--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: mit-b0_whitefly results: [] --- # mit-b0_whitefly This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2644 - Mean Iou: 0.4948 - Mean Accuracy: 0.4968 - Overall Accuracy: 0.9893 - Accuracy Background: 0.9907 - Accuracy Whitefly: 0.0029 - Iou Background: 0.9893 - Iou Whitefly: 0.0004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Whitefly | Iou Background | Iou Whitefly | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-----------------:|:--------------:|:------------:| | 0.6275 | 0.4 | 20 | 0.6849 | 0.3529 | 0.4550 | 0.7049 | 0.7056 | 0.2044 | 0.7048 | 0.0010 | | 0.4423 | 0.8 | 40 | 0.5826 | 0.4745 | 0.5157 | 0.9468 | 0.9480 | 0.0834 | 0.9468 | 0.0022 | | 0.3793 | 1.2 | 60 | 0.4444 | 0.4868 | 0.4927 | 0.9731 | 0.9744 | 0.0110 | 0.9731 | 0.0006 | | 0.3102 | 1.6 | 80 | 0.3347 | 0.4976 | 0.4986 | 0.9949 | 0.9963 | 0.0009 | 0.9949 | 0.0002 | | 0.272 | 2.0 | 100 | 0.3100 | 0.4983 | 0.4991 | 0.9963 | 0.9977 | 0.0004 | 0.9963 | 0.0002 | | 0.3003 | 2.4 | 120 | 0.2579 | 0.4983 | 0.4991 | 0.9965 | 0.9979 | 0.0003 | 0.9965 | 0.0001 | | 0.2558 | 2.8 | 140 | 0.2644 | 0.4948 | 0.4968 | 0.9893 | 0.9907 | 0.0029 | 0.9893 | 0.0004 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.6.0+cpu - Datasets 2.21.0 - Tokenizers 0.19.1