdz51fZQoaAZoCWgPQwiI2cu2UwJyQJSGlFKUaBVLxGgWR0Ci7PKAJ9iMdX2UKGgGaAloD0MI7s7abVeYcECUhpRSlGgVS61oFkdAou0EH8jzI3V9lChoBmgJaA9DCCxEh8CRzXNAlIaUUpRoFUuxaBZHQKLtIYO2AoZ1fZQoaAZoCWgPQwjDKXPzTWpxQJSGlFKUaBVLpGgWR0Ci7UUVSGahdX2UKGgGaAloD0MIptWQuIf/cUCUhpRSlGgVS8RoFkdAou1JTER8MXV9lChoBmgJaA9DCI2Y2eexmW9AlIaUUpRoFUv0aBZHQKLtetUXHip1fZQoaAZoCWgPQwj5254gsS5wQJSGlFKUaBVLu2gWR0Ci7YVvES/TdX2UKGgGaAloD0MIbmqg+ZyHcECUhpRSlGgVS65oFkdAou3PQWvbGnV9lChoBmgJaA9DCLrzxHO2g3JAlIaUUpRoFUveaBZHQKLuF7bcoH91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 490, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ce1040a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ce1040af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ce1040b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ce1040c10>", "_build": "<function ActorCriticPolicy._build at 0x7f8ce1040ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ce1040d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ce1040dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ce1040e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ce1040ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ce1040f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ce1043040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ce10430d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8ce103fe40>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678897216734099320, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuHU3T3UcbkCUhpRSlIwBbJRNAAGMAXSUR0CYxpEcsDnvdX2UKGgGaAloD0MIyjfb3FjKc0CUhpRSlGgVS95oFkdAmMaSKWLP2XV9lChoBmgJaA9DCIBgjh4/OGNAlIaUUpRoFU3oA2gWR0CYxzc6eXiSdX2UKGgGaAloD0MIl8RZETUeb0CUhpRSlGgVS+JoFkdAmMdlMEidKHV9lChoBmgJaA9DCNKMRdOZxHFAlIaUUpRoFU0KAWgWR0CYx4F7Uoa2dX2UKGgGaAloD0MIVrYPecsMcECUhpRSlGgVS+toFkdAmMecQ7LdN3V9lChoBmgJaA9DCHyakxcZFnFAlIaUUpRoFU0IAWgWR0CYx8IYWLxadX2UKGgGaAloD0MIB9Fa0aYxcUCUhpRSlGgVS+VoFkdAmMi5BcAzYXV9lChoBmgJaA9DCDi8ICI1825AlIaUUpRoFUvPaBZHQJjJMCJXQt11fZQoaAZoCWgPQwj7lGOyuHFwQJSGlFKUaBVL42gWR0CYyYtAcDKYdX2UKGgGaAloD0MIeA5lqIqab0CUhpRSlGgVTTYCaBZHQJjKEYNy5qd1fZQoaAZoCWgPQwgLYTWWMG1xQJSGlFKUaBVL3mgWR0CYyk3z+WGAdX2UKGgGaAloD0MIZeQs7CknckCUhpRSlGgVS/ZoFkdAmMsEB8x9HHV9lChoBmgJaA9DCAthNZawqm5AlIaUUpRoFUvZaBZHQJjLmXt0FKV1fZQoaAZoCWgPQwhPdF34wYduQJSGlFKUaBVL4WgWR0CYzDTbFjusdX2UKGgGaAloD0MIJv4o6sw+cUCUhpRSlGgVS89oFkdAmMy2ZE2HcnV9lChoBmgJaA9DCElNu5imgnJAlIaUUpRoFUvpaBZHQJjNU01qFh51fZQoaAZoCWgPQwjRd7eyRHJwQJSGlFKUaBVL92gWR0CYzYMyrPt2dX2UKGgGaAloD0MIxw2/m65tcUCUhpRSlGgVTRMBaBZHQJjNns1KoQ51fZQoaAZoCWgPQwiSeeQPBnBtQJSGlFKUaBVL52gWR0CYzacZ9/jLdX2UKGgGaAloD0MIAaYMHBCmckCUhpRSlGgVTR0BaBZHQJjNv2HtWuJ1fZQoaAZoCWgPQwhnmNpSB91xQJSGlFKUaBVNBwFoFkdAmM4+mR/3FnV9lChoBmgJaA9DCCzwFd06p3BAlIaUUpRoFUvkaBZHQJjO6fg75mB1fZQoaAZoCWgPQwiAYfnzrY1wQJSGlFKUaBVL+WgWR0CYz8cYZVGTdX2UKGgGaAloD0MI6lp7n2racECUhpRSlGgVTR8BaBZHQJjP4+7lJYl1fZQoaAZoCWgPQwgukKD48UNyQJSGlFKUaBVL7WgWR0CY0A+DOC5FdX2UKGgGaAloD0MIjDGwjmNFckCUhpRSlGgVTbcCaBZHQJjQkTN+so51fZQoaAZoCWgPQwj2tMNf019xQJSGlFKUaBVL3WgWR0CY0JfGuLaVdX2UKGgGaAloD0MIQnxgxz8LckCUhpRSlGgVS/toFkdAmNCeXNTtLXV9lChoBmgJaA9DCGACt+4mKXFAlIaUUpRoFUv4aBZHQJjSQhdMTOB1fZQoaAZoCWgPQwgTZtr+lctPQJSGlFKUaBVL3mgWR0CY0qLh73PBdX2UKGgGaAloD0MI3j6rzFS8cECUhpRSlGgVS/ZoFkdAmNK1WS2Yv3V9lChoBmgJaA9DCAKAY88eZW9AlIaUUpRoFUvhaBZHQJjTAsFt8/l1fZQoaAZoCWgPQwhQAMXI0jJwQJSGlFKUaBVL72gWR0CY00jpcHGCdX2UKGgGaAloD0MIE7ngDL5wcUCUhpRSlGgVS/poFkdAmNO3BciW3XV9lChoBmgJaA9DCJuuJ7rujnJAlIaUUpRoFUv7aBZHQJjT2VAzHjp1fZQoaAZoCWgPQwj3yycrhixwQJSGlFKUaBVL92gWR0CY1FvmozeodX2UKGgGaAloD0MI7NlzmdpPckCUhpRSlGgVS/toFkdAmNU96X0GvHV9lChoBmgJaA9DCNB7YwiA5m5AlIaUUpRoFUvkaBZHQJjWFpxm03R1fZQoaAZoCWgPQwhlVYSbjF9yQJSGlFKUaBVL32gWR0CY1tXDWK/EdX2UKGgGaAloD0MIIXTQJVwgckCUhpRSlGgVTQMBaBZHQJjXCsaKk2x1fZQoaAZoCWgPQwjc9dIUAThzQJSGlFKUaBVNAgFoFkdAmNg6TwDvE3V9lChoBmgJaA9DCHcP0H25dnBAlIaUUpRoFU0BAWgWR0CY2EyWiUPhdX2UKGgGaAloD0MIWMhcGVRDckCUhpRSlGgVS9xoFkdAmNrIXwb2lHV9lChoBmgJaA9DCBDPEmRENXFAlIaUUpRoFUv5aBZHQJja4EOiFkB1fZQoaAZoCWgPQwi2MXbCC5NxQJSGlFKUaBVL8mgWR0CY2yPgNwzddX2UKGgGaAloD0MI3rBtUeaocUCUhpRSlGgVS9xoFkdAmNvWFBY3enV9lChoBmgJaA9DCIif/x48rXBAlIaUUpRoFUvzaBZHQJjcGyyD7Il1fZQoaAZoCWgPQwiSzyue+mJyQJSGlFKUaBVNEAFoFkdAmNxxLPD503V9lChoBmgJaA9DCENwXMbNL25AlIaUUpRoFUvqaBZHQJjcme05U991fZQoaAZoCWgPQwghkiHH1gNxQJSGlFKUaBVNtwFoFkdAmN5AvpQk5nV9lChoBmgJaA9DCD86deVzW3NAlIaUUpRoFUvnaBZHQJjeg/hVENR1fZQoaAZoCWgPQwju68A5I61wQJSGlFKUaBVNCQFoFkdAmN6KsZHd43V9lChoBmgJaA9DCFmnyveMk3FAlIaUUpRoFUvzaBZHQJjfz3SKFZh1fZQoaAZoCWgPQwgJpwUvOl1xQJSGlFKUaBVL7GgWR0CY4Eh2nsLOdX2UKGgGaAloD0MITiuFQC7gcUCUhpRSlGgVS+loFkdAmOBh8QZn+XV9lChoBmgJaA9DCMMtH0nJ8G1AlIaUUpRoFUvsaBZHQJjhsQxvegt1fZQoaAZoCWgPQwhMpgpGpc9xQJSGlFKUaBVLxWgWR0CY482BreqJdX2UKGgGaAloD0MIGqa21IHbcUCUhpRSlGgVS+doFkdAmOQn+Q2dd3V9lChoBmgJaA9DCJ6WH7hKnm5AlIaUUpRoFUvuaBZHQJjkpC9h7Vt1fZQoaAZoCWgPQwi6aTNOA65wQJSGlFKUaBVL8WgWR0CY5RkX1rZbdX2UKGgGaAloD0MIZQETuHVLbUCUhpRSlGgVS+BoFkdAmOXCSNfgJnV9lChoBmgJaA9DCPzDlh4N5XBAlIaUUpRoFUvuaBZHQJjmBTMqz7d1fZQoaAZoCWgPQwiAt0CC4kxuQJSGlFKUaBVL5mgWR0CY5jB0IToMdX2UKGgGaAloD0MITYbj+YyubkCUhpRSlGgVTV8BaBZHQJjmy56MR6F1fZQoaAZoCWgPQwg2A1yQ7ctwQJSGlFKUaBVL3WgWR0CY54oNd7fIdX2UKGgGaAloD0MIW5nwS/33bUCUhpRSlGgVS9poFkdAmOezIBBAwHV9lChoBmgJaA9DCEpiSbl76W9AlIaUUpRoFUvdaBZHQJjn1mOEM9d1fZQoaAZoCWgPQwhyjGSP0LtxQJSGlFKUaBVL5GgWR0CY6cf3evZAdX2UKGgGaAloD0MIONkG7kC8cECUhpRSlGgVS+ZoFkdAmOnnyup0fnV9lChoBmgJaA9DCNsUj4uqXHFAlIaUUpRoFUvcaBZHQJjqdMuez2R1fZQoaAZoCWgPQwjRyyiWm8ByQJSGlFKUaBVNEgFoFkdAmOqnvDxb0XV9lChoBmgJaA9DCNBE2PD0eW9AlIaUUpRoFUvgaBZHQJjsQUHpr1x1fZQoaAZoCWgPQwi14bA08E9fQJSGlFKUaBVN6ANoFkdAmO0KSX+l03V9lChoBmgJaA9DCAPRkzIpuHBAlIaUUpRoFU0PAWgWR0CY7V9Htnf3dX2UKGgGaAloD0MIprVpbK8nb0CUhpRSlGgVS+NoFkdAmO2ZkK/mDHV9lChoBmgJaA9DCO/nFORnSXFAlIaUUpRoFUvyaBZHQJjtu6nR9gF1fZQoaAZoCWgPQwgVWABTBghyQJSGlFKUaBVNBQFoFkdAmO3UQK8cuXV9lChoBmgJaA9DCCoaa3+naHFAlIaUUpRoFUvUaBZHQJjuM7GNrCZ1fZQoaAZoCWgPQwi94NOcvHlyQJSGlFKUaBVNDwFoFkdAmO6lCHARCnV9lChoBmgJaA9DCLMngc05gW5AlIaUUpRoFUvlaBZHQJjuu9nK4hF1fZQoaAZoCWgPQwjVz5uKFBpxQJSGlFKUaBVNCAFoFkdAmO7zqKP4mHV9lChoBmgJaA9DCFk0nZ1MoHFAlIaUUpRoFUvqaBZHQJjwPo/zJ6p1fZQoaAZoCWgPQwiP39v0J51xQJSGlFKUaBVNLwFoFkdAmPBb4i5d4XV9lChoBmgJaA9DCFAcQL8voXJAlIaUUpRoFUv6aBZHQJjwi2UjcEh1fZQoaAZoCWgPQwiRe7q6Y+FtQJSGlFKUaBVL32gWR0CY8Ix2St/4dX2UKGgGaAloD0MIPnjt0oZvckCUhpRSlGgVS/1oFkdAmPF1NpM6BHV9lChoBmgJaA9DCG6JXHBGgnJAlIaUUpRoFUvkaBZHQJjyR3PiT+x1fZQoaAZoCWgPQwj/P06YMF1wQJSGlFKUaBVL52gWR0CY8y2dd3SsdX2UKGgGaAloD0MInZyhuGP2bECUhpRSlGgVS+doFkdAmPOlhb4agnV9lChoBmgJaA9DCOJ30y175nJAlIaUUpRoFU0EAWgWR0CY87dMj/uLdX2UKGgGaAloD0MIHLYtyiykcUCUhpRSlGgVS9NoFkdAmPQRc7hegXV9lChoBmgJaA9DCCe+2lFcSnFAlIaUUpRoFU0DAWgWR0CY9DZXMhX9dX2UKGgGaAloD0MIGqchqrBVcUCUhpRSlGgVS/NoFkdAmPTiJoCdSXV9lChoBmgJaA9DCA9+4gB66m9AlIaUUpRoFUvsaBZHQJj1Bz/6wdN1fZQoaAZoCWgPQwgMkj6t4rFxQJSGlFKUaBVNDAFoFkdAmPUdFjNILHV9lChoBmgJaA9DCNBHGXHBQnJAlIaUUpRoFUvfaBZHQJj2HB9Cu2Z1fZQoaAZoCWgPQwgvM2yUtRRwQJSGlFKUaBVL2GgWR0CY9jbLEDQrdX2UKGgGaAloD0MIVtehmtIUcUCUhpRSlGgVS/JoFkdAmPayK3uuzXV9lChoBmgJaA9DCDf+RGVDYHBAlIaUUpRoFUv3aBZHQJj4HZ13dKx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
first_train.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a79e139a14001d38149e13d1f30d759d05d7de4135ec77f2258035c8f91ac370
|
3 |
+
size 146531
|
first_train/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
@@ -43,17 +43,17 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "
|
57 |
},
|
58 |
"_last_obs": null,
|
59 |
"_last_episode_starts": {
|
@@ -64,16 +64,16 @@
|
|
64 |
"_episode_num": 0,
|
65 |
"use_sde": false,
|
66 |
"sde_sample_freq": -1,
|
67 |
-
"_current_progress_remaining": 0.
|
68 |
"ep_info_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
-
":serialized:": "
|
71 |
},
|
72 |
"ep_success_buffer": {
|
73 |
":type:": "<class 'collections.deque'>",
|
74 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
},
|
76 |
-
"_n_updates":
|
77 |
"n_steps": 2048,
|
78 |
"gamma": 0.99,
|
79 |
"gae_lambda": 0.95,
|
@@ -84,7 +84,7 @@
|
|
84 |
"n_epochs": 10,
|
85 |
"clip_range": {
|
86 |
":type:": "<class 'function'>",
|
87 |
-
":serialized:": "
|
88 |
},
|
89 |
"clip_range_vf": null,
|
90 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ce1040a60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ce1040af0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ce1040b80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ce1040c10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8ce1040ca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8ce1040d30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ce1040dc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ce1040e50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8ce1040ee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ce1040f70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ce1043040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ce10430d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8ce103fe40>"
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000.0,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678897216734099320,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": null,
|
59 |
"_last_episode_starts": {
|
|
|
64 |
"_episode_num": 0,
|
65 |
"use_sde": false,
|
66 |
"sde_sample_freq": -1,
|
67 |
+
"_current_progress_remaining": -0.015808000000000044,
|
68 |
"ep_info_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuHU3T3UcbkCUhpRSlIwBbJRNAAGMAXSUR0CYxpEcsDnvdX2UKGgGaAloD0MIyjfb3FjKc0CUhpRSlGgVS95oFkdAmMaSKWLP2XV9lChoBmgJaA9DCIBgjh4/OGNAlIaUUpRoFU3oA2gWR0CYxzc6eXiSdX2UKGgGaAloD0MIl8RZETUeb0CUhpRSlGgVS+JoFkdAmMdlMEidKHV9lChoBmgJaA9DCNKMRdOZxHFAlIaUUpRoFU0KAWgWR0CYx4F7Uoa2dX2UKGgGaAloD0MIVrYPecsMcECUhpRSlGgVS+toFkdAmMecQ7LdN3V9lChoBmgJaA9DCHyakxcZFnFAlIaUUpRoFU0IAWgWR0CYx8IYWLxadX2UKGgGaAloD0MIB9Fa0aYxcUCUhpRSlGgVS+VoFkdAmMi5BcAzYXV9lChoBmgJaA9DCDi8ICI1825AlIaUUpRoFUvPaBZHQJjJMCJXQt11fZQoaAZoCWgPQwj7lGOyuHFwQJSGlFKUaBVL42gWR0CYyYtAcDKYdX2UKGgGaAloD0MIeA5lqIqab0CUhpRSlGgVTTYCaBZHQJjKEYNy5qd1fZQoaAZoCWgPQwgLYTWWMG1xQJSGlFKUaBVL3mgWR0CYyk3z+WGAdX2UKGgGaAloD0MIZeQs7CknckCUhpRSlGgVS/ZoFkdAmMsEB8x9HHV9lChoBmgJaA9DCAthNZawqm5AlIaUUpRoFUvZaBZHQJjLmXt0FKV1fZQoaAZoCWgPQwhPdF34wYduQJSGlFKUaBVL4WgWR0CYzDTbFjusdX2UKGgGaAloD0MIJv4o6sw+cUCUhpRSlGgVS89oFkdAmMy2ZE2HcnV9lChoBmgJaA9DCElNu5imgnJAlIaUUpRoFUvpaBZHQJjNU01qFh51fZQoaAZoCWgPQwjRd7eyRHJwQJSGlFKUaBVL92gWR0CYzYMyrPt2dX2UKGgGaAloD0MIxw2/m65tcUCUhpRSlGgVTRMBaBZHQJjNns1KoQ51fZQoaAZoCWgPQwiSeeQPBnBtQJSGlFKUaBVL52gWR0CYzacZ9/jLdX2UKGgGaAloD0MIAaYMHBCmckCUhpRSlGgVTR0BaBZHQJjNv2HtWuJ1fZQoaAZoCWgPQwhnmNpSB91xQJSGlFKUaBVNBwFoFkdAmM4+mR/3FnV9lChoBmgJaA9DCCzwFd06p3BAlIaUUpRoFUvkaBZHQJjO6fg75mB1fZQoaAZoCWgPQwiAYfnzrY1wQJSGlFKUaBVL+WgWR0CYz8cYZVGTdX2UKGgGaAloD0MI6lp7n2racECUhpRSlGgVTR8BaBZHQJjP4+7lJYl1fZQoaAZoCWgPQwgukKD48UNyQJSGlFKUaBVL7WgWR0CY0A+DOC5FdX2UKGgGaAloD0MIjDGwjmNFckCUhpRSlGgVTbcCaBZHQJjQkTN+so51fZQoaAZoCWgPQwj2tMNf019xQJSGlFKUaBVL3WgWR0CY0JfGuLaVdX2UKGgGaAloD0MIQnxgxz8LckCUhpRSlGgVS/toFkdAmNCeXNTtLXV9lChoBmgJaA9DCGACt+4mKXFAlIaUUpRoFUv4aBZHQJjSQhdMTOB1fZQoaAZoCWgPQwgTZtr+lctPQJSGlFKUaBVL3mgWR0CY0qLh73PBdX2UKGgGaAloD0MI3j6rzFS8cECUhpRSlGgVS/ZoFkdAmNK1WS2Yv3V9lChoBmgJaA9DCAKAY88eZW9AlIaUUpRoFUvhaBZHQJjTAsFt8/l1fZQoaAZoCWgPQwhQAMXI0jJwQJSGlFKUaBVL72gWR0CY00jpcHGCdX2UKGgGaAloD0MIE7ngDL5wcUCUhpRSlGgVS/poFkdAmNO3BciW3XV9lChoBmgJaA9DCJuuJ7rujnJAlIaUUpRoFUv7aBZHQJjT2VAzHjp1fZQoaAZoCWgPQwj3yycrhixwQJSGlFKUaBVL92gWR0CY1FvmozeodX2UKGgGaAloD0MI7NlzmdpPckCUhpRSlGgVS/toFkdAmNU96X0GvHV9lChoBmgJaA9DCNB7YwiA5m5AlIaUUpRoFUvkaBZHQJjWFpxm03R1fZQoaAZoCWgPQwhlVYSbjF9yQJSGlFKUaBVL32gWR0CY1tXDWK/EdX2UKGgGaAloD0MIIXTQJVwgckCUhpRSlGgVTQMBaBZHQJjXCsaKk2x1fZQoaAZoCWgPQwjc9dIUAThzQJSGlFKUaBVNAgFoFkdAmNg6TwDvE3V9lChoBmgJaA9DCHcP0H25dnBAlIaUUpRoFU0BAWgWR0CY2EyWiUPhdX2UKGgGaAloD0MIWMhcGVRDckCUhpRSlGgVS9xoFkdAmNrIXwb2lHV9lChoBmgJaA9DCBDPEmRENXFAlIaUUpRoFUv5aBZHQJja4EOiFkB1fZQoaAZoCWgPQwi2MXbCC5NxQJSGlFKUaBVL8mgWR0CY2yPgNwzddX2UKGgGaAloD0MI3rBtUeaocUCUhpRSlGgVS9xoFkdAmNvWFBY3enV9lChoBmgJaA9DCIif/x48rXBAlIaUUpRoFUvzaBZHQJjcGyyD7Il1fZQoaAZoCWgPQwiSzyue+mJyQJSGlFKUaBVNEAFoFkdAmNxxLPD503V9lChoBmgJaA9DCENwXMbNL25AlIaUUpRoFUvqaBZHQJjcme05U991fZQoaAZoCWgPQwghkiHH1gNxQJSGlFKUaBVNtwFoFkdAmN5AvpQk5nV9lChoBmgJaA9DCD86deVzW3NAlIaUUpRoFUvnaBZHQJjeg/hVENR1fZQoaAZoCWgPQwju68A5I61wQJSGlFKUaBVNCQFoFkdAmN6KsZHd43V9lChoBmgJaA9DCFmnyveMk3FAlIaUUpRoFUvzaBZHQJjfz3SKFZh1fZQoaAZoCWgPQwgJpwUvOl1xQJSGlFKUaBVL7GgWR0CY4Eh2nsLOdX2UKGgGaAloD0MITiuFQC7gcUCUhpRSlGgVS+loFkdAmOBh8QZn+XV9lChoBmgJaA9DCMMtH0nJ8G1AlIaUUpRoFUvsaBZHQJjhsQxvegt1fZQoaAZoCWgPQwhMpgpGpc9xQJSGlFKUaBVLxWgWR0CY482BreqJdX2UKGgGaAloD0MIGqa21IHbcUCUhpRSlGgVS+doFkdAmOQn+Q2dd3V9lChoBmgJaA9DCJ6WH7hKnm5AlIaUUpRoFUvuaBZHQJjkpC9h7Vt1fZQoaAZoCWgPQwi6aTNOA65wQJSGlFKUaBVL8WgWR0CY5RkX1rZbdX2UKGgGaAloD0MIZQETuHVLbUCUhpRSlGgVS+BoFkdAmOXCSNfgJnV9lChoBmgJaA9DCPzDlh4N5XBAlIaUUpRoFUvuaBZHQJjmBTMqz7d1fZQoaAZoCWgPQwiAt0CC4kxuQJSGlFKUaBVL5mgWR0CY5jB0IToMdX2UKGgGaAloD0MITYbj+YyubkCUhpRSlGgVTV8BaBZHQJjmy56MR6F1fZQoaAZoCWgPQwg2A1yQ7ctwQJSGlFKUaBVL3WgWR0CY54oNd7fIdX2UKGgGaAloD0MIW5nwS/33bUCUhpRSlGgVS9poFkdAmOezIBBAwHV9lChoBmgJaA9DCEpiSbl76W9AlIaUUpRoFUvdaBZHQJjn1mOEM9d1fZQoaAZoCWgPQwhyjGSP0LtxQJSGlFKUaBVL5GgWR0CY6cf3evZAdX2UKGgGaAloD0MIONkG7kC8cECUhpRSlGgVS+ZoFkdAmOnnyup0fnV9lChoBmgJaA9DCNsUj4uqXHFAlIaUUpRoFUvcaBZHQJjqdMuez2R1fZQoaAZoCWgPQwjRyyiWm8ByQJSGlFKUaBVNEgFoFkdAmOqnvDxb0XV9lChoBmgJaA9DCNBE2PD0eW9AlIaUUpRoFUvgaBZHQJjsQUHpr1x1fZQoaAZoCWgPQwi14bA08E9fQJSGlFKUaBVN6ANoFkdAmO0KSX+l03V9lChoBmgJaA9DCAPRkzIpuHBAlIaUUpRoFU0PAWgWR0CY7V9Htnf3dX2UKGgGaAloD0MIprVpbK8nb0CUhpRSlGgVS+NoFkdAmO2ZkK/mDHV9lChoBmgJaA9DCO/nFORnSXFAlIaUUpRoFUvyaBZHQJjtu6nR9gF1fZQoaAZoCWgPQwgVWABTBghyQJSGlFKUaBVNBQFoFkdAmO3UQK8cuXV9lChoBmgJaA9DCCoaa3+naHFAlIaUUpRoFUvUaBZHQJjuM7GNrCZ1fZQoaAZoCWgPQwi94NOcvHlyQJSGlFKUaBVNDwFoFkdAmO6lCHARCnV9lChoBmgJaA9DCLMngc05gW5AlIaUUpRoFUvlaBZHQJjuu9nK4hF1fZQoaAZoCWgPQwjVz5uKFBpxQJSGlFKUaBVNCAFoFkdAmO7zqKP4mHV9lChoBmgJaA9DCFk0nZ1MoHFAlIaUUpRoFUvqaBZHQJjwPo/zJ6p1fZQoaAZoCWgPQwiP39v0J51xQJSGlFKUaBVNLwFoFkdAmPBb4i5d4XV9lChoBmgJaA9DCFAcQL8voXJAlIaUUpRoFUv6aBZHQJjwi2UjcEh1fZQoaAZoCWgPQwiRe7q6Y+FtQJSGlFKUaBVL32gWR0CY8Ix2St/4dX2UKGgGaAloD0MIPnjt0oZvckCUhpRSlGgVS/1oFkdAmPF1NpM6BHV9lChoBmgJaA9DCG6JXHBGgnJAlIaUUpRoFUvkaBZHQJjyR3PiT+x1fZQoaAZoCWgPQwj/P06YMF1wQJSGlFKUaBVL52gWR0CY8y2dd3SsdX2UKGgGaAloD0MInZyhuGP2bECUhpRSlGgVS+doFkdAmPOlhb4agnV9lChoBmgJaA9DCOJ30y175nJAlIaUUpRoFU0EAWgWR0CY87dMj/uLdX2UKGgGaAloD0MIHLYtyiykcUCUhpRSlGgVS9NoFkdAmPQRc7hegXV9lChoBmgJaA9DCCe+2lFcSnFAlIaUUpRoFU0DAWgWR0CY9DZXMhX9dX2UKGgGaAloD0MIGqchqrBVcUCUhpRSlGgVS/NoFkdAmPTiJoCdSXV9lChoBmgJaA9DCA9+4gB66m9AlIaUUpRoFUvsaBZHQJj1Bz/6wdN1fZQoaAZoCWgPQwgMkj6t4rFxQJSGlFKUaBVNDAFoFkdAmPUdFjNILHV9lChoBmgJaA9DCNBHGXHBQnJAlIaUUpRoFUvfaBZHQJj2HB9Cu2Z1fZQoaAZoCWgPQwgvM2yUtRRwQJSGlFKUaBVL2GgWR0CY9jbLEDQrdX2UKGgGaAloD0MIVtehmtIUcUCUhpRSlGgVS/JoFkdAmPayK3uuzXV9lChoBmgJaA9DCDf+RGVDYHBAlIaUUpRoFUv3aBZHQJj4HZ13dKx1ZS4="
|
71 |
},
|
72 |
"ep_success_buffer": {
|
73 |
":type:": "<class 'collections.deque'>",
|
74 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
},
|
76 |
+
"_n_updates": 310,
|
77 |
"n_steps": 2048,
|
78 |
"gamma": 0.99,
|
79 |
"gae_lambda": 0.95,
|
|
|
84 |
"n_epochs": 10,
|
85 |
"clip_range": {
|
86 |
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
88 |
},
|
89 |
"clip_range_vf": null,
|
90 |
"normalize_advantage": true,
|
first_train/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88057
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3dcbaff247e0f26a9365bf2aa10e93c30f70c9b477d168fd35fb8e92b6b5498
|
3 |
size 88057
|
first_train/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dce118176b16a4a6b7f4c2c9c92c96d23f51707354c0199209c213c7e485b99
|
3 |
size 43393
|
first_train/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.10.147+-x86_64-with-glibc2.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 254.90589053255312, "std_reward": 41.42269502460257, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T16:53:59.829373"}
|