nassersala commited on
Commit
78e88b5
·
verified ·
1 Parent(s): f2b6734

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +154 -3
  2. adapter_config.json +34 -0
  3. adapter_model.bin +3 -0
  4. checkpoint-157/README.md +202 -0
  5. checkpoint-157/adapter_config.json +34 -0
  6. checkpoint-157/adapter_model.safetensors +3 -0
  7. checkpoint-157/optimizer.pt +3 -0
  8. checkpoint-157/rng_state.pth +3 -0
  9. checkpoint-157/scheduler.pt +3 -0
  10. checkpoint-157/special_tokens_map.json +24 -0
  11. checkpoint-157/tokenizer.model +3 -0
  12. checkpoint-157/tokenizer_config.json +43 -0
  13. checkpoint-157/trainer_state.json +1152 -0
  14. checkpoint-157/training_args.bin +3 -0
  15. checkpoint-314/README.md +202 -0
  16. checkpoint-314/adapter_config.json +34 -0
  17. checkpoint-314/adapter_model.safetensors +3 -0
  18. checkpoint-314/optimizer.pt +3 -0
  19. checkpoint-314/rng_state.pth +3 -0
  20. checkpoint-314/scheduler.pt +3 -0
  21. checkpoint-314/special_tokens_map.json +24 -0
  22. checkpoint-314/tokenizer.model +3 -0
  23. checkpoint-314/tokenizer_config.json +43 -0
  24. checkpoint-314/trainer_state.json +2283 -0
  25. checkpoint-314/training_args.bin +3 -0
  26. checkpoint-471/README.md +202 -0
  27. checkpoint-471/adapter_config.json +34 -0
  28. checkpoint-471/adapter_model.safetensors +3 -0
  29. checkpoint-471/optimizer.pt +3 -0
  30. checkpoint-471/rng_state.pth +3 -0
  31. checkpoint-471/scheduler.pt +3 -0
  32. checkpoint-471/special_tokens_map.json +24 -0
  33. checkpoint-471/tokenizer.model +3 -0
  34. checkpoint-471/tokenizer_config.json +43 -0
  35. checkpoint-471/trainer_state.json +3414 -0
  36. checkpoint-471/training_args.bin +3 -0
  37. checkpoint-628/README.md +202 -0
  38. checkpoint-628/adapter_config.json +34 -0
  39. checkpoint-628/adapter_model.safetensors +3 -0
  40. checkpoint-628/optimizer.pt +3 -0
  41. checkpoint-628/rng_state.pth +3 -0
  42. checkpoint-628/scheduler.pt +3 -0
  43. checkpoint-628/special_tokens_map.json +24 -0
  44. checkpoint-628/tokenizer.model +3 -0
  45. checkpoint-628/tokenizer_config.json +43 -0
  46. checkpoint-628/trainer_state.json +0 -0
  47. checkpoint-628/training_args.bin +3 -0
  48. config.json +44 -0
  49. special_tokens_map.json +24 -0
  50. tokenizer.model +3 -0
README.md CHANGED
@@ -1,3 +1,154 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: openlm-research/open_llama_3b_v2
7
+ model-index:
8
+ - name: outputs/lora-out
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: openlm-research/open_llama_3b_v2
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+ load_in_8bit: true
24
+ load_in_4bit: false
25
+ strict: false
26
+ push_dataset_to_hub:
27
+ datasets:
28
+ - path: teknium/GPT4-LLM-Cleaned
29
+ type: alpaca
30
+ dataset_prepared_path:
31
+ val_set_size: 0.02
32
+ adapter: lora
33
+ lora_model_dir:
34
+ sequence_len: 1024
35
+ sample_packing: true
36
+ lora_r: 8
37
+ lora_alpha: 16
38
+ lora_dropout: 0.0
39
+ lora_target_modules:
40
+ - gate_proj
41
+ - down_proj
42
+ - up_proj
43
+ - q_proj
44
+ - v_proj
45
+ - k_proj
46
+ - o_proj
47
+ lora_fan_in_fan_out:
48
+ wandb_project:
49
+ wandb_entity:
50
+ wandb_watch:
51
+ wandb_name:
52
+ wandb_log_model:
53
+ output_dir: ./outputs/lora-out
54
+ gradient_accumulation_steps: 1
55
+ micro_batch_size: 64
56
+ num_epochs: 4
57
+ optimizer: adamw_bnb_8bit
58
+ torchdistx_path:
59
+ lr_scheduler: cosine
60
+ learning_rate: 0.0002
61
+ train_on_inputs: false
62
+ group_by_length: false
63
+ bf16: false
64
+ fp16: true
65
+ tf32: false
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+ gptq_groupsize:
74
+ s2_attention:
75
+ gptq_model_v1:
76
+ warmup_steps: 20
77
+ evals_per_epoch: 4
78
+ saves_per_epoch: 1
79
+ debug:
80
+ deepspeed:
81
+ weight_decay: 0.1
82
+ fsdp:
83
+ fsdp_config:
84
+ special_tokens:
85
+ bos_token: "<s>"
86
+ eos_token: "</s>"
87
+ unk_token: "<unk>"
88
+
89
+ ```
90
+
91
+ </details><br>
92
+
93
+ # outputs/lora-out
94
+
95
+ This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset.
96
+ It achieves the following results on the evaluation set:
97
+ - Loss: 0.9697
98
+
99
+ ## Model description
100
+
101
+ More information needed
102
+
103
+ ## Intended uses & limitations
104
+
105
+ More information needed
106
+
107
+ ## Training and evaluation data
108
+
109
+ More information needed
110
+
111
+ ## Training procedure
112
+
113
+ ### Training hyperparameters
114
+
115
+ The following hyperparameters were used during training:
116
+ - learning_rate: 0.0002
117
+ - train_batch_size: 64
118
+ - eval_batch_size: 64
119
+ - seed: 42
120
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
121
+ - lr_scheduler_type: cosine
122
+ - lr_scheduler_warmup_steps: 20
123
+ - num_epochs: 4
124
+ - mixed_precision_training: Native AMP
125
+
126
+ ### Training results
127
+
128
+ | Training Loss | Epoch | Step | Validation Loss |
129
+ |:-------------:|:------:|:----:|:---------------:|
130
+ | 1.3031 | 0.0064 | 1 | 1.5004 |
131
+ | 1.1084 | 0.2548 | 40 | 1.1224 |
132
+ | 1.0912 | 0.5096 | 80 | 1.0586 |
133
+ | 1.0727 | 0.7643 | 120 | 1.0301 |
134
+ | 1.0438 | 1.0191 | 160 | 1.0126 |
135
+ | 1.0126 | 1.2484 | 200 | 1.0035 |
136
+ | 1.048 | 1.5032 | 240 | 0.9938 |
137
+ | 1.0839 | 1.7580 | 280 | 0.9859 |
138
+ | 1.0817 | 2.0127 | 320 | 0.9801 |
139
+ | 1.0115 | 2.2420 | 360 | 0.9788 |
140
+ | 1.0356 | 2.4968 | 400 | 0.9730 |
141
+ | 0.992 | 2.7516 | 440 | 0.9725 |
142
+ | 1.0219 | 3.0064 | 480 | 0.9682 |
143
+ | 0.9637 | 3.2357 | 520 | 0.9707 |
144
+ | 1.0085 | 3.4904 | 560 | 0.9698 |
145
+ | 0.9547 | 3.7452 | 600 | 0.9697 |
146
+
147
+
148
+ ### Framework versions
149
+
150
+ - PEFT 0.10.0
151
+ - Transformers 4.40.2
152
+ - Pytorch 2.1.2+cu118
153
+ - Datasets 2.19.1
154
+ - Tokenizers 0.19.1
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7375d44b826facc7d77f64e65e52effd1b224300382d2c59f31036d16039eef9
3
+ size 50982842
checkpoint-157/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-157/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-157/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e10f39be2721fc1d80a010387b31a6eaad25ab64292e1aa91ef7258e87fe99b
3
+ size 50899792
checkpoint-157/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f44d3fb92972c8902c0a8d8fc11c2fd1ad0f2f8a78309a25a2c042c68477da
3
+ size 25871492
checkpoint-157/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b3ee827a7a00012c0a116546df467feee35e70376d81a7a85b1a70eb90414d3
3
+ size 14244
checkpoint-157/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cf2f5c5a3d7f63043a6897d6edde504f6e3996de0e776b0058eec472573140c
3
+ size 1064
checkpoint-157/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-157/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-157/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }
checkpoint-157/trainer_state.json ADDED
@@ -0,0 +1,1152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 40,
6
+ "global_step": 157,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006369426751592357,
13
+ "grad_norm": 0.1806156039237976,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.3031,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006369426751592357,
20
+ "eval_loss": 1.5003942251205444,
21
+ "eval_runtime": 19.6641,
22
+ "eval_samples_per_second": 55.533,
23
+ "eval_steps_per_second": 0.915,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.012738853503184714,
28
+ "grad_norm": 0.1688886284828186,
29
+ "learning_rate": 2e-05,
30
+ "loss": 1.3305,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01910828025477707,
35
+ "grad_norm": 0.20123907923698425,
36
+ "learning_rate": 3e-05,
37
+ "loss": 1.324,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.025477707006369428,
42
+ "grad_norm": 0.18879620730876923,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.3638,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.03184713375796178,
49
+ "grad_norm": 0.20348915457725525,
50
+ "learning_rate": 5e-05,
51
+ "loss": 1.3686,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03821656050955414,
56
+ "grad_norm": 0.212239071726799,
57
+ "learning_rate": 6e-05,
58
+ "loss": 1.2865,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.044585987261146494,
63
+ "grad_norm": 0.19280897080898285,
64
+ "learning_rate": 7e-05,
65
+ "loss": 1.313,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.050955414012738856,
70
+ "grad_norm": 0.1767151653766632,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.3207,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.05732484076433121,
77
+ "grad_norm": 0.20014327764511108,
78
+ "learning_rate": 9e-05,
79
+ "loss": 1.3143,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.06369426751592357,
84
+ "grad_norm": 0.18035855889320374,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.252,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.07006369426751592,
91
+ "grad_norm": 0.19993054866790771,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 1.302,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07643312101910828,
98
+ "grad_norm": 0.18973341584205627,
99
+ "learning_rate": 0.00012,
100
+ "loss": 1.2608,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.08280254777070063,
105
+ "grad_norm": 0.19669465720653534,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 1.2329,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.08917197452229299,
112
+ "grad_norm": 0.1886417716741562,
113
+ "learning_rate": 0.00014,
114
+ "loss": 1.241,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.09554140127388536,
119
+ "grad_norm": 0.19076582789421082,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.2539,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.10191082802547771,
126
+ "grad_norm": 0.16027267277240753,
127
+ "learning_rate": 0.00016,
128
+ "loss": 1.2123,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10828025477707007,
133
+ "grad_norm": 0.16112814843654633,
134
+ "learning_rate": 0.00017,
135
+ "loss": 1.2465,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.11464968152866242,
140
+ "grad_norm": 0.15539830923080444,
141
+ "learning_rate": 0.00018,
142
+ "loss": 1.1717,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.12101910828025478,
147
+ "grad_norm": 0.15739695727825165,
148
+ "learning_rate": 0.00019,
149
+ "loss": 1.1412,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.12738853503184713,
154
+ "grad_norm": 0.15658576786518097,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.1731,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.1337579617834395,
161
+ "grad_norm": 0.1474328637123108,
162
+ "learning_rate": 0.00019999866506037345,
163
+ "loss": 1.2051,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.14012738853503184,
168
+ "grad_norm": 0.11234907805919647,
169
+ "learning_rate": 0.00019999466027713507,
170
+ "loss": 1.1803,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.1464968152866242,
175
+ "grad_norm": 0.1053839772939682,
176
+ "learning_rate": 0.00019998798575720776,
177
+ "loss": 1.1436,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.15286624203821655,
182
+ "grad_norm": 0.1049942821264267,
183
+ "learning_rate": 0.00019997864167879312,
184
+ "loss": 1.1881,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1592356687898089,
189
+ "grad_norm": 0.11039146035909653,
190
+ "learning_rate": 0.00019996662829136676,
191
+ "loss": 1.1528,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.16560509554140126,
196
+ "grad_norm": 0.09678228944540024,
197
+ "learning_rate": 0.0001999519459156716,
198
+ "loss": 1.1496,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.17197452229299362,
203
+ "grad_norm": 0.09857058525085449,
204
+ "learning_rate": 0.0001999345949437094,
205
+ "loss": 1.1304,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.17834394904458598,
210
+ "grad_norm": 0.10835567116737366,
211
+ "learning_rate": 0.0001999145758387301,
212
+ "loss": 1.2262,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.18471337579617833,
217
+ "grad_norm": 0.09927600622177124,
218
+ "learning_rate": 0.0001998918891352197,
219
+ "loss": 1.1382,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.1910828025477707,
224
+ "grad_norm": 0.09861327707767487,
225
+ "learning_rate": 0.00019986653543888568,
226
+ "loss": 1.1987,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.19745222929936307,
231
+ "grad_norm": 0.09174010157585144,
232
+ "learning_rate": 0.00019983851542664126,
233
+ "loss": 1.127,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.20382165605095542,
238
+ "grad_norm": 0.08863182365894318,
239
+ "learning_rate": 0.00019980782984658683,
240
+ "loss": 1.211,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.21019108280254778,
245
+ "grad_norm": 0.08810263872146606,
246
+ "learning_rate": 0.00019977447951799034,
247
+ "loss": 1.1476,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.21656050955414013,
252
+ "grad_norm": 0.08641776442527771,
253
+ "learning_rate": 0.00019973846533126533,
254
+ "loss": 1.1497,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.2229299363057325,
259
+ "grad_norm": 0.09637051075696945,
260
+ "learning_rate": 0.00019969978824794707,
261
+ "loss": 1.1471,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.22929936305732485,
266
+ "grad_norm": 0.09402573108673096,
267
+ "learning_rate": 0.000199658449300667,
268
+ "loss": 1.0976,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.2356687898089172,
273
+ "grad_norm": 0.09077832847833633,
274
+ "learning_rate": 0.00019961444959312508,
275
+ "loss": 1.1119,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.24203821656050956,
280
+ "grad_norm": 0.08864310383796692,
281
+ "learning_rate": 0.0001995677903000604,
282
+ "loss": 1.1157,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.2484076433121019,
287
+ "grad_norm": 0.09867957979440689,
288
+ "learning_rate": 0.0001995184726672197,
289
+ "loss": 1.1656,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.25477707006369427,
294
+ "grad_norm": 0.09343115240335464,
295
+ "learning_rate": 0.00019946649801132427,
296
+ "loss": 1.1084,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.25477707006369427,
301
+ "eval_loss": 1.1224156618118286,
302
+ "eval_runtime": 19.2915,
303
+ "eval_samples_per_second": 56.605,
304
+ "eval_steps_per_second": 0.933,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.2611464968152866,
309
+ "grad_norm": 0.09474795311689377,
310
+ "learning_rate": 0.00019941186772003464,
311
+ "loss": 1.1486,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.267515923566879,
316
+ "grad_norm": 0.09726471453905106,
317
+ "learning_rate": 0.00019935458325191365,
318
+ "loss": 1.1499,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.27388535031847133,
323
+ "grad_norm": 0.09273070096969604,
324
+ "learning_rate": 0.0001992946461363874,
325
+ "loss": 1.1361,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.2802547770700637,
330
+ "grad_norm": 0.10344096273183823,
331
+ "learning_rate": 0.0001992320579737045,
332
+ "loss": 1.0999,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.28662420382165604,
337
+ "grad_norm": 0.09499648213386536,
338
+ "learning_rate": 0.00019916682043489336,
339
+ "loss": 1.0919,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.2929936305732484,
344
+ "grad_norm": 0.09483088552951813,
345
+ "learning_rate": 0.00019909893526171745,
346
+ "loss": 1.0992,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.29936305732484075,
351
+ "grad_norm": 0.10382100939750671,
352
+ "learning_rate": 0.00019902840426662895,
353
+ "loss": 1.1093,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.3057324840764331,
358
+ "grad_norm": 0.10187891870737076,
359
+ "learning_rate": 0.00019895522933272028,
360
+ "loss": 1.1063,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.31210191082802546,
365
+ "grad_norm": 0.1022520437836647,
366
+ "learning_rate": 0.00019887941241367377,
367
+ "loss": 1.1095,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.3184713375796178,
372
+ "grad_norm": 0.11470162868499756,
373
+ "learning_rate": 0.00019880095553370967,
374
+ "loss": 1.0859,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.3248407643312102,
379
+ "grad_norm": 0.09845008701086044,
380
+ "learning_rate": 0.0001987198607875319,
381
+ "loss": 1.0941,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.33121019108280253,
386
+ "grad_norm": 0.1080709770321846,
387
+ "learning_rate": 0.00019863613034027224,
388
+ "loss": 1.084,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.3375796178343949,
393
+ "grad_norm": 0.11064234375953674,
394
+ "learning_rate": 0.0001985497664274326,
395
+ "loss": 1.1018,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.34394904458598724,
400
+ "grad_norm": 0.10099776834249496,
401
+ "learning_rate": 0.0001984607713548251,
402
+ "loss": 1.0881,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.3503184713375796,
407
+ "grad_norm": 0.11960357427597046,
408
+ "learning_rate": 0.0001983691474985108,
409
+ "loss": 1.0845,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.35668789808917195,
414
+ "grad_norm": 0.10840114951133728,
415
+ "learning_rate": 0.00019827489730473596,
416
+ "loss": 1.131,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.3630573248407643,
421
+ "grad_norm": 0.10177604109048843,
422
+ "learning_rate": 0.00019817802328986697,
423
+ "loss": 1.079,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.36942675159235666,
428
+ "grad_norm": 0.11752859503030777,
429
+ "learning_rate": 0.00019807852804032305,
430
+ "loss": 1.0833,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.37579617834394907,
435
+ "grad_norm": 0.11149834841489792,
436
+ "learning_rate": 0.00019797641421250725,
437
+ "loss": 1.1009,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.3821656050955414,
442
+ "grad_norm": 0.10446681827306747,
443
+ "learning_rate": 0.00019787168453273544,
444
+ "loss": 1.1211,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.3885350318471338,
449
+ "grad_norm": 0.12820479273796082,
450
+ "learning_rate": 0.00019776434179716366,
451
+ "loss": 1.1455,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.39490445859872614,
456
+ "grad_norm": 0.10011500865221024,
457
+ "learning_rate": 0.00019765438887171327,
458
+ "loss": 1.0779,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.4012738853503185,
463
+ "grad_norm": 0.11496227979660034,
464
+ "learning_rate": 0.0001975418286919947,
465
+ "loss": 1.1174,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.40764331210191085,
470
+ "grad_norm": 0.10938404500484467,
471
+ "learning_rate": 0.00019742666426322876,
472
+ "loss": 1.0576,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.4140127388535032,
477
+ "grad_norm": 0.12636032700538635,
478
+ "learning_rate": 0.0001973088986601667,
479
+ "loss": 1.083,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.42038216560509556,
484
+ "grad_norm": 0.10620423406362534,
485
+ "learning_rate": 0.00019718853502700783,
486
+ "loss": 1.0728,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.4267515923566879,
491
+ "grad_norm": 0.11206210404634476,
492
+ "learning_rate": 0.0001970655765773159,
493
+ "loss": 1.1107,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.43312101910828027,
498
+ "grad_norm": 0.12613879144191742,
499
+ "learning_rate": 0.00019694002659393305,
500
+ "loss": 1.1065,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.4394904458598726,
505
+ "grad_norm": 0.10636976361274719,
506
+ "learning_rate": 0.00019681188842889222,
507
+ "loss": 1.1192,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.445859872611465,
512
+ "grad_norm": 0.11036239564418793,
513
+ "learning_rate": 0.00019668116550332766,
514
+ "loss": 1.1362,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.45222929936305734,
519
+ "grad_norm": 0.11907072365283966,
520
+ "learning_rate": 0.0001965478613073837,
521
+ "loss": 1.1009,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.4585987261146497,
526
+ "grad_norm": 0.11267364770174026,
527
+ "learning_rate": 0.00019641197940012137,
528
+ "loss": 1.0694,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.46496815286624205,
533
+ "grad_norm": 0.10659351199865341,
534
+ "learning_rate": 0.00019627352340942353,
535
+ "loss": 1.0844,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.4713375796178344,
540
+ "grad_norm": 0.12426211684942245,
541
+ "learning_rate": 0.00019613249703189796,
542
+ "loss": 1.1203,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.47770700636942676,
547
+ "grad_norm": 0.11883872747421265,
548
+ "learning_rate": 0.00019598890403277864,
549
+ "loss": 1.0879,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.4840764331210191,
554
+ "grad_norm": 0.11355262994766235,
555
+ "learning_rate": 0.0001958427482458253,
556
+ "loss": 1.1045,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.49044585987261147,
561
+ "grad_norm": 0.11006154865026474,
562
+ "learning_rate": 0.0001956940335732209,
563
+ "loss": 1.1058,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.4968152866242038,
568
+ "grad_norm": 0.11379122734069824,
569
+ "learning_rate": 0.00019554276398546768,
570
+ "loss": 1.1224,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.5031847133757962,
575
+ "grad_norm": 0.11065732687711716,
576
+ "learning_rate": 0.000195388943521281,
577
+ "loss": 1.1033,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.5095541401273885,
582
+ "grad_norm": 0.11113402247428894,
583
+ "learning_rate": 0.00019523257628748146,
584
+ "loss": 1.0912,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.5095541401273885,
589
+ "eval_loss": 1.0586377382278442,
590
+ "eval_runtime": 19.2899,
591
+ "eval_samples_per_second": 56.61,
592
+ "eval_steps_per_second": 0.933,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.5159235668789809,
597
+ "grad_norm": 0.11783529818058014,
598
+ "learning_rate": 0.00019507366645888543,
599
+ "loss": 1.0938,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.5222929936305732,
604
+ "grad_norm": 0.12089723348617554,
605
+ "learning_rate": 0.00019491221827819347,
606
+ "loss": 1.1068,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.5286624203821656,
611
+ "grad_norm": 0.10991813987493515,
612
+ "learning_rate": 0.00019474823605587703,
613
+ "loss": 1.1393,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.535031847133758,
618
+ "grad_norm": 0.11100416630506516,
619
+ "learning_rate": 0.00019458172417006347,
620
+ "loss": 1.1081,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.5414012738853503,
625
+ "grad_norm": 0.11886284500360489,
626
+ "learning_rate": 0.00019441268706641907,
627
+ "loss": 1.1168,
628
+ "step": 85
629
+ },
630
+ {
631
+ "epoch": 0.5477707006369427,
632
+ "grad_norm": 0.11771067976951599,
633
+ "learning_rate": 0.00019424112925803039,
634
+ "loss": 1.098,
635
+ "step": 86
636
+ },
637
+ {
638
+ "epoch": 0.554140127388535,
639
+ "grad_norm": 0.11022554337978363,
640
+ "learning_rate": 0.00019406705532528374,
641
+ "loss": 1.1179,
642
+ "step": 87
643
+ },
644
+ {
645
+ "epoch": 0.5605095541401274,
646
+ "grad_norm": 0.11891311407089233,
647
+ "learning_rate": 0.00019389046991574298,
648
+ "loss": 1.0866,
649
+ "step": 88
650
+ },
651
+ {
652
+ "epoch": 0.5668789808917197,
653
+ "grad_norm": 0.11594802141189575,
654
+ "learning_rate": 0.00019371137774402527,
655
+ "loss": 1.1146,
656
+ "step": 89
657
+ },
658
+ {
659
+ "epoch": 0.5732484076433121,
660
+ "grad_norm": 0.1181577518582344,
661
+ "learning_rate": 0.0001935297835916754,
662
+ "loss": 1.1213,
663
+ "step": 90
664
+ },
665
+ {
666
+ "epoch": 0.5796178343949044,
667
+ "grad_norm": 0.10821503400802612,
668
+ "learning_rate": 0.00019334569230703794,
669
+ "loss": 1.1121,
670
+ "step": 91
671
+ },
672
+ {
673
+ "epoch": 0.5859872611464968,
674
+ "grad_norm": 0.118013896048069,
675
+ "learning_rate": 0.0001931591088051279,
676
+ "loss": 1.117,
677
+ "step": 92
678
+ },
679
+ {
680
+ "epoch": 0.5923566878980892,
681
+ "grad_norm": 0.11678043752908707,
682
+ "learning_rate": 0.0001929700380674995,
683
+ "loss": 1.0974,
684
+ "step": 93
685
+ },
686
+ {
687
+ "epoch": 0.5987261146496815,
688
+ "grad_norm": 0.11073200404644012,
689
+ "learning_rate": 0.00019277848514211317,
690
+ "loss": 1.1059,
691
+ "step": 94
692
+ },
693
+ {
694
+ "epoch": 0.6050955414012739,
695
+ "grad_norm": 0.11440474539995193,
696
+ "learning_rate": 0.00019258445514320065,
697
+ "loss": 1.0913,
698
+ "step": 95
699
+ },
700
+ {
701
+ "epoch": 0.6114649681528662,
702
+ "grad_norm": 0.11020273715257645,
703
+ "learning_rate": 0.0001923879532511287,
704
+ "loss": 1.0836,
705
+ "step": 96
706
+ },
707
+ {
708
+ "epoch": 0.6178343949044586,
709
+ "grad_norm": 0.11285867542028427,
710
+ "learning_rate": 0.0001921889847122605,
711
+ "loss": 1.0842,
712
+ "step": 97
713
+ },
714
+ {
715
+ "epoch": 0.6242038216560509,
716
+ "grad_norm": 0.11981746554374695,
717
+ "learning_rate": 0.00019198755483881583,
718
+ "loss": 1.1062,
719
+ "step": 98
720
+ },
721
+ {
722
+ "epoch": 0.6305732484076433,
723
+ "grad_norm": 0.11882256716489792,
724
+ "learning_rate": 0.0001917836690087291,
725
+ "loss": 1.1012,
726
+ "step": 99
727
+ },
728
+ {
729
+ "epoch": 0.6369426751592356,
730
+ "grad_norm": 0.11642686277627945,
731
+ "learning_rate": 0.00019157733266550575,
732
+ "loss": 1.0823,
733
+ "step": 100
734
+ },
735
+ {
736
+ "epoch": 0.643312101910828,
737
+ "grad_norm": 0.11980683356523514,
738
+ "learning_rate": 0.00019136855131807705,
739
+ "loss": 1.105,
740
+ "step": 101
741
+ },
742
+ {
743
+ "epoch": 0.6496815286624203,
744
+ "grad_norm": 0.1147085651755333,
745
+ "learning_rate": 0.0001911573305406528,
746
+ "loss": 1.0794,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.6560509554140127,
751
+ "grad_norm": 0.12037765234708786,
752
+ "learning_rate": 0.00019094367597257282,
753
+ "loss": 1.1059,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.6624203821656051,
758
+ "grad_norm": 0.12135636061429977,
759
+ "learning_rate": 0.000190727593318156,
760
+ "loss": 1.118,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 0.6687898089171974,
765
+ "grad_norm": 0.13285911083221436,
766
+ "learning_rate": 0.00019050908834654834,
767
+ "loss": 1.0817,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 0.6751592356687898,
772
+ "grad_norm": 0.11360063403844833,
773
+ "learning_rate": 0.00019028816689156878,
774
+ "loss": 1.0711,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 0.6815286624203821,
779
+ "grad_norm": 0.13178926706314087,
780
+ "learning_rate": 0.00019006483485155338,
781
+ "loss": 1.1266,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 0.6878980891719745,
786
+ "grad_norm": 0.1290571093559265,
787
+ "learning_rate": 0.0001898390981891979,
788
+ "loss": 1.0776,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 0.6942675159235668,
793
+ "grad_norm": 0.11376259475946426,
794
+ "learning_rate": 0.0001896109629313987,
795
+ "loss": 1.1026,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 0.7006369426751592,
800
+ "grad_norm": 0.12076874077320099,
801
+ "learning_rate": 0.0001893804351690917,
802
+ "loss": 1.104,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 0.7070063694267515,
807
+ "grad_norm": 0.12165362387895584,
808
+ "learning_rate": 0.0001891475210570898,
809
+ "loss": 1.0884,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 0.7133757961783439,
814
+ "grad_norm": 0.10634943842887878,
815
+ "learning_rate": 0.00018891222681391851,
816
+ "loss": 1.0844,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 0.7197452229299363,
821
+ "grad_norm": 0.11928383260965347,
822
+ "learning_rate": 0.00018867455872165008,
823
+ "loss": 1.1205,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 0.7261146496815286,
828
+ "grad_norm": 0.1243489533662796,
829
+ "learning_rate": 0.00018843452312573554,
830
+ "loss": 1.0704,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.732484076433121,
835
+ "grad_norm": 0.11439479887485504,
836
+ "learning_rate": 0.0001881921264348355,
837
+ "loss": 1.0809,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.7388535031847133,
842
+ "grad_norm": 0.1184995099902153,
843
+ "learning_rate": 0.0001879473751206489,
844
+ "loss": 1.1619,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.7452229299363057,
849
+ "grad_norm": 0.11846223473548889,
850
+ "learning_rate": 0.00018770027571774031,
851
+ "loss": 1.0835,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.7515923566878981,
856
+ "grad_norm": 0.11566226184368134,
857
+ "learning_rate": 0.00018745083482336544,
858
+ "loss": 1.0658,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.7579617834394905,
863
+ "grad_norm": 0.11553015559911728,
864
+ "learning_rate": 0.00018719905909729494,
865
+ "loss": 1.0773,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.7643312101910829,
870
+ "grad_norm": 0.13605500757694244,
871
+ "learning_rate": 0.0001869449552616367,
872
+ "loss": 1.0727,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.7643312101910829,
877
+ "eval_loss": 1.0301120281219482,
878
+ "eval_runtime": 19.2781,
879
+ "eval_samples_per_second": 56.645,
880
+ "eval_steps_per_second": 0.934,
881
+ "step": 120
882
+ },
883
+ {
884
+ "epoch": 0.7707006369426752,
885
+ "grad_norm": 0.1149601861834526,
886
+ "learning_rate": 0.00018668853010065634,
887
+ "loss": 1.0745,
888
+ "step": 121
889
+ },
890
+ {
891
+ "epoch": 0.7770700636942676,
892
+ "grad_norm": 0.11904130131006241,
893
+ "learning_rate": 0.00018642979046059593,
894
+ "loss": 1.0574,
895
+ "step": 122
896
+ },
897
+ {
898
+ "epoch": 0.7834394904458599,
899
+ "grad_norm": 0.11868870258331299,
900
+ "learning_rate": 0.00018616874324949159,
901
+ "loss": 1.0681,
902
+ "step": 123
903
+ },
904
+ {
905
+ "epoch": 0.7898089171974523,
906
+ "grad_norm": 0.11400648951530457,
907
+ "learning_rate": 0.00018590539543698854,
908
+ "loss": 1.0874,
909
+ "step": 124
910
+ },
911
+ {
912
+ "epoch": 0.7961783439490446,
913
+ "grad_norm": 0.12247481942176819,
914
+ "learning_rate": 0.0001856397540541554,
915
+ "loss": 1.0832,
916
+ "step": 125
917
+ },
918
+ {
919
+ "epoch": 0.802547770700637,
920
+ "grad_norm": 0.11855783313512802,
921
+ "learning_rate": 0.0001853718261932964,
922
+ "loss": 1.0775,
923
+ "step": 126
924
+ },
925
+ {
926
+ "epoch": 0.8089171974522293,
927
+ "grad_norm": 0.11434577405452728,
928
+ "learning_rate": 0.00018510161900776187,
929
+ "loss": 1.048,
930
+ "step": 127
931
+ },
932
+ {
933
+ "epoch": 0.8152866242038217,
934
+ "grad_norm": 0.12175115942955017,
935
+ "learning_rate": 0.00018482913971175737,
936
+ "loss": 1.0776,
937
+ "step": 128
938
+ },
939
+ {
940
+ "epoch": 0.821656050955414,
941
+ "grad_norm": 0.1237318217754364,
942
+ "learning_rate": 0.00018455439558015115,
943
+ "loss": 1.0977,
944
+ "step": 129
945
+ },
946
+ {
947
+ "epoch": 0.8280254777070064,
948
+ "grad_norm": 0.12041562050580978,
949
+ "learning_rate": 0.00018427739394827973,
950
+ "loss": 1.0477,
951
+ "step": 130
952
+ },
953
+ {
954
+ "epoch": 0.8343949044585988,
955
+ "grad_norm": 0.11855332553386688,
956
+ "learning_rate": 0.00018399814221175227,
957
+ "loss": 1.1026,
958
+ "step": 131
959
+ },
960
+ {
961
+ "epoch": 0.8407643312101911,
962
+ "grad_norm": 0.12020997703075409,
963
+ "learning_rate": 0.00018371664782625287,
964
+ "loss": 1.0484,
965
+ "step": 132
966
+ },
967
+ {
968
+ "epoch": 0.8471337579617835,
969
+ "grad_norm": 0.1116231232881546,
970
+ "learning_rate": 0.00018343291830734176,
971
+ "loss": 1.0772,
972
+ "step": 133
973
+ },
974
+ {
975
+ "epoch": 0.8535031847133758,
976
+ "grad_norm": 0.12280379235744476,
977
+ "learning_rate": 0.00018314696123025454,
978
+ "loss": 1.0829,
979
+ "step": 134
980
+ },
981
+ {
982
+ "epoch": 0.8598726114649682,
983
+ "grad_norm": 0.11589805781841278,
984
+ "learning_rate": 0.00018285878422969983,
985
+ "loss": 1.0636,
986
+ "step": 135
987
+ },
988
+ {
989
+ "epoch": 0.8662420382165605,
990
+ "grad_norm": 0.11667989194393158,
991
+ "learning_rate": 0.0001825683949996556,
992
+ "loss": 1.0783,
993
+ "step": 136
994
+ },
995
+ {
996
+ "epoch": 0.8726114649681529,
997
+ "grad_norm": 0.11666262894868851,
998
+ "learning_rate": 0.00018227580129316366,
999
+ "loss": 1.0587,
1000
+ "step": 137
1001
+ },
1002
+ {
1003
+ "epoch": 0.8789808917197452,
1004
+ "grad_norm": 0.11791834235191345,
1005
+ "learning_rate": 0.00018198101092212267,
1006
+ "loss": 1.0955,
1007
+ "step": 138
1008
+ },
1009
+ {
1010
+ "epoch": 0.8853503184713376,
1011
+ "grad_norm": 0.12023093551397324,
1012
+ "learning_rate": 0.00018168403175707954,
1013
+ "loss": 1.1133,
1014
+ "step": 139
1015
+ },
1016
+ {
1017
+ "epoch": 0.89171974522293,
1018
+ "grad_norm": 0.12082846462726593,
1019
+ "learning_rate": 0.0001813848717270195,
1020
+ "loss": 1.1083,
1021
+ "step": 140
1022
+ },
1023
+ {
1024
+ "epoch": 0.8980891719745223,
1025
+ "grad_norm": 0.1259888857603073,
1026
+ "learning_rate": 0.00018108353881915402,
1027
+ "loss": 1.0931,
1028
+ "step": 141
1029
+ },
1030
+ {
1031
+ "epoch": 0.9044585987261147,
1032
+ "grad_norm": 0.11900565028190613,
1033
+ "learning_rate": 0.00018078004107870797,
1034
+ "loss": 1.0955,
1035
+ "step": 142
1036
+ },
1037
+ {
1038
+ "epoch": 0.910828025477707,
1039
+ "grad_norm": 0.11422552168369293,
1040
+ "learning_rate": 0.00018047438660870446,
1041
+ "loss": 1.0473,
1042
+ "step": 143
1043
+ },
1044
+ {
1045
+ "epoch": 0.9171974522292994,
1046
+ "grad_norm": 0.13001863658428192,
1047
+ "learning_rate": 0.00018016658356974884,
1048
+ "loss": 1.0273,
1049
+ "step": 144
1050
+ },
1051
+ {
1052
+ "epoch": 0.9235668789808917,
1053
+ "grad_norm": 0.11941977590322495,
1054
+ "learning_rate": 0.0001798566401798106,
1055
+ "loss": 1.0774,
1056
+ "step": 145
1057
+ },
1058
+ {
1059
+ "epoch": 0.9299363057324841,
1060
+ "grad_norm": 0.12032714486122131,
1061
+ "learning_rate": 0.00017954456471400393,
1062
+ "loss": 1.1162,
1063
+ "step": 146
1064
+ },
1065
+ {
1066
+ "epoch": 0.9363057324840764,
1067
+ "grad_norm": 0.13784518837928772,
1068
+ "learning_rate": 0.00017923036550436704,
1069
+ "loss": 1.095,
1070
+ "step": 147
1071
+ },
1072
+ {
1073
+ "epoch": 0.9426751592356688,
1074
+ "grad_norm": 0.12085068970918655,
1075
+ "learning_rate": 0.00017891405093963938,
1076
+ "loss": 1.1024,
1077
+ "step": 148
1078
+ },
1079
+ {
1080
+ "epoch": 0.9490445859872612,
1081
+ "grad_norm": 0.11120469868183136,
1082
+ "learning_rate": 0.00017859562946503788,
1083
+ "loss": 1.0502,
1084
+ "step": 149
1085
+ },
1086
+ {
1087
+ "epoch": 0.9554140127388535,
1088
+ "grad_norm": 0.1275676190853119,
1089
+ "learning_rate": 0.00017827510958203147,
1090
+ "loss": 1.0875,
1091
+ "step": 150
1092
+ },
1093
+ {
1094
+ "epoch": 0.9617834394904459,
1095
+ "grad_norm": 0.13544359803199768,
1096
+ "learning_rate": 0.00017795249984811396,
1097
+ "loss": 1.0985,
1098
+ "step": 151
1099
+ },
1100
+ {
1101
+ "epoch": 0.9681528662420382,
1102
+ "grad_norm": 0.11840228736400604,
1103
+ "learning_rate": 0.00017762780887657574,
1104
+ "loss": 1.059,
1105
+ "step": 152
1106
+ },
1107
+ {
1108
+ "epoch": 0.9745222929936306,
1109
+ "grad_norm": 0.12622268497943878,
1110
+ "learning_rate": 0.0001773010453362737,
1111
+ "loss": 1.1034,
1112
+ "step": 153
1113
+ },
1114
+ {
1115
+ "epoch": 0.9808917197452229,
1116
+ "grad_norm": 0.11485569179058075,
1117
+ "learning_rate": 0.0001769722179513998,
1118
+ "loss": 1.0639,
1119
+ "step": 154
1120
+ },
1121
+ {
1122
+ "epoch": 0.9872611464968153,
1123
+ "grad_norm": 0.11948831379413605,
1124
+ "learning_rate": 0.00017664133550124815,
1125
+ "loss": 1.0635,
1126
+ "step": 155
1127
+ },
1128
+ {
1129
+ "epoch": 0.9936305732484076,
1130
+ "grad_norm": 0.1214427575469017,
1131
+ "learning_rate": 0.00017630840681998066,
1132
+ "loss": 1.1361,
1133
+ "step": 156
1134
+ },
1135
+ {
1136
+ "epoch": 1.0,
1137
+ "grad_norm": 0.11713624000549316,
1138
+ "learning_rate": 0.00017597344079639112,
1139
+ "loss": 1.0619,
1140
+ "step": 157
1141
+ }
1142
+ ],
1143
+ "logging_steps": 1,
1144
+ "max_steps": 628,
1145
+ "num_input_tokens_seen": 0,
1146
+ "num_train_epochs": 4,
1147
+ "save_steps": 157,
1148
+ "total_flos": 2.0567076783046656e+17,
1149
+ "train_batch_size": 64,
1150
+ "trial_name": null,
1151
+ "trial_params": null
1152
+ }
checkpoint-157/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3ec2d42f7297673d946070db22cc38c40ecdb7e5fb5b23a335c46b1268e0b80
3
+ size 5816
checkpoint-314/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-314/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-314/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e837612b8ff249bddd7090a09a1b5fa2a0d26b9d9c7ee29bc8bf2bafbe8dafa
3
+ size 50899792
checkpoint-314/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47125b7194d4df4a4d8b0b29e287cb06fc14d2732945312321fba445b9559170
3
+ size 25871876
checkpoint-314/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d245e05e72192c132e0f2edb6fdcae0c578c890f0fe912f17ec7b0bba2d38cc3
3
+ size 14244
checkpoint-314/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3abaf7b8569e1dde3882a96a36e4c25622fc823315cf4151ad6fe86c0a20fd
3
+ size 1064
checkpoint-314/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-314/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-314/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }
checkpoint-314/trainer_state.json ADDED
@@ -0,0 +1,2283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9745222929936306,
5
+ "eval_steps": 40,
6
+ "global_step": 314,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006369426751592357,
13
+ "grad_norm": 0.1806156039237976,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.3031,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006369426751592357,
20
+ "eval_loss": 1.5003942251205444,
21
+ "eval_runtime": 19.6641,
22
+ "eval_samples_per_second": 55.533,
23
+ "eval_steps_per_second": 0.915,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.012738853503184714,
28
+ "grad_norm": 0.1688886284828186,
29
+ "learning_rate": 2e-05,
30
+ "loss": 1.3305,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01910828025477707,
35
+ "grad_norm": 0.20123907923698425,
36
+ "learning_rate": 3e-05,
37
+ "loss": 1.324,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.025477707006369428,
42
+ "grad_norm": 0.18879620730876923,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.3638,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.03184713375796178,
49
+ "grad_norm": 0.20348915457725525,
50
+ "learning_rate": 5e-05,
51
+ "loss": 1.3686,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03821656050955414,
56
+ "grad_norm": 0.212239071726799,
57
+ "learning_rate": 6e-05,
58
+ "loss": 1.2865,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.044585987261146494,
63
+ "grad_norm": 0.19280897080898285,
64
+ "learning_rate": 7e-05,
65
+ "loss": 1.313,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.050955414012738856,
70
+ "grad_norm": 0.1767151653766632,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.3207,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.05732484076433121,
77
+ "grad_norm": 0.20014327764511108,
78
+ "learning_rate": 9e-05,
79
+ "loss": 1.3143,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.06369426751592357,
84
+ "grad_norm": 0.18035855889320374,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.252,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.07006369426751592,
91
+ "grad_norm": 0.19993054866790771,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 1.302,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07643312101910828,
98
+ "grad_norm": 0.18973341584205627,
99
+ "learning_rate": 0.00012,
100
+ "loss": 1.2608,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.08280254777070063,
105
+ "grad_norm": 0.19669465720653534,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 1.2329,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.08917197452229299,
112
+ "grad_norm": 0.1886417716741562,
113
+ "learning_rate": 0.00014,
114
+ "loss": 1.241,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.09554140127388536,
119
+ "grad_norm": 0.19076582789421082,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.2539,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.10191082802547771,
126
+ "grad_norm": 0.16027267277240753,
127
+ "learning_rate": 0.00016,
128
+ "loss": 1.2123,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10828025477707007,
133
+ "grad_norm": 0.16112814843654633,
134
+ "learning_rate": 0.00017,
135
+ "loss": 1.2465,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.11464968152866242,
140
+ "grad_norm": 0.15539830923080444,
141
+ "learning_rate": 0.00018,
142
+ "loss": 1.1717,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.12101910828025478,
147
+ "grad_norm": 0.15739695727825165,
148
+ "learning_rate": 0.00019,
149
+ "loss": 1.1412,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.12738853503184713,
154
+ "grad_norm": 0.15658576786518097,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.1731,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.1337579617834395,
161
+ "grad_norm": 0.1474328637123108,
162
+ "learning_rate": 0.00019999866506037345,
163
+ "loss": 1.2051,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.14012738853503184,
168
+ "grad_norm": 0.11234907805919647,
169
+ "learning_rate": 0.00019999466027713507,
170
+ "loss": 1.1803,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.1464968152866242,
175
+ "grad_norm": 0.1053839772939682,
176
+ "learning_rate": 0.00019998798575720776,
177
+ "loss": 1.1436,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.15286624203821655,
182
+ "grad_norm": 0.1049942821264267,
183
+ "learning_rate": 0.00019997864167879312,
184
+ "loss": 1.1881,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1592356687898089,
189
+ "grad_norm": 0.11039146035909653,
190
+ "learning_rate": 0.00019996662829136676,
191
+ "loss": 1.1528,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.16560509554140126,
196
+ "grad_norm": 0.09678228944540024,
197
+ "learning_rate": 0.0001999519459156716,
198
+ "loss": 1.1496,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.17197452229299362,
203
+ "grad_norm": 0.09857058525085449,
204
+ "learning_rate": 0.0001999345949437094,
205
+ "loss": 1.1304,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.17834394904458598,
210
+ "grad_norm": 0.10835567116737366,
211
+ "learning_rate": 0.0001999145758387301,
212
+ "loss": 1.2262,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.18471337579617833,
217
+ "grad_norm": 0.09927600622177124,
218
+ "learning_rate": 0.0001998918891352197,
219
+ "loss": 1.1382,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.1910828025477707,
224
+ "grad_norm": 0.09861327707767487,
225
+ "learning_rate": 0.00019986653543888568,
226
+ "loss": 1.1987,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.19745222929936307,
231
+ "grad_norm": 0.09174010157585144,
232
+ "learning_rate": 0.00019983851542664126,
233
+ "loss": 1.127,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.20382165605095542,
238
+ "grad_norm": 0.08863182365894318,
239
+ "learning_rate": 0.00019980782984658683,
240
+ "loss": 1.211,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.21019108280254778,
245
+ "grad_norm": 0.08810263872146606,
246
+ "learning_rate": 0.00019977447951799034,
247
+ "loss": 1.1476,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.21656050955414013,
252
+ "grad_norm": 0.08641776442527771,
253
+ "learning_rate": 0.00019973846533126533,
254
+ "loss": 1.1497,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.2229299363057325,
259
+ "grad_norm": 0.09637051075696945,
260
+ "learning_rate": 0.00019969978824794707,
261
+ "loss": 1.1471,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.22929936305732485,
266
+ "grad_norm": 0.09402573108673096,
267
+ "learning_rate": 0.000199658449300667,
268
+ "loss": 1.0976,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.2356687898089172,
273
+ "grad_norm": 0.09077832847833633,
274
+ "learning_rate": 0.00019961444959312508,
275
+ "loss": 1.1119,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.24203821656050956,
280
+ "grad_norm": 0.08864310383796692,
281
+ "learning_rate": 0.0001995677903000604,
282
+ "loss": 1.1157,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.2484076433121019,
287
+ "grad_norm": 0.09867957979440689,
288
+ "learning_rate": 0.0001995184726672197,
289
+ "loss": 1.1656,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.25477707006369427,
294
+ "grad_norm": 0.09343115240335464,
295
+ "learning_rate": 0.00019946649801132427,
296
+ "loss": 1.1084,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.25477707006369427,
301
+ "eval_loss": 1.1224156618118286,
302
+ "eval_runtime": 19.2915,
303
+ "eval_samples_per_second": 56.605,
304
+ "eval_steps_per_second": 0.933,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.2611464968152866,
309
+ "grad_norm": 0.09474795311689377,
310
+ "learning_rate": 0.00019941186772003464,
311
+ "loss": 1.1486,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.267515923566879,
316
+ "grad_norm": 0.09726471453905106,
317
+ "learning_rate": 0.00019935458325191365,
318
+ "loss": 1.1499,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.27388535031847133,
323
+ "grad_norm": 0.09273070096969604,
324
+ "learning_rate": 0.0001992946461363874,
325
+ "loss": 1.1361,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.2802547770700637,
330
+ "grad_norm": 0.10344096273183823,
331
+ "learning_rate": 0.0001992320579737045,
332
+ "loss": 1.0999,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.28662420382165604,
337
+ "grad_norm": 0.09499648213386536,
338
+ "learning_rate": 0.00019916682043489336,
339
+ "loss": 1.0919,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.2929936305732484,
344
+ "grad_norm": 0.09483088552951813,
345
+ "learning_rate": 0.00019909893526171745,
346
+ "loss": 1.0992,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.29936305732484075,
351
+ "grad_norm": 0.10382100939750671,
352
+ "learning_rate": 0.00019902840426662895,
353
+ "loss": 1.1093,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.3057324840764331,
358
+ "grad_norm": 0.10187891870737076,
359
+ "learning_rate": 0.00019895522933272028,
360
+ "loss": 1.1063,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.31210191082802546,
365
+ "grad_norm": 0.1022520437836647,
366
+ "learning_rate": 0.00019887941241367377,
367
+ "loss": 1.1095,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.3184713375796178,
372
+ "grad_norm": 0.11470162868499756,
373
+ "learning_rate": 0.00019880095553370967,
374
+ "loss": 1.0859,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.3248407643312102,
379
+ "grad_norm": 0.09845008701086044,
380
+ "learning_rate": 0.0001987198607875319,
381
+ "loss": 1.0941,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.33121019108280253,
386
+ "grad_norm": 0.1080709770321846,
387
+ "learning_rate": 0.00019863613034027224,
388
+ "loss": 1.084,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.3375796178343949,
393
+ "grad_norm": 0.11064234375953674,
394
+ "learning_rate": 0.0001985497664274326,
395
+ "loss": 1.1018,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.34394904458598724,
400
+ "grad_norm": 0.10099776834249496,
401
+ "learning_rate": 0.0001984607713548251,
402
+ "loss": 1.0881,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.3503184713375796,
407
+ "grad_norm": 0.11960357427597046,
408
+ "learning_rate": 0.0001983691474985108,
409
+ "loss": 1.0845,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.35668789808917195,
414
+ "grad_norm": 0.10840114951133728,
415
+ "learning_rate": 0.00019827489730473596,
416
+ "loss": 1.131,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.3630573248407643,
421
+ "grad_norm": 0.10177604109048843,
422
+ "learning_rate": 0.00019817802328986697,
423
+ "loss": 1.079,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.36942675159235666,
428
+ "grad_norm": 0.11752859503030777,
429
+ "learning_rate": 0.00019807852804032305,
430
+ "loss": 1.0833,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.37579617834394907,
435
+ "grad_norm": 0.11149834841489792,
436
+ "learning_rate": 0.00019797641421250725,
437
+ "loss": 1.1009,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.3821656050955414,
442
+ "grad_norm": 0.10446681827306747,
443
+ "learning_rate": 0.00019787168453273544,
444
+ "loss": 1.1211,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.3885350318471338,
449
+ "grad_norm": 0.12820479273796082,
450
+ "learning_rate": 0.00019776434179716366,
451
+ "loss": 1.1455,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.39490445859872614,
456
+ "grad_norm": 0.10011500865221024,
457
+ "learning_rate": 0.00019765438887171327,
458
+ "loss": 1.0779,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.4012738853503185,
463
+ "grad_norm": 0.11496227979660034,
464
+ "learning_rate": 0.0001975418286919947,
465
+ "loss": 1.1174,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.40764331210191085,
470
+ "grad_norm": 0.10938404500484467,
471
+ "learning_rate": 0.00019742666426322876,
472
+ "loss": 1.0576,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.4140127388535032,
477
+ "grad_norm": 0.12636032700538635,
478
+ "learning_rate": 0.0001973088986601667,
479
+ "loss": 1.083,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.42038216560509556,
484
+ "grad_norm": 0.10620423406362534,
485
+ "learning_rate": 0.00019718853502700783,
486
+ "loss": 1.0728,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.4267515923566879,
491
+ "grad_norm": 0.11206210404634476,
492
+ "learning_rate": 0.0001970655765773159,
493
+ "loss": 1.1107,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.43312101910828027,
498
+ "grad_norm": 0.12613879144191742,
499
+ "learning_rate": 0.00019694002659393305,
500
+ "loss": 1.1065,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.4394904458598726,
505
+ "grad_norm": 0.10636976361274719,
506
+ "learning_rate": 0.00019681188842889222,
507
+ "loss": 1.1192,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.445859872611465,
512
+ "grad_norm": 0.11036239564418793,
513
+ "learning_rate": 0.00019668116550332766,
514
+ "loss": 1.1362,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.45222929936305734,
519
+ "grad_norm": 0.11907072365283966,
520
+ "learning_rate": 0.0001965478613073837,
521
+ "loss": 1.1009,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.4585987261146497,
526
+ "grad_norm": 0.11267364770174026,
527
+ "learning_rate": 0.00019641197940012137,
528
+ "loss": 1.0694,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.46496815286624205,
533
+ "grad_norm": 0.10659351199865341,
534
+ "learning_rate": 0.00019627352340942353,
535
+ "loss": 1.0844,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.4713375796178344,
540
+ "grad_norm": 0.12426211684942245,
541
+ "learning_rate": 0.00019613249703189796,
542
+ "loss": 1.1203,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.47770700636942676,
547
+ "grad_norm": 0.11883872747421265,
548
+ "learning_rate": 0.00019598890403277864,
549
+ "loss": 1.0879,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.4840764331210191,
554
+ "grad_norm": 0.11355262994766235,
555
+ "learning_rate": 0.0001958427482458253,
556
+ "loss": 1.1045,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.49044585987261147,
561
+ "grad_norm": 0.11006154865026474,
562
+ "learning_rate": 0.0001956940335732209,
563
+ "loss": 1.1058,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.4968152866242038,
568
+ "grad_norm": 0.11379122734069824,
569
+ "learning_rate": 0.00019554276398546768,
570
+ "loss": 1.1224,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.5031847133757962,
575
+ "grad_norm": 0.11065732687711716,
576
+ "learning_rate": 0.000195388943521281,
577
+ "loss": 1.1033,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.5095541401273885,
582
+ "grad_norm": 0.11113402247428894,
583
+ "learning_rate": 0.00019523257628748146,
584
+ "loss": 1.0912,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.5095541401273885,
589
+ "eval_loss": 1.0586377382278442,
590
+ "eval_runtime": 19.2899,
591
+ "eval_samples_per_second": 56.61,
592
+ "eval_steps_per_second": 0.933,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.5159235668789809,
597
+ "grad_norm": 0.11783529818058014,
598
+ "learning_rate": 0.00019507366645888543,
599
+ "loss": 1.0938,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.5222929936305732,
604
+ "grad_norm": 0.12089723348617554,
605
+ "learning_rate": 0.00019491221827819347,
606
+ "loss": 1.1068,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.5286624203821656,
611
+ "grad_norm": 0.10991813987493515,
612
+ "learning_rate": 0.00019474823605587703,
613
+ "loss": 1.1393,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.535031847133758,
618
+ "grad_norm": 0.11100416630506516,
619
+ "learning_rate": 0.00019458172417006347,
620
+ "loss": 1.1081,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.5414012738853503,
625
+ "grad_norm": 0.11886284500360489,
626
+ "learning_rate": 0.00019441268706641907,
627
+ "loss": 1.1168,
628
+ "step": 85
629
+ },
630
+ {
631
+ "epoch": 0.5477707006369427,
632
+ "grad_norm": 0.11771067976951599,
633
+ "learning_rate": 0.00019424112925803039,
634
+ "loss": 1.098,
635
+ "step": 86
636
+ },
637
+ {
638
+ "epoch": 0.554140127388535,
639
+ "grad_norm": 0.11022554337978363,
640
+ "learning_rate": 0.00019406705532528374,
641
+ "loss": 1.1179,
642
+ "step": 87
643
+ },
644
+ {
645
+ "epoch": 0.5605095541401274,
646
+ "grad_norm": 0.11891311407089233,
647
+ "learning_rate": 0.00019389046991574298,
648
+ "loss": 1.0866,
649
+ "step": 88
650
+ },
651
+ {
652
+ "epoch": 0.5668789808917197,
653
+ "grad_norm": 0.11594802141189575,
654
+ "learning_rate": 0.00019371137774402527,
655
+ "loss": 1.1146,
656
+ "step": 89
657
+ },
658
+ {
659
+ "epoch": 0.5732484076433121,
660
+ "grad_norm": 0.1181577518582344,
661
+ "learning_rate": 0.0001935297835916754,
662
+ "loss": 1.1213,
663
+ "step": 90
664
+ },
665
+ {
666
+ "epoch": 0.5796178343949044,
667
+ "grad_norm": 0.10821503400802612,
668
+ "learning_rate": 0.00019334569230703794,
669
+ "loss": 1.1121,
670
+ "step": 91
671
+ },
672
+ {
673
+ "epoch": 0.5859872611464968,
674
+ "grad_norm": 0.118013896048069,
675
+ "learning_rate": 0.0001931591088051279,
676
+ "loss": 1.117,
677
+ "step": 92
678
+ },
679
+ {
680
+ "epoch": 0.5923566878980892,
681
+ "grad_norm": 0.11678043752908707,
682
+ "learning_rate": 0.0001929700380674995,
683
+ "loss": 1.0974,
684
+ "step": 93
685
+ },
686
+ {
687
+ "epoch": 0.5987261146496815,
688
+ "grad_norm": 0.11073200404644012,
689
+ "learning_rate": 0.00019277848514211317,
690
+ "loss": 1.1059,
691
+ "step": 94
692
+ },
693
+ {
694
+ "epoch": 0.6050955414012739,
695
+ "grad_norm": 0.11440474539995193,
696
+ "learning_rate": 0.00019258445514320065,
697
+ "loss": 1.0913,
698
+ "step": 95
699
+ },
700
+ {
701
+ "epoch": 0.6114649681528662,
702
+ "grad_norm": 0.11020273715257645,
703
+ "learning_rate": 0.0001923879532511287,
704
+ "loss": 1.0836,
705
+ "step": 96
706
+ },
707
+ {
708
+ "epoch": 0.6178343949044586,
709
+ "grad_norm": 0.11285867542028427,
710
+ "learning_rate": 0.0001921889847122605,
711
+ "loss": 1.0842,
712
+ "step": 97
713
+ },
714
+ {
715
+ "epoch": 0.6242038216560509,
716
+ "grad_norm": 0.11981746554374695,
717
+ "learning_rate": 0.00019198755483881583,
718
+ "loss": 1.1062,
719
+ "step": 98
720
+ },
721
+ {
722
+ "epoch": 0.6305732484076433,
723
+ "grad_norm": 0.11882256716489792,
724
+ "learning_rate": 0.0001917836690087291,
725
+ "loss": 1.1012,
726
+ "step": 99
727
+ },
728
+ {
729
+ "epoch": 0.6369426751592356,
730
+ "grad_norm": 0.11642686277627945,
731
+ "learning_rate": 0.00019157733266550575,
732
+ "loss": 1.0823,
733
+ "step": 100
734
+ },
735
+ {
736
+ "epoch": 0.643312101910828,
737
+ "grad_norm": 0.11980683356523514,
738
+ "learning_rate": 0.00019136855131807705,
739
+ "loss": 1.105,
740
+ "step": 101
741
+ },
742
+ {
743
+ "epoch": 0.6496815286624203,
744
+ "grad_norm": 0.1147085651755333,
745
+ "learning_rate": 0.0001911573305406528,
746
+ "loss": 1.0794,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.6560509554140127,
751
+ "grad_norm": 0.12037765234708786,
752
+ "learning_rate": 0.00019094367597257282,
753
+ "loss": 1.1059,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.6624203821656051,
758
+ "grad_norm": 0.12135636061429977,
759
+ "learning_rate": 0.000190727593318156,
760
+ "loss": 1.118,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 0.6687898089171974,
765
+ "grad_norm": 0.13285911083221436,
766
+ "learning_rate": 0.00019050908834654834,
767
+ "loss": 1.0817,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 0.6751592356687898,
772
+ "grad_norm": 0.11360063403844833,
773
+ "learning_rate": 0.00019028816689156878,
774
+ "loss": 1.0711,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 0.6815286624203821,
779
+ "grad_norm": 0.13178926706314087,
780
+ "learning_rate": 0.00019006483485155338,
781
+ "loss": 1.1266,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 0.6878980891719745,
786
+ "grad_norm": 0.1290571093559265,
787
+ "learning_rate": 0.0001898390981891979,
788
+ "loss": 1.0776,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 0.6942675159235668,
793
+ "grad_norm": 0.11376259475946426,
794
+ "learning_rate": 0.0001896109629313987,
795
+ "loss": 1.1026,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 0.7006369426751592,
800
+ "grad_norm": 0.12076874077320099,
801
+ "learning_rate": 0.0001893804351690917,
802
+ "loss": 1.104,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 0.7070063694267515,
807
+ "grad_norm": 0.12165362387895584,
808
+ "learning_rate": 0.0001891475210570898,
809
+ "loss": 1.0884,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 0.7133757961783439,
814
+ "grad_norm": 0.10634943842887878,
815
+ "learning_rate": 0.00018891222681391851,
816
+ "loss": 1.0844,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 0.7197452229299363,
821
+ "grad_norm": 0.11928383260965347,
822
+ "learning_rate": 0.00018867455872165008,
823
+ "loss": 1.1205,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 0.7261146496815286,
828
+ "grad_norm": 0.1243489533662796,
829
+ "learning_rate": 0.00018843452312573554,
830
+ "loss": 1.0704,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.732484076433121,
835
+ "grad_norm": 0.11439479887485504,
836
+ "learning_rate": 0.0001881921264348355,
837
+ "loss": 1.0809,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.7388535031847133,
842
+ "grad_norm": 0.1184995099902153,
843
+ "learning_rate": 0.0001879473751206489,
844
+ "loss": 1.1619,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.7452229299363057,
849
+ "grad_norm": 0.11846223473548889,
850
+ "learning_rate": 0.00018770027571774031,
851
+ "loss": 1.0835,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.7515923566878981,
856
+ "grad_norm": 0.11566226184368134,
857
+ "learning_rate": 0.00018745083482336544,
858
+ "loss": 1.0658,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.7579617834394905,
863
+ "grad_norm": 0.11553015559911728,
864
+ "learning_rate": 0.00018719905909729494,
865
+ "loss": 1.0773,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.7643312101910829,
870
+ "grad_norm": 0.13605500757694244,
871
+ "learning_rate": 0.0001869449552616367,
872
+ "loss": 1.0727,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.7643312101910829,
877
+ "eval_loss": 1.0301120281219482,
878
+ "eval_runtime": 19.2781,
879
+ "eval_samples_per_second": 56.645,
880
+ "eval_steps_per_second": 0.934,
881
+ "step": 120
882
+ },
883
+ {
884
+ "epoch": 0.7707006369426752,
885
+ "grad_norm": 0.1149601861834526,
886
+ "learning_rate": 0.00018668853010065634,
887
+ "loss": 1.0745,
888
+ "step": 121
889
+ },
890
+ {
891
+ "epoch": 0.7770700636942676,
892
+ "grad_norm": 0.11904130131006241,
893
+ "learning_rate": 0.00018642979046059593,
894
+ "loss": 1.0574,
895
+ "step": 122
896
+ },
897
+ {
898
+ "epoch": 0.7834394904458599,
899
+ "grad_norm": 0.11868870258331299,
900
+ "learning_rate": 0.00018616874324949159,
901
+ "loss": 1.0681,
902
+ "step": 123
903
+ },
904
+ {
905
+ "epoch": 0.7898089171974523,
906
+ "grad_norm": 0.11400648951530457,
907
+ "learning_rate": 0.00018590539543698854,
908
+ "loss": 1.0874,
909
+ "step": 124
910
+ },
911
+ {
912
+ "epoch": 0.7961783439490446,
913
+ "grad_norm": 0.12247481942176819,
914
+ "learning_rate": 0.0001856397540541554,
915
+ "loss": 1.0832,
916
+ "step": 125
917
+ },
918
+ {
919
+ "epoch": 0.802547770700637,
920
+ "grad_norm": 0.11855783313512802,
921
+ "learning_rate": 0.0001853718261932964,
922
+ "loss": 1.0775,
923
+ "step": 126
924
+ },
925
+ {
926
+ "epoch": 0.8089171974522293,
927
+ "grad_norm": 0.11434577405452728,
928
+ "learning_rate": 0.00018510161900776187,
929
+ "loss": 1.048,
930
+ "step": 127
931
+ },
932
+ {
933
+ "epoch": 0.8152866242038217,
934
+ "grad_norm": 0.12175115942955017,
935
+ "learning_rate": 0.00018482913971175737,
936
+ "loss": 1.0776,
937
+ "step": 128
938
+ },
939
+ {
940
+ "epoch": 0.821656050955414,
941
+ "grad_norm": 0.1237318217754364,
942
+ "learning_rate": 0.00018455439558015115,
943
+ "loss": 1.0977,
944
+ "step": 129
945
+ },
946
+ {
947
+ "epoch": 0.8280254777070064,
948
+ "grad_norm": 0.12041562050580978,
949
+ "learning_rate": 0.00018427739394827973,
950
+ "loss": 1.0477,
951
+ "step": 130
952
+ },
953
+ {
954
+ "epoch": 0.8343949044585988,
955
+ "grad_norm": 0.11855332553386688,
956
+ "learning_rate": 0.00018399814221175227,
957
+ "loss": 1.1026,
958
+ "step": 131
959
+ },
960
+ {
961
+ "epoch": 0.8407643312101911,
962
+ "grad_norm": 0.12020997703075409,
963
+ "learning_rate": 0.00018371664782625287,
964
+ "loss": 1.0484,
965
+ "step": 132
966
+ },
967
+ {
968
+ "epoch": 0.8471337579617835,
969
+ "grad_norm": 0.1116231232881546,
970
+ "learning_rate": 0.00018343291830734176,
971
+ "loss": 1.0772,
972
+ "step": 133
973
+ },
974
+ {
975
+ "epoch": 0.8535031847133758,
976
+ "grad_norm": 0.12280379235744476,
977
+ "learning_rate": 0.00018314696123025454,
978
+ "loss": 1.0829,
979
+ "step": 134
980
+ },
981
+ {
982
+ "epoch": 0.8598726114649682,
983
+ "grad_norm": 0.11589805781841278,
984
+ "learning_rate": 0.00018285878422969983,
985
+ "loss": 1.0636,
986
+ "step": 135
987
+ },
988
+ {
989
+ "epoch": 0.8662420382165605,
990
+ "grad_norm": 0.11667989194393158,
991
+ "learning_rate": 0.0001825683949996556,
992
+ "loss": 1.0783,
993
+ "step": 136
994
+ },
995
+ {
996
+ "epoch": 0.8726114649681529,
997
+ "grad_norm": 0.11666262894868851,
998
+ "learning_rate": 0.00018227580129316366,
999
+ "loss": 1.0587,
1000
+ "step": 137
1001
+ },
1002
+ {
1003
+ "epoch": 0.8789808917197452,
1004
+ "grad_norm": 0.11791834235191345,
1005
+ "learning_rate": 0.00018198101092212267,
1006
+ "loss": 1.0955,
1007
+ "step": 138
1008
+ },
1009
+ {
1010
+ "epoch": 0.8853503184713376,
1011
+ "grad_norm": 0.12023093551397324,
1012
+ "learning_rate": 0.00018168403175707954,
1013
+ "loss": 1.1133,
1014
+ "step": 139
1015
+ },
1016
+ {
1017
+ "epoch": 0.89171974522293,
1018
+ "grad_norm": 0.12082846462726593,
1019
+ "learning_rate": 0.0001813848717270195,
1020
+ "loss": 1.1083,
1021
+ "step": 140
1022
+ },
1023
+ {
1024
+ "epoch": 0.8980891719745223,
1025
+ "grad_norm": 0.1259888857603073,
1026
+ "learning_rate": 0.00018108353881915402,
1027
+ "loss": 1.0931,
1028
+ "step": 141
1029
+ },
1030
+ {
1031
+ "epoch": 0.9044585987261147,
1032
+ "grad_norm": 0.11900565028190613,
1033
+ "learning_rate": 0.00018078004107870797,
1034
+ "loss": 1.0955,
1035
+ "step": 142
1036
+ },
1037
+ {
1038
+ "epoch": 0.910828025477707,
1039
+ "grad_norm": 0.11422552168369293,
1040
+ "learning_rate": 0.00018047438660870446,
1041
+ "loss": 1.0473,
1042
+ "step": 143
1043
+ },
1044
+ {
1045
+ "epoch": 0.9171974522292994,
1046
+ "grad_norm": 0.13001863658428192,
1047
+ "learning_rate": 0.00018016658356974884,
1048
+ "loss": 1.0273,
1049
+ "step": 144
1050
+ },
1051
+ {
1052
+ "epoch": 0.9235668789808917,
1053
+ "grad_norm": 0.11941977590322495,
1054
+ "learning_rate": 0.0001798566401798106,
1055
+ "loss": 1.0774,
1056
+ "step": 145
1057
+ },
1058
+ {
1059
+ "epoch": 0.9299363057324841,
1060
+ "grad_norm": 0.12032714486122131,
1061
+ "learning_rate": 0.00017954456471400393,
1062
+ "loss": 1.1162,
1063
+ "step": 146
1064
+ },
1065
+ {
1066
+ "epoch": 0.9363057324840764,
1067
+ "grad_norm": 0.13784518837928772,
1068
+ "learning_rate": 0.00017923036550436704,
1069
+ "loss": 1.095,
1070
+ "step": 147
1071
+ },
1072
+ {
1073
+ "epoch": 0.9426751592356688,
1074
+ "grad_norm": 0.12085068970918655,
1075
+ "learning_rate": 0.00017891405093963938,
1076
+ "loss": 1.1024,
1077
+ "step": 148
1078
+ },
1079
+ {
1080
+ "epoch": 0.9490445859872612,
1081
+ "grad_norm": 0.11120469868183136,
1082
+ "learning_rate": 0.00017859562946503788,
1083
+ "loss": 1.0502,
1084
+ "step": 149
1085
+ },
1086
+ {
1087
+ "epoch": 0.9554140127388535,
1088
+ "grad_norm": 0.1275676190853119,
1089
+ "learning_rate": 0.00017827510958203147,
1090
+ "loss": 1.0875,
1091
+ "step": 150
1092
+ },
1093
+ {
1094
+ "epoch": 0.9617834394904459,
1095
+ "grad_norm": 0.13544359803199768,
1096
+ "learning_rate": 0.00017795249984811396,
1097
+ "loss": 1.0985,
1098
+ "step": 151
1099
+ },
1100
+ {
1101
+ "epoch": 0.9681528662420382,
1102
+ "grad_norm": 0.11840228736400604,
1103
+ "learning_rate": 0.00017762780887657574,
1104
+ "loss": 1.059,
1105
+ "step": 152
1106
+ },
1107
+ {
1108
+ "epoch": 0.9745222929936306,
1109
+ "grad_norm": 0.12622268497943878,
1110
+ "learning_rate": 0.0001773010453362737,
1111
+ "loss": 1.1034,
1112
+ "step": 153
1113
+ },
1114
+ {
1115
+ "epoch": 0.9808917197452229,
1116
+ "grad_norm": 0.11485569179058075,
1117
+ "learning_rate": 0.0001769722179513998,
1118
+ "loss": 1.0639,
1119
+ "step": 154
1120
+ },
1121
+ {
1122
+ "epoch": 0.9872611464968153,
1123
+ "grad_norm": 0.11948831379413605,
1124
+ "learning_rate": 0.00017664133550124815,
1125
+ "loss": 1.0635,
1126
+ "step": 155
1127
+ },
1128
+ {
1129
+ "epoch": 0.9936305732484076,
1130
+ "grad_norm": 0.1214427575469017,
1131
+ "learning_rate": 0.00017630840681998066,
1132
+ "loss": 1.1361,
1133
+ "step": 156
1134
+ },
1135
+ {
1136
+ "epoch": 1.0,
1137
+ "grad_norm": 0.11713624000549316,
1138
+ "learning_rate": 0.00017597344079639112,
1139
+ "loss": 1.0619,
1140
+ "step": 157
1141
+ },
1142
+ {
1143
+ "epoch": 1.0063694267515924,
1144
+ "grad_norm": 0.11573248356580734,
1145
+ "learning_rate": 0.00017563644637366788,
1146
+ "loss": 1.1141,
1147
+ "step": 158
1148
+ },
1149
+ {
1150
+ "epoch": 1.0127388535031847,
1151
+ "grad_norm": 0.11592724919319153,
1152
+ "learning_rate": 0.00017529743254915512,
1153
+ "loss": 1.0569,
1154
+ "step": 159
1155
+ },
1156
+ {
1157
+ "epoch": 1.019108280254777,
1158
+ "grad_norm": 0.12063013017177582,
1159
+ "learning_rate": 0.0001749564083741126,
1160
+ "loss": 1.0438,
1161
+ "step": 160
1162
+ },
1163
+ {
1164
+ "epoch": 1.019108280254777,
1165
+ "eval_loss": 1.012627124786377,
1166
+ "eval_runtime": 19.2811,
1167
+ "eval_samples_per_second": 56.636,
1168
+ "eval_steps_per_second": 0.934,
1169
+ "step": 160
1170
+ },
1171
+ {
1172
+ "epoch": 1.0254777070063694,
1173
+ "grad_norm": 1.0452429056167603,
1174
+ "learning_rate": 0.00017461338295347406,
1175
+ "loss": 1.1776,
1176
+ "step": 161
1177
+ },
1178
+ {
1179
+ "epoch": 1.0063694267515924,
1180
+ "grad_norm": 0.13684259355068207,
1181
+ "learning_rate": 0.000174268365445604,
1182
+ "loss": 1.0491,
1183
+ "step": 162
1184
+ },
1185
+ {
1186
+ "epoch": 1.0127388535031847,
1187
+ "grad_norm": 0.13602878153324127,
1188
+ "learning_rate": 0.0001739213650620533,
1189
+ "loss": 1.0311,
1190
+ "step": 163
1191
+ },
1192
+ {
1193
+ "epoch": 1.019108280254777,
1194
+ "grad_norm": 0.1506141573190689,
1195
+ "learning_rate": 0.00017357239106731317,
1196
+ "loss": 1.0233,
1197
+ "step": 164
1198
+ },
1199
+ {
1200
+ "epoch": 1.0254777070063694,
1201
+ "grad_norm": 0.13961653411388397,
1202
+ "learning_rate": 0.00017322145277856794,
1203
+ "loss": 1.0515,
1204
+ "step": 165
1205
+ },
1206
+ {
1207
+ "epoch": 1.0318471337579618,
1208
+ "grad_norm": 0.12875933945178986,
1209
+ "learning_rate": 0.00017286855956544613,
1210
+ "loss": 1.0643,
1211
+ "step": 166
1212
+ },
1213
+ {
1214
+ "epoch": 1.0382165605095541,
1215
+ "grad_norm": 0.13839364051818848,
1216
+ "learning_rate": 0.0001725137208497705,
1217
+ "loss": 1.0853,
1218
+ "step": 167
1219
+ },
1220
+ {
1221
+ "epoch": 1.0445859872611465,
1222
+ "grad_norm": 0.1401708722114563,
1223
+ "learning_rate": 0.0001721569461053062,
1224
+ "loss": 1.0608,
1225
+ "step": 168
1226
+ },
1227
+ {
1228
+ "epoch": 1.0509554140127388,
1229
+ "grad_norm": 0.13666324317455292,
1230
+ "learning_rate": 0.0001717982448575082,
1231
+ "loss": 1.0186,
1232
+ "step": 169
1233
+ },
1234
+ {
1235
+ "epoch": 1.0573248407643312,
1236
+ "grad_norm": 0.13511985540390015,
1237
+ "learning_rate": 0.00017143762668326667,
1238
+ "loss": 1.0775,
1239
+ "step": 170
1240
+ },
1241
+ {
1242
+ "epoch": 1.0636942675159236,
1243
+ "grad_norm": 0.13401229679584503,
1244
+ "learning_rate": 0.00017107510121065138,
1245
+ "loss": 1.0587,
1246
+ "step": 171
1247
+ },
1248
+ {
1249
+ "epoch": 1.070063694267516,
1250
+ "grad_norm": 0.13937029242515564,
1251
+ "learning_rate": 0.00017071067811865476,
1252
+ "loss": 1.0655,
1253
+ "step": 172
1254
+ },
1255
+ {
1256
+ "epoch": 1.0764331210191083,
1257
+ "grad_norm": 0.13978822529315948,
1258
+ "learning_rate": 0.0001703443671369333,
1259
+ "loss": 1.0417,
1260
+ "step": 173
1261
+ },
1262
+ {
1263
+ "epoch": 1.0828025477707006,
1264
+ "grad_norm": 0.1328263282775879,
1265
+ "learning_rate": 0.00016997617804554796,
1266
+ "loss": 1.0609,
1267
+ "step": 174
1268
+ },
1269
+ {
1270
+ "epoch": 1.089171974522293,
1271
+ "grad_norm": 0.13478587567806244,
1272
+ "learning_rate": 0.00016960612067470288,
1273
+ "loss": 1.0314,
1274
+ "step": 175
1275
+ },
1276
+ {
1277
+ "epoch": 1.0955414012738853,
1278
+ "grad_norm": 0.12482774257659912,
1279
+ "learning_rate": 0.00016923420490448296,
1280
+ "loss": 1.0173,
1281
+ "step": 176
1282
+ },
1283
+ {
1284
+ "epoch": 1.1019108280254777,
1285
+ "grad_norm": 0.12970109283924103,
1286
+ "learning_rate": 0.0001688604406645903,
1287
+ "loss": 1.0904,
1288
+ "step": 177
1289
+ },
1290
+ {
1291
+ "epoch": 1.10828025477707,
1292
+ "grad_norm": 0.12363622337579727,
1293
+ "learning_rate": 0.00016848483793407873,
1294
+ "loss": 1.0434,
1295
+ "step": 178
1296
+ },
1297
+ {
1298
+ "epoch": 1.1146496815286624,
1299
+ "grad_norm": 0.13114579021930695,
1300
+ "learning_rate": 0.00016810740674108764,
1301
+ "loss": 1.0456,
1302
+ "step": 179
1303
+ },
1304
+ {
1305
+ "epoch": 1.1210191082802548,
1306
+ "grad_norm": 0.13814528286457062,
1307
+ "learning_rate": 0.00016772815716257412,
1308
+ "loss": 1.0845,
1309
+ "step": 180
1310
+ },
1311
+ {
1312
+ "epoch": 1.127388535031847,
1313
+ "grad_norm": 0.12670482695102692,
1314
+ "learning_rate": 0.00016734709932404403,
1315
+ "loss": 1.0392,
1316
+ "step": 181
1317
+ },
1318
+ {
1319
+ "epoch": 1.1337579617834395,
1320
+ "grad_norm": 0.13344614207744598,
1321
+ "learning_rate": 0.00016696424339928152,
1322
+ "loss": 1.0429,
1323
+ "step": 182
1324
+ },
1325
+ {
1326
+ "epoch": 1.1401273885350318,
1327
+ "grad_norm": 0.14558671414852142,
1328
+ "learning_rate": 0.00016657959961007747,
1329
+ "loss": 1.0615,
1330
+ "step": 183
1331
+ },
1332
+ {
1333
+ "epoch": 1.1464968152866242,
1334
+ "grad_norm": 0.13091522455215454,
1335
+ "learning_rate": 0.00016619317822595667,
1336
+ "loss": 1.0816,
1337
+ "step": 184
1338
+ },
1339
+ {
1340
+ "epoch": 1.1528662420382165,
1341
+ "grad_norm": 0.1288042962551117,
1342
+ "learning_rate": 0.00016580498956390342,
1343
+ "loss": 1.0114,
1344
+ "step": 185
1345
+ },
1346
+ {
1347
+ "epoch": 1.1592356687898089,
1348
+ "grad_norm": 0.12748295068740845,
1349
+ "learning_rate": 0.00016541504398808631,
1350
+ "loss": 1.096,
1351
+ "step": 186
1352
+ },
1353
+ {
1354
+ "epoch": 1.1656050955414012,
1355
+ "grad_norm": 0.13045403361320496,
1356
+ "learning_rate": 0.00016502335190958135,
1357
+ "loss": 0.9977,
1358
+ "step": 187
1359
+ },
1360
+ {
1361
+ "epoch": 1.1719745222929936,
1362
+ "grad_norm": 0.14281457662582397,
1363
+ "learning_rate": 0.00016462992378609407,
1364
+ "loss": 1.0434,
1365
+ "step": 188
1366
+ },
1367
+ {
1368
+ "epoch": 1.178343949044586,
1369
+ "grad_norm": 0.1320338100194931,
1370
+ "learning_rate": 0.00016423477012168038,
1371
+ "loss": 1.0554,
1372
+ "step": 189
1373
+ },
1374
+ {
1375
+ "epoch": 1.1847133757961783,
1376
+ "grad_norm": 0.12324702739715576,
1377
+ "learning_rate": 0.00016383790146646588,
1378
+ "loss": 1.0416,
1379
+ "step": 190
1380
+ },
1381
+ {
1382
+ "epoch": 1.1910828025477707,
1383
+ "grad_norm": 0.1301770806312561,
1384
+ "learning_rate": 0.00016343932841636456,
1385
+ "loss": 1.0613,
1386
+ "step": 191
1387
+ },
1388
+ {
1389
+ "epoch": 1.197452229299363,
1390
+ "grad_norm": 0.14009694755077362,
1391
+ "learning_rate": 0.0001630390616127955,
1392
+ "loss": 1.0139,
1393
+ "step": 192
1394
+ },
1395
+ {
1396
+ "epoch": 1.2038216560509554,
1397
+ "grad_norm": 0.13656193017959595,
1398
+ "learning_rate": 0.00016263711174239914,
1399
+ "loss": 1.0632,
1400
+ "step": 193
1401
+ },
1402
+ {
1403
+ "epoch": 1.2101910828025477,
1404
+ "grad_norm": 0.12946204841136932,
1405
+ "learning_rate": 0.00016223348953675162,
1406
+ "loss": 1.0458,
1407
+ "step": 194
1408
+ },
1409
+ {
1410
+ "epoch": 1.21656050955414,
1411
+ "grad_norm": 0.1356847584247589,
1412
+ "learning_rate": 0.00016182820577207842,
1413
+ "loss": 1.0928,
1414
+ "step": 195
1415
+ },
1416
+ {
1417
+ "epoch": 1.2229299363057324,
1418
+ "grad_norm": 0.1389479786157608,
1419
+ "learning_rate": 0.0001614212712689668,
1420
+ "loss": 1.0577,
1421
+ "step": 196
1422
+ },
1423
+ {
1424
+ "epoch": 1.2292993630573248,
1425
+ "grad_norm": 0.1340690702199936,
1426
+ "learning_rate": 0.00016101269689207655,
1427
+ "loss": 1.0572,
1428
+ "step": 197
1429
+ },
1430
+ {
1431
+ "epoch": 1.2356687898089171,
1432
+ "grad_norm": 0.13188521564006805,
1433
+ "learning_rate": 0.00016060249354985025,
1434
+ "loss": 1.0775,
1435
+ "step": 198
1436
+ },
1437
+ {
1438
+ "epoch": 1.2420382165605095,
1439
+ "grad_norm": 0.12922795116901398,
1440
+ "learning_rate": 0.00016019067219422178,
1441
+ "loss": 1.0434,
1442
+ "step": 199
1443
+ },
1444
+ {
1445
+ "epoch": 1.2484076433121019,
1446
+ "grad_norm": 0.12612590193748474,
1447
+ "learning_rate": 0.0001597772438203241,
1448
+ "loss": 1.0126,
1449
+ "step": 200
1450
+ },
1451
+ {
1452
+ "epoch": 1.2484076433121019,
1453
+ "eval_loss": 1.00348961353302,
1454
+ "eval_runtime": 19.3163,
1455
+ "eval_samples_per_second": 56.533,
1456
+ "eval_steps_per_second": 0.932,
1457
+ "step": 200
1458
+ },
1459
+ {
1460
+ "epoch": 1.2547770700636942,
1461
+ "grad_norm": 0.1387277990579605,
1462
+ "learning_rate": 0.0001593622194661956,
1463
+ "loss": 1.0421,
1464
+ "step": 201
1465
+ },
1466
+ {
1467
+ "epoch": 1.2611464968152866,
1468
+ "grad_norm": 0.13583126664161682,
1469
+ "learning_rate": 0.00015894561021248535,
1470
+ "loss": 1.0441,
1471
+ "step": 202
1472
+ },
1473
+ {
1474
+ "epoch": 1.267515923566879,
1475
+ "grad_norm": 0.12996627390384674,
1476
+ "learning_rate": 0.00015852742718215743,
1477
+ "loss": 1.0342,
1478
+ "step": 203
1479
+ },
1480
+ {
1481
+ "epoch": 1.2738853503184713,
1482
+ "grad_norm": 0.13653862476348877,
1483
+ "learning_rate": 0.00015810768154019385,
1484
+ "loss": 1.0108,
1485
+ "step": 204
1486
+ },
1487
+ {
1488
+ "epoch": 1.2802547770700636,
1489
+ "grad_norm": 0.1289973258972168,
1490
+ "learning_rate": 0.0001576863844932963,
1491
+ "loss": 1.0523,
1492
+ "step": 205
1493
+ },
1494
+ {
1495
+ "epoch": 1.286624203821656,
1496
+ "grad_norm": 0.13348506391048431,
1497
+ "learning_rate": 0.00015726354728958736,
1498
+ "loss": 1.0564,
1499
+ "step": 206
1500
+ },
1501
+ {
1502
+ "epoch": 1.2929936305732483,
1503
+ "grad_norm": 0.12048185616731644,
1504
+ "learning_rate": 0.0001568391812183097,
1505
+ "loss": 1.0457,
1506
+ "step": 207
1507
+ },
1508
+ {
1509
+ "epoch": 1.2993630573248407,
1510
+ "grad_norm": 0.12991134822368622,
1511
+ "learning_rate": 0.00015641329760952513,
1512
+ "loss": 1.05,
1513
+ "step": 208
1514
+ },
1515
+ {
1516
+ "epoch": 1.305732484076433,
1517
+ "grad_norm": 0.13280436396598816,
1518
+ "learning_rate": 0.00015598590783381163,
1519
+ "loss": 1.0747,
1520
+ "step": 209
1521
+ },
1522
+ {
1523
+ "epoch": 1.3121019108280254,
1524
+ "grad_norm": 0.13099676370620728,
1525
+ "learning_rate": 0.00015555702330196023,
1526
+ "loss": 1.0764,
1527
+ "step": 210
1528
+ },
1529
+ {
1530
+ "epoch": 1.3184713375796178,
1531
+ "grad_norm": 0.1397230178117752,
1532
+ "learning_rate": 0.00015512665546467007,
1533
+ "loss": 1.0716,
1534
+ "step": 211
1535
+ },
1536
+ {
1537
+ "epoch": 1.3248407643312101,
1538
+ "grad_norm": 0.13324333727359772,
1539
+ "learning_rate": 0.00015469481581224272,
1540
+ "loss": 1.0926,
1541
+ "step": 212
1542
+ },
1543
+ {
1544
+ "epoch": 1.3312101910828025,
1545
+ "grad_norm": 0.1313484162092209,
1546
+ "learning_rate": 0.00015426151587427547,
1547
+ "loss": 1.0533,
1548
+ "step": 213
1549
+ },
1550
+ {
1551
+ "epoch": 1.3375796178343948,
1552
+ "grad_norm": 0.1433049589395523,
1553
+ "learning_rate": 0.00015382676721935345,
1554
+ "loss": 1.055,
1555
+ "step": 214
1556
+ },
1557
+ {
1558
+ "epoch": 1.3439490445859872,
1559
+ "grad_norm": 0.1309911012649536,
1560
+ "learning_rate": 0.00015339058145474085,
1561
+ "loss": 1.0536,
1562
+ "step": 215
1563
+ },
1564
+ {
1565
+ "epoch": 1.3503184713375795,
1566
+ "grad_norm": 0.13482902944087982,
1567
+ "learning_rate": 0.00015295297022607088,
1568
+ "loss": 1.0176,
1569
+ "step": 216
1570
+ },
1571
+ {
1572
+ "epoch": 1.356687898089172,
1573
+ "grad_norm": 0.13102853298187256,
1574
+ "learning_rate": 0.00015251394521703494,
1575
+ "loss": 1.0849,
1576
+ "step": 217
1577
+ },
1578
+ {
1579
+ "epoch": 1.3630573248407643,
1580
+ "grad_norm": 0.13901150226593018,
1581
+ "learning_rate": 0.00015207351814907068,
1582
+ "loss": 1.0452,
1583
+ "step": 218
1584
+ },
1585
+ {
1586
+ "epoch": 1.3694267515923566,
1587
+ "grad_norm": 0.13824929296970367,
1588
+ "learning_rate": 0.000151631700781049,
1589
+ "loss": 1.0083,
1590
+ "step": 219
1591
+ },
1592
+ {
1593
+ "epoch": 1.3757961783439492,
1594
+ "grad_norm": 0.1309863179922104,
1595
+ "learning_rate": 0.00015118850490896012,
1596
+ "loss": 1.0517,
1597
+ "step": 220
1598
+ },
1599
+ {
1600
+ "epoch": 1.3821656050955413,
1601
+ "grad_norm": 0.1359570473432541,
1602
+ "learning_rate": 0.0001507439423655987,
1603
+ "loss": 1.0452,
1604
+ "step": 221
1605
+ },
1606
+ {
1607
+ "epoch": 1.388535031847134,
1608
+ "grad_norm": 0.13473795354366302,
1609
+ "learning_rate": 0.00015029802502024788,
1610
+ "loss": 1.0234,
1611
+ "step": 222
1612
+ },
1613
+ {
1614
+ "epoch": 1.394904458598726,
1615
+ "grad_norm": 0.13787756860256195,
1616
+ "learning_rate": 0.0001498507647783623,
1617
+ "loss": 1.0811,
1618
+ "step": 223
1619
+ },
1620
+ {
1621
+ "epoch": 1.4012738853503186,
1622
+ "grad_norm": 0.1334763914346695,
1623
+ "learning_rate": 0.00014940217358125042,
1624
+ "loss": 1.0363,
1625
+ "step": 224
1626
+ },
1627
+ {
1628
+ "epoch": 1.4076433121019107,
1629
+ "grad_norm": 0.13535600900650024,
1630
+ "learning_rate": 0.0001489522634057555,
1631
+ "loss": 1.059,
1632
+ "step": 225
1633
+ },
1634
+ {
1635
+ "epoch": 1.4140127388535033,
1636
+ "grad_norm": 0.1335124969482422,
1637
+ "learning_rate": 0.00014850104626393598,
1638
+ "loss": 1.0602,
1639
+ "step": 226
1640
+ },
1641
+ {
1642
+ "epoch": 1.4203821656050954,
1643
+ "grad_norm": 0.13075490295886993,
1644
+ "learning_rate": 0.00014804853420274472,
1645
+ "loss": 1.0344,
1646
+ "step": 227
1647
+ },
1648
+ {
1649
+ "epoch": 1.426751592356688,
1650
+ "grad_norm": 0.13887614011764526,
1651
+ "learning_rate": 0.00014759473930370736,
1652
+ "loss": 1.0728,
1653
+ "step": 228
1654
+ },
1655
+ {
1656
+ "epoch": 1.4331210191082802,
1657
+ "grad_norm": 0.12808558344841003,
1658
+ "learning_rate": 0.0001471396736825998,
1659
+ "loss": 1.0158,
1660
+ "step": 229
1661
+ },
1662
+ {
1663
+ "epoch": 1.4394904458598727,
1664
+ "grad_norm": 0.1339128464460373,
1665
+ "learning_rate": 0.00014668334948912453,
1666
+ "loss": 1.0647,
1667
+ "step": 230
1668
+ },
1669
+ {
1670
+ "epoch": 1.4458598726114649,
1671
+ "grad_norm": 0.13178490102291107,
1672
+ "learning_rate": 0.00014622577890658665,
1673
+ "loss": 1.0684,
1674
+ "step": 231
1675
+ },
1676
+ {
1677
+ "epoch": 1.4522292993630574,
1678
+ "grad_norm": 0.13547855615615845,
1679
+ "learning_rate": 0.00014576697415156817,
1680
+ "loss": 1.0712,
1681
+ "step": 232
1682
+ },
1683
+ {
1684
+ "epoch": 1.4585987261146496,
1685
+ "grad_norm": 0.13795921206474304,
1686
+ "learning_rate": 0.00014530694747360204,
1687
+ "loss": 1.0776,
1688
+ "step": 233
1689
+ },
1690
+ {
1691
+ "epoch": 1.4649681528662422,
1692
+ "grad_norm": 0.13771343231201172,
1693
+ "learning_rate": 0.00014484571115484508,
1694
+ "loss": 1.0517,
1695
+ "step": 234
1696
+ },
1697
+ {
1698
+ "epoch": 1.4713375796178343,
1699
+ "grad_norm": 0.13231024146080017,
1700
+ "learning_rate": 0.0001443832775097501,
1701
+ "loss": 1.0776,
1702
+ "step": 235
1703
+ },
1704
+ {
1705
+ "epoch": 1.4777070063694269,
1706
+ "grad_norm": 0.1319817453622818,
1707
+ "learning_rate": 0.00014391965888473703,
1708
+ "loss": 1.0494,
1709
+ "step": 236
1710
+ },
1711
+ {
1712
+ "epoch": 1.484076433121019,
1713
+ "grad_norm": 0.13426139950752258,
1714
+ "learning_rate": 0.0001434548676578634,
1715
+ "loss": 1.001,
1716
+ "step": 237
1717
+ },
1718
+ {
1719
+ "epoch": 1.4904458598726116,
1720
+ "grad_norm": 0.13087789714336395,
1721
+ "learning_rate": 0.0001429889162384937,
1722
+ "loss": 1.0588,
1723
+ "step": 238
1724
+ },
1725
+ {
1726
+ "epoch": 1.4968152866242037,
1727
+ "grad_norm": 0.13652274012565613,
1728
+ "learning_rate": 0.00014252181706696817,
1729
+ "loss": 1.0124,
1730
+ "step": 239
1731
+ },
1732
+ {
1733
+ "epoch": 1.5031847133757963,
1734
+ "grad_norm": 0.13933531939983368,
1735
+ "learning_rate": 0.00014205358261427074,
1736
+ "loss": 1.048,
1737
+ "step": 240
1738
+ },
1739
+ {
1740
+ "epoch": 1.5031847133757963,
1741
+ "eval_loss": 0.9937697052955627,
1742
+ "eval_runtime": 19.2892,
1743
+ "eval_samples_per_second": 56.612,
1744
+ "eval_steps_per_second": 0.933,
1745
+ "step": 240
1746
+ },
1747
+ {
1748
+ "epoch": 1.5095541401273884,
1749
+ "grad_norm": 0.13970831036567688,
1750
+ "learning_rate": 0.00014158422538169596,
1751
+ "loss": 1.0433,
1752
+ "step": 241
1753
+ },
1754
+ {
1755
+ "epoch": 1.515923566878981,
1756
+ "grad_norm": 0.13193373382091522,
1757
+ "learning_rate": 0.0001411137579005151,
1758
+ "loss": 1.0726,
1759
+ "step": 242
1760
+ },
1761
+ {
1762
+ "epoch": 1.5222929936305731,
1763
+ "grad_norm": 0.14291027188301086,
1764
+ "learning_rate": 0.0001406421927316419,
1765
+ "loss": 1.0825,
1766
+ "step": 243
1767
+ },
1768
+ {
1769
+ "epoch": 1.5286624203821657,
1770
+ "grad_norm": 0.14268159866333008,
1771
+ "learning_rate": 0.00014016954246529696,
1772
+ "loss": 1.0887,
1773
+ "step": 244
1774
+ },
1775
+ {
1776
+ "epoch": 1.5350318471337578,
1777
+ "grad_norm": 0.13607299327850342,
1778
+ "learning_rate": 0.00013969581972067164,
1779
+ "loss": 1.0644,
1780
+ "step": 245
1781
+ },
1782
+ {
1783
+ "epoch": 1.5414012738853504,
1784
+ "grad_norm": 0.13732877373695374,
1785
+ "learning_rate": 0.0001392210371455913,
1786
+ "loss": 1.0339,
1787
+ "step": 246
1788
+ },
1789
+ {
1790
+ "epoch": 1.5477707006369426,
1791
+ "grad_norm": 0.13315479457378387,
1792
+ "learning_rate": 0.00013874520741617735,
1793
+ "loss": 1.0284,
1794
+ "step": 247
1795
+ },
1796
+ {
1797
+ "epoch": 1.5541401273885351,
1798
+ "grad_norm": 0.13376399874687195,
1799
+ "learning_rate": 0.000138268343236509,
1800
+ "loss": 1.0279,
1801
+ "step": 248
1802
+ },
1803
+ {
1804
+ "epoch": 1.5605095541401273,
1805
+ "grad_norm": 0.13698357343673706,
1806
+ "learning_rate": 0.00013779045733828407,
1807
+ "loss": 1.0884,
1808
+ "step": 249
1809
+ },
1810
+ {
1811
+ "epoch": 1.5668789808917198,
1812
+ "grad_norm": 0.13575707376003265,
1813
+ "learning_rate": 0.00013731156248047904,
1814
+ "loss": 1.0383,
1815
+ "step": 250
1816
+ },
1817
+ {
1818
+ "epoch": 1.573248407643312,
1819
+ "grad_norm": 0.14258643984794617,
1820
+ "learning_rate": 0.00013683167144900834,
1821
+ "loss": 1.0812,
1822
+ "step": 251
1823
+ },
1824
+ {
1825
+ "epoch": 1.5796178343949046,
1826
+ "grad_norm": 0.1422533541917801,
1827
+ "learning_rate": 0.00013635079705638298,
1828
+ "loss": 1.0259,
1829
+ "step": 252
1830
+ },
1831
+ {
1832
+ "epoch": 1.5859872611464967,
1833
+ "grad_norm": 0.13875292241573334,
1834
+ "learning_rate": 0.00013586895214136874,
1835
+ "loss": 1.0507,
1836
+ "step": 253
1837
+ },
1838
+ {
1839
+ "epoch": 1.5923566878980893,
1840
+ "grad_norm": 0.1358788013458252,
1841
+ "learning_rate": 0.00013538614956864296,
1842
+ "loss": 1.066,
1843
+ "step": 254
1844
+ },
1845
+ {
1846
+ "epoch": 1.5987261146496814,
1847
+ "grad_norm": 0.13774985074996948,
1848
+ "learning_rate": 0.0001349024022284514,
1849
+ "loss": 1.0485,
1850
+ "step": 255
1851
+ },
1852
+ {
1853
+ "epoch": 1.605095541401274,
1854
+ "grad_norm": 0.13040746748447418,
1855
+ "learning_rate": 0.00013441772303626387,
1856
+ "loss": 1.0173,
1857
+ "step": 256
1858
+ },
1859
+ {
1860
+ "epoch": 1.611464968152866,
1861
+ "grad_norm": 0.1312469244003296,
1862
+ "learning_rate": 0.00013393212493242963,
1863
+ "loss": 1.0489,
1864
+ "step": 257
1865
+ },
1866
+ {
1867
+ "epoch": 1.6178343949044587,
1868
+ "grad_norm": 0.14885447919368744,
1869
+ "learning_rate": 0.00013344562088183165,
1870
+ "loss": 1.0403,
1871
+ "step": 258
1872
+ },
1873
+ {
1874
+ "epoch": 1.6242038216560508,
1875
+ "grad_norm": 0.12916652858257294,
1876
+ "learning_rate": 0.00013295822387354071,
1877
+ "loss": 1.024,
1878
+ "step": 259
1879
+ },
1880
+ {
1881
+ "epoch": 1.6305732484076434,
1882
+ "grad_norm": 0.14133484661579132,
1883
+ "learning_rate": 0.00013246994692046836,
1884
+ "loss": 1.0708,
1885
+ "step": 260
1886
+ },
1887
+ {
1888
+ "epoch": 1.6369426751592355,
1889
+ "grad_norm": 0.1382388323545456,
1890
+ "learning_rate": 0.0001319808030590197,
1891
+ "loss": 1.0245,
1892
+ "step": 261
1893
+ },
1894
+ {
1895
+ "epoch": 1.643312101910828,
1896
+ "grad_norm": 0.133922278881073,
1897
+ "learning_rate": 0.0001314908053487452,
1898
+ "loss": 1.0811,
1899
+ "step": 262
1900
+ },
1901
+ {
1902
+ "epoch": 1.6496815286624202,
1903
+ "grad_norm": 0.13291525840759277,
1904
+ "learning_rate": 0.00013099996687199203,
1905
+ "loss": 1.0158,
1906
+ "step": 263
1907
+ },
1908
+ {
1909
+ "epoch": 1.6560509554140128,
1910
+ "grad_norm": 0.13765017688274384,
1911
+ "learning_rate": 0.00013050830073355488,
1912
+ "loss": 1.051,
1913
+ "step": 264
1914
+ },
1915
+ {
1916
+ "epoch": 1.662420382165605,
1917
+ "grad_norm": 0.13831576704978943,
1918
+ "learning_rate": 0.000130015820060326,
1919
+ "loss": 1.0277,
1920
+ "step": 265
1921
+ },
1922
+ {
1923
+ "epoch": 1.6687898089171975,
1924
+ "grad_norm": 0.13770005106925964,
1925
+ "learning_rate": 0.00012952253800094468,
1926
+ "loss": 1.0982,
1927
+ "step": 266
1928
+ },
1929
+ {
1930
+ "epoch": 1.6751592356687897,
1931
+ "grad_norm": 0.13507647812366486,
1932
+ "learning_rate": 0.00012902846772544624,
1933
+ "loss": 0.9961,
1934
+ "step": 267
1935
+ },
1936
+ {
1937
+ "epoch": 1.6815286624203822,
1938
+ "grad_norm": 0.13365790247917175,
1939
+ "learning_rate": 0.00012853362242491053,
1940
+ "loss": 1.0191,
1941
+ "step": 268
1942
+ },
1943
+ {
1944
+ "epoch": 1.6878980891719744,
1945
+ "grad_norm": 0.13307291269302368,
1946
+ "learning_rate": 0.00012803801531110955,
1947
+ "loss": 1.0709,
1948
+ "step": 269
1949
+ },
1950
+ {
1951
+ "epoch": 1.694267515923567,
1952
+ "grad_norm": 0.1397312730550766,
1953
+ "learning_rate": 0.0001275416596161548,
1954
+ "loss": 1.0412,
1955
+ "step": 270
1956
+ },
1957
+ {
1958
+ "epoch": 1.700636942675159,
1959
+ "grad_norm": 0.14555448293685913,
1960
+ "learning_rate": 0.00012704456859214397,
1961
+ "loss": 1.0675,
1962
+ "step": 271
1963
+ },
1964
+ {
1965
+ "epoch": 1.7070063694267517,
1966
+ "grad_norm": 0.14011207222938538,
1967
+ "learning_rate": 0.00012654675551080724,
1968
+ "loss": 1.0632,
1969
+ "step": 272
1970
+ },
1971
+ {
1972
+ "epoch": 1.7133757961783438,
1973
+ "grad_norm": 0.14120171964168549,
1974
+ "learning_rate": 0.00012604823366315273,
1975
+ "loss": 1.0307,
1976
+ "step": 273
1977
+ },
1978
+ {
1979
+ "epoch": 1.7197452229299364,
1980
+ "grad_norm": 0.13699355721473694,
1981
+ "learning_rate": 0.00012554901635911187,
1982
+ "loss": 1.0482,
1983
+ "step": 274
1984
+ },
1985
+ {
1986
+ "epoch": 1.7261146496815285,
1987
+ "grad_norm": 0.14194992184638977,
1988
+ "learning_rate": 0.00012504911692718385,
1989
+ "loss": 1.0944,
1990
+ "step": 275
1991
+ },
1992
+ {
1993
+ "epoch": 1.732484076433121,
1994
+ "grad_norm": 0.13791659474372864,
1995
+ "learning_rate": 0.00012454854871407994,
1996
+ "loss": 1.0276,
1997
+ "step": 276
1998
+ },
1999
+ {
2000
+ "epoch": 1.7388535031847132,
2001
+ "grad_norm": 0.1348312497138977,
2002
+ "learning_rate": 0.0001240473250843669,
2003
+ "loss": 1.0388,
2004
+ "step": 277
2005
+ },
2006
+ {
2007
+ "epoch": 1.7452229299363058,
2008
+ "grad_norm": 0.13901084661483765,
2009
+ "learning_rate": 0.00012354545942011057,
2010
+ "loss": 1.0605,
2011
+ "step": 278
2012
+ },
2013
+ {
2014
+ "epoch": 1.7515923566878981,
2015
+ "grad_norm": 0.13213810324668884,
2016
+ "learning_rate": 0.00012304296512051814,
2017
+ "loss": 1.0163,
2018
+ "step": 279
2019
+ },
2020
+ {
2021
+ "epoch": 1.7579617834394905,
2022
+ "grad_norm": 0.13962963223457336,
2023
+ "learning_rate": 0.00012253985560158062,
2024
+ "loss": 1.0839,
2025
+ "step": 280
2026
+ },
2027
+ {
2028
+ "epoch": 1.7579617834394905,
2029
+ "eval_loss": 0.9859278202056885,
2030
+ "eval_runtime": 19.3296,
2031
+ "eval_samples_per_second": 56.494,
2032
+ "eval_steps_per_second": 0.931,
2033
+ "step": 280
2034
+ },
2035
+ {
2036
+ "epoch": 1.7643312101910829,
2037
+ "grad_norm": 0.13637703657150269,
2038
+ "learning_rate": 0.00012203614429571475,
2039
+ "loss": 1.0466,
2040
+ "step": 281
2041
+ },
2042
+ {
2043
+ "epoch": 1.7707006369426752,
2044
+ "grad_norm": 0.13617432117462158,
2045
+ "learning_rate": 0.00012153184465140413,
2046
+ "loss": 1.086,
2047
+ "step": 282
2048
+ },
2049
+ {
2050
+ "epoch": 1.7770700636942676,
2051
+ "grad_norm": 0.1326834112405777,
2052
+ "learning_rate": 0.00012102697013284034,
2053
+ "loss": 1.0692,
2054
+ "step": 283
2055
+ },
2056
+ {
2057
+ "epoch": 1.78343949044586,
2058
+ "grad_norm": 0.1359279453754425,
2059
+ "learning_rate": 0.00012052153421956342,
2060
+ "loss": 1.0337,
2061
+ "step": 284
2062
+ },
2063
+ {
2064
+ "epoch": 1.7898089171974523,
2065
+ "grad_norm": 0.13754823803901672,
2066
+ "learning_rate": 0.00012001555040610197,
2067
+ "loss": 1.0377,
2068
+ "step": 285
2069
+ },
2070
+ {
2071
+ "epoch": 1.7961783439490446,
2072
+ "grad_norm": 0.1381075084209442,
2073
+ "learning_rate": 0.00011950903220161285,
2074
+ "loss": 1.0311,
2075
+ "step": 286
2076
+ },
2077
+ {
2078
+ "epoch": 1.802547770700637,
2079
+ "grad_norm": 0.14102081954479218,
2080
+ "learning_rate": 0.00011900199312952047,
2081
+ "loss": 1.0645,
2082
+ "step": 287
2083
+ },
2084
+ {
2085
+ "epoch": 1.8089171974522293,
2086
+ "grad_norm": 0.14201205968856812,
2087
+ "learning_rate": 0.00011849444672715586,
2088
+ "loss": 1.043,
2089
+ "step": 288
2090
+ },
2091
+ {
2092
+ "epoch": 1.8152866242038217,
2093
+ "grad_norm": 0.13808976113796234,
2094
+ "learning_rate": 0.0001179864065453951,
2095
+ "loss": 1.0263,
2096
+ "step": 289
2097
+ },
2098
+ {
2099
+ "epoch": 1.821656050955414,
2100
+ "grad_norm": 0.13844111561775208,
2101
+ "learning_rate": 0.00011747788614829758,
2102
+ "loss": 1.0483,
2103
+ "step": 290
2104
+ },
2105
+ {
2106
+ "epoch": 1.8280254777070064,
2107
+ "grad_norm": 0.13990408182144165,
2108
+ "learning_rate": 0.00011696889911274393,
2109
+ "loss": 1.0591,
2110
+ "step": 291
2111
+ },
2112
+ {
2113
+ "epoch": 1.8343949044585988,
2114
+ "grad_norm": 0.14219453930854797,
2115
+ "learning_rate": 0.00011645945902807341,
2116
+ "loss": 1.0702,
2117
+ "step": 292
2118
+ },
2119
+ {
2120
+ "epoch": 1.8407643312101911,
2121
+ "grad_norm": 0.13736915588378906,
2122
+ "learning_rate": 0.0001159495794957211,
2123
+ "loss": 1.0457,
2124
+ "step": 293
2125
+ },
2126
+ {
2127
+ "epoch": 1.8471337579617835,
2128
+ "grad_norm": 0.1305588185787201,
2129
+ "learning_rate": 0.00011543927412885489,
2130
+ "loss": 1.0006,
2131
+ "step": 294
2132
+ },
2133
+ {
2134
+ "epoch": 1.8535031847133758,
2135
+ "grad_norm": 0.1360785961151123,
2136
+ "learning_rate": 0.0001149285565520119,
2137
+ "loss": 1.0055,
2138
+ "step": 295
2139
+ },
2140
+ {
2141
+ "epoch": 1.8598726114649682,
2142
+ "grad_norm": 0.13506443798542023,
2143
+ "learning_rate": 0.00011441744040073468,
2144
+ "loss": 1.0519,
2145
+ "step": 296
2146
+ },
2147
+ {
2148
+ "epoch": 1.8662420382165605,
2149
+ "grad_norm": 0.1369323432445526,
2150
+ "learning_rate": 0.0001139059393212074,
2151
+ "loss": 1.0547,
2152
+ "step": 297
2153
+ },
2154
+ {
2155
+ "epoch": 1.872611464968153,
2156
+ "grad_norm": 0.13333867490291595,
2157
+ "learning_rate": 0.00011339406696989128,
2158
+ "loss": 1.0537,
2159
+ "step": 298
2160
+ },
2161
+ {
2162
+ "epoch": 1.8789808917197452,
2163
+ "grad_norm": 0.13622106611728668,
2164
+ "learning_rate": 0.00011288183701315995,
2165
+ "loss": 1.0517,
2166
+ "step": 299
2167
+ },
2168
+ {
2169
+ "epoch": 1.8853503184713376,
2170
+ "grad_norm": 0.14023956656455994,
2171
+ "learning_rate": 0.00011236926312693479,
2172
+ "loss": 1.0559,
2173
+ "step": 300
2174
+ },
2175
+ {
2176
+ "epoch": 1.89171974522293,
2177
+ "grad_norm": 0.1363711655139923,
2178
+ "learning_rate": 0.00011185635899631963,
2179
+ "loss": 1.0291,
2180
+ "step": 301
2181
+ },
2182
+ {
2183
+ "epoch": 1.8980891719745223,
2184
+ "grad_norm": 0.13854017853736877,
2185
+ "learning_rate": 0.00011134313831523547,
2186
+ "loss": 1.0605,
2187
+ "step": 302
2188
+ },
2189
+ {
2190
+ "epoch": 1.9044585987261147,
2191
+ "grad_norm": 0.13852174580097198,
2192
+ "learning_rate": 0.00011082961478605475,
2193
+ "loss": 1.0553,
2194
+ "step": 303
2195
+ },
2196
+ {
2197
+ "epoch": 1.910828025477707,
2198
+ "grad_norm": 0.14662423729896545,
2199
+ "learning_rate": 0.00011031580211923571,
2200
+ "loss": 1.0619,
2201
+ "step": 304
2202
+ },
2203
+ {
2204
+ "epoch": 1.9171974522292994,
2205
+ "grad_norm": 0.14127817749977112,
2206
+ "learning_rate": 0.0001098017140329561,
2207
+ "loss": 1.0698,
2208
+ "step": 305
2209
+ },
2210
+ {
2211
+ "epoch": 1.9235668789808917,
2212
+ "grad_norm": 0.1394420862197876,
2213
+ "learning_rate": 0.00010928736425274701,
2214
+ "loss": 1.0433,
2215
+ "step": 306
2216
+ },
2217
+ {
2218
+ "epoch": 1.929936305732484,
2219
+ "grad_norm": 0.1438218653202057,
2220
+ "learning_rate": 0.00010877276651112662,
2221
+ "loss": 1.0498,
2222
+ "step": 307
2223
+ },
2224
+ {
2225
+ "epoch": 1.9363057324840764,
2226
+ "grad_norm": 0.1500382274389267,
2227
+ "learning_rate": 0.00010825793454723325,
2228
+ "loss": 1.0613,
2229
+ "step": 308
2230
+ },
2231
+ {
2232
+ "epoch": 1.9426751592356688,
2233
+ "grad_norm": 0.14135834574699402,
2234
+ "learning_rate": 0.00010774288210645862,
2235
+ "loss": 1.0435,
2236
+ "step": 309
2237
+ },
2238
+ {
2239
+ "epoch": 1.9490445859872612,
2240
+ "grad_norm": 0.1469028890132904,
2241
+ "learning_rate": 0.00010722762294008106,
2242
+ "loss": 1.0064,
2243
+ "step": 310
2244
+ },
2245
+ {
2246
+ "epoch": 1.9554140127388535,
2247
+ "grad_norm": 0.14101552963256836,
2248
+ "learning_rate": 0.00010671217080489814,
2249
+ "loss": 1.0485,
2250
+ "step": 311
2251
+ },
2252
+ {
2253
+ "epoch": 1.9617834394904459,
2254
+ "grad_norm": 0.1395803987979889,
2255
+ "learning_rate": 0.00010619653946285947,
2256
+ "loss": 1.0405,
2257
+ "step": 312
2258
+ },
2259
+ {
2260
+ "epoch": 1.9681528662420382,
2261
+ "grad_norm": 0.1441717892885208,
2262
+ "learning_rate": 0.00010568074268069928,
2263
+ "loss": 1.0183,
2264
+ "step": 313
2265
+ },
2266
+ {
2267
+ "epoch": 1.9745222929936306,
2268
+ "grad_norm": 0.14449232816696167,
2269
+ "learning_rate": 0.00010516479422956882,
2270
+ "loss": 1.035,
2271
+ "step": 314
2272
+ }
2273
+ ],
2274
+ "logging_steps": 1,
2275
+ "max_steps": 628,
2276
+ "num_input_tokens_seen": 0,
2277
+ "num_train_epochs": 4,
2278
+ "save_steps": 157,
2279
+ "total_flos": 4.1002945779695616e+17,
2280
+ "train_batch_size": 64,
2281
+ "trial_name": null,
2282
+ "trial_params": null
2283
+ }
checkpoint-314/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3ec2d42f7297673d946070db22cc38c40ecdb7e5fb5b23a335c46b1268e0b80
3
+ size 5816
checkpoint-471/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-471/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-471/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baa55b451255c83d0891283afd3e6f477219e68ea384f95f826a0f641deb0764
3
+ size 50899792
checkpoint-471/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70400a26bceece3d719fc45fa49ab8308aacf3e91467cfb7e2ad8f27c9326e80
3
+ size 25871876
checkpoint-471/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5328f04f222a66b45931d6bc246721e0747decf9d78d167903d0547a248f78f0
3
+ size 14244
checkpoint-471/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:093c4c8889f78cd7012edc9e826ff8c0bdb7f82e793242afd57bd6801520bc0c
3
+ size 1064
checkpoint-471/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-471/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-471/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }
checkpoint-471/trainer_state.json ADDED
@@ -0,0 +1,3414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.949044585987261,
5
+ "eval_steps": 40,
6
+ "global_step": 471,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006369426751592357,
13
+ "grad_norm": 0.1806156039237976,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.3031,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006369426751592357,
20
+ "eval_loss": 1.5003942251205444,
21
+ "eval_runtime": 19.6641,
22
+ "eval_samples_per_second": 55.533,
23
+ "eval_steps_per_second": 0.915,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.012738853503184714,
28
+ "grad_norm": 0.1688886284828186,
29
+ "learning_rate": 2e-05,
30
+ "loss": 1.3305,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01910828025477707,
35
+ "grad_norm": 0.20123907923698425,
36
+ "learning_rate": 3e-05,
37
+ "loss": 1.324,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.025477707006369428,
42
+ "grad_norm": 0.18879620730876923,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.3638,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.03184713375796178,
49
+ "grad_norm": 0.20348915457725525,
50
+ "learning_rate": 5e-05,
51
+ "loss": 1.3686,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.03821656050955414,
56
+ "grad_norm": 0.212239071726799,
57
+ "learning_rate": 6e-05,
58
+ "loss": 1.2865,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.044585987261146494,
63
+ "grad_norm": 0.19280897080898285,
64
+ "learning_rate": 7e-05,
65
+ "loss": 1.313,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.050955414012738856,
70
+ "grad_norm": 0.1767151653766632,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.3207,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.05732484076433121,
77
+ "grad_norm": 0.20014327764511108,
78
+ "learning_rate": 9e-05,
79
+ "loss": 1.3143,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.06369426751592357,
84
+ "grad_norm": 0.18035855889320374,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.252,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.07006369426751592,
91
+ "grad_norm": 0.19993054866790771,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 1.302,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.07643312101910828,
98
+ "grad_norm": 0.18973341584205627,
99
+ "learning_rate": 0.00012,
100
+ "loss": 1.2608,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.08280254777070063,
105
+ "grad_norm": 0.19669465720653534,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 1.2329,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.08917197452229299,
112
+ "grad_norm": 0.1886417716741562,
113
+ "learning_rate": 0.00014,
114
+ "loss": 1.241,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.09554140127388536,
119
+ "grad_norm": 0.19076582789421082,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.2539,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.10191082802547771,
126
+ "grad_norm": 0.16027267277240753,
127
+ "learning_rate": 0.00016,
128
+ "loss": 1.2123,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.10828025477707007,
133
+ "grad_norm": 0.16112814843654633,
134
+ "learning_rate": 0.00017,
135
+ "loss": 1.2465,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.11464968152866242,
140
+ "grad_norm": 0.15539830923080444,
141
+ "learning_rate": 0.00018,
142
+ "loss": 1.1717,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.12101910828025478,
147
+ "grad_norm": 0.15739695727825165,
148
+ "learning_rate": 0.00019,
149
+ "loss": 1.1412,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.12738853503184713,
154
+ "grad_norm": 0.15658576786518097,
155
+ "learning_rate": 0.0002,
156
+ "loss": 1.1731,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.1337579617834395,
161
+ "grad_norm": 0.1474328637123108,
162
+ "learning_rate": 0.00019999866506037345,
163
+ "loss": 1.2051,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.14012738853503184,
168
+ "grad_norm": 0.11234907805919647,
169
+ "learning_rate": 0.00019999466027713507,
170
+ "loss": 1.1803,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.1464968152866242,
175
+ "grad_norm": 0.1053839772939682,
176
+ "learning_rate": 0.00019998798575720776,
177
+ "loss": 1.1436,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.15286624203821655,
182
+ "grad_norm": 0.1049942821264267,
183
+ "learning_rate": 0.00019997864167879312,
184
+ "loss": 1.1881,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1592356687898089,
189
+ "grad_norm": 0.11039146035909653,
190
+ "learning_rate": 0.00019996662829136676,
191
+ "loss": 1.1528,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.16560509554140126,
196
+ "grad_norm": 0.09678228944540024,
197
+ "learning_rate": 0.0001999519459156716,
198
+ "loss": 1.1496,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.17197452229299362,
203
+ "grad_norm": 0.09857058525085449,
204
+ "learning_rate": 0.0001999345949437094,
205
+ "loss": 1.1304,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.17834394904458598,
210
+ "grad_norm": 0.10835567116737366,
211
+ "learning_rate": 0.0001999145758387301,
212
+ "loss": 1.2262,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.18471337579617833,
217
+ "grad_norm": 0.09927600622177124,
218
+ "learning_rate": 0.0001998918891352197,
219
+ "loss": 1.1382,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.1910828025477707,
224
+ "grad_norm": 0.09861327707767487,
225
+ "learning_rate": 0.00019986653543888568,
226
+ "loss": 1.1987,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.19745222929936307,
231
+ "grad_norm": 0.09174010157585144,
232
+ "learning_rate": 0.00019983851542664126,
233
+ "loss": 1.127,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.20382165605095542,
238
+ "grad_norm": 0.08863182365894318,
239
+ "learning_rate": 0.00019980782984658683,
240
+ "loss": 1.211,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.21019108280254778,
245
+ "grad_norm": 0.08810263872146606,
246
+ "learning_rate": 0.00019977447951799034,
247
+ "loss": 1.1476,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.21656050955414013,
252
+ "grad_norm": 0.08641776442527771,
253
+ "learning_rate": 0.00019973846533126533,
254
+ "loss": 1.1497,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.2229299363057325,
259
+ "grad_norm": 0.09637051075696945,
260
+ "learning_rate": 0.00019969978824794707,
261
+ "loss": 1.1471,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.22929936305732485,
266
+ "grad_norm": 0.09402573108673096,
267
+ "learning_rate": 0.000199658449300667,
268
+ "loss": 1.0976,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.2356687898089172,
273
+ "grad_norm": 0.09077832847833633,
274
+ "learning_rate": 0.00019961444959312508,
275
+ "loss": 1.1119,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.24203821656050956,
280
+ "grad_norm": 0.08864310383796692,
281
+ "learning_rate": 0.0001995677903000604,
282
+ "loss": 1.1157,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.2484076433121019,
287
+ "grad_norm": 0.09867957979440689,
288
+ "learning_rate": 0.0001995184726672197,
289
+ "loss": 1.1656,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.25477707006369427,
294
+ "grad_norm": 0.09343115240335464,
295
+ "learning_rate": 0.00019946649801132427,
296
+ "loss": 1.1084,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.25477707006369427,
301
+ "eval_loss": 1.1224156618118286,
302
+ "eval_runtime": 19.2915,
303
+ "eval_samples_per_second": 56.605,
304
+ "eval_steps_per_second": 0.933,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.2611464968152866,
309
+ "grad_norm": 0.09474795311689377,
310
+ "learning_rate": 0.00019941186772003464,
311
+ "loss": 1.1486,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.267515923566879,
316
+ "grad_norm": 0.09726471453905106,
317
+ "learning_rate": 0.00019935458325191365,
318
+ "loss": 1.1499,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.27388535031847133,
323
+ "grad_norm": 0.09273070096969604,
324
+ "learning_rate": 0.0001992946461363874,
325
+ "loss": 1.1361,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.2802547770700637,
330
+ "grad_norm": 0.10344096273183823,
331
+ "learning_rate": 0.0001992320579737045,
332
+ "loss": 1.0999,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.28662420382165604,
337
+ "grad_norm": 0.09499648213386536,
338
+ "learning_rate": 0.00019916682043489336,
339
+ "loss": 1.0919,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.2929936305732484,
344
+ "grad_norm": 0.09483088552951813,
345
+ "learning_rate": 0.00019909893526171745,
346
+ "loss": 1.0992,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.29936305732484075,
351
+ "grad_norm": 0.10382100939750671,
352
+ "learning_rate": 0.00019902840426662895,
353
+ "loss": 1.1093,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.3057324840764331,
358
+ "grad_norm": 0.10187891870737076,
359
+ "learning_rate": 0.00019895522933272028,
360
+ "loss": 1.1063,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.31210191082802546,
365
+ "grad_norm": 0.1022520437836647,
366
+ "learning_rate": 0.00019887941241367377,
367
+ "loss": 1.1095,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.3184713375796178,
372
+ "grad_norm": 0.11470162868499756,
373
+ "learning_rate": 0.00019880095553370967,
374
+ "loss": 1.0859,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.3248407643312102,
379
+ "grad_norm": 0.09845008701086044,
380
+ "learning_rate": 0.0001987198607875319,
381
+ "loss": 1.0941,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.33121019108280253,
386
+ "grad_norm": 0.1080709770321846,
387
+ "learning_rate": 0.00019863613034027224,
388
+ "loss": 1.084,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.3375796178343949,
393
+ "grad_norm": 0.11064234375953674,
394
+ "learning_rate": 0.0001985497664274326,
395
+ "loss": 1.1018,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.34394904458598724,
400
+ "grad_norm": 0.10099776834249496,
401
+ "learning_rate": 0.0001984607713548251,
402
+ "loss": 1.0881,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.3503184713375796,
407
+ "grad_norm": 0.11960357427597046,
408
+ "learning_rate": 0.0001983691474985108,
409
+ "loss": 1.0845,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.35668789808917195,
414
+ "grad_norm": 0.10840114951133728,
415
+ "learning_rate": 0.00019827489730473596,
416
+ "loss": 1.131,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.3630573248407643,
421
+ "grad_norm": 0.10177604109048843,
422
+ "learning_rate": 0.00019817802328986697,
423
+ "loss": 1.079,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.36942675159235666,
428
+ "grad_norm": 0.11752859503030777,
429
+ "learning_rate": 0.00019807852804032305,
430
+ "loss": 1.0833,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.37579617834394907,
435
+ "grad_norm": 0.11149834841489792,
436
+ "learning_rate": 0.00019797641421250725,
437
+ "loss": 1.1009,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.3821656050955414,
442
+ "grad_norm": 0.10446681827306747,
443
+ "learning_rate": 0.00019787168453273544,
444
+ "loss": 1.1211,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.3885350318471338,
449
+ "grad_norm": 0.12820479273796082,
450
+ "learning_rate": 0.00019776434179716366,
451
+ "loss": 1.1455,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.39490445859872614,
456
+ "grad_norm": 0.10011500865221024,
457
+ "learning_rate": 0.00019765438887171327,
458
+ "loss": 1.0779,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.4012738853503185,
463
+ "grad_norm": 0.11496227979660034,
464
+ "learning_rate": 0.0001975418286919947,
465
+ "loss": 1.1174,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.40764331210191085,
470
+ "grad_norm": 0.10938404500484467,
471
+ "learning_rate": 0.00019742666426322876,
472
+ "loss": 1.0576,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.4140127388535032,
477
+ "grad_norm": 0.12636032700538635,
478
+ "learning_rate": 0.0001973088986601667,
479
+ "loss": 1.083,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.42038216560509556,
484
+ "grad_norm": 0.10620423406362534,
485
+ "learning_rate": 0.00019718853502700783,
486
+ "loss": 1.0728,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.4267515923566879,
491
+ "grad_norm": 0.11206210404634476,
492
+ "learning_rate": 0.0001970655765773159,
493
+ "loss": 1.1107,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.43312101910828027,
498
+ "grad_norm": 0.12613879144191742,
499
+ "learning_rate": 0.00019694002659393305,
500
+ "loss": 1.1065,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.4394904458598726,
505
+ "grad_norm": 0.10636976361274719,
506
+ "learning_rate": 0.00019681188842889222,
507
+ "loss": 1.1192,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.445859872611465,
512
+ "grad_norm": 0.11036239564418793,
513
+ "learning_rate": 0.00019668116550332766,
514
+ "loss": 1.1362,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.45222929936305734,
519
+ "grad_norm": 0.11907072365283966,
520
+ "learning_rate": 0.0001965478613073837,
521
+ "loss": 1.1009,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.4585987261146497,
526
+ "grad_norm": 0.11267364770174026,
527
+ "learning_rate": 0.00019641197940012137,
528
+ "loss": 1.0694,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.46496815286624205,
533
+ "grad_norm": 0.10659351199865341,
534
+ "learning_rate": 0.00019627352340942353,
535
+ "loss": 1.0844,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.4713375796178344,
540
+ "grad_norm": 0.12426211684942245,
541
+ "learning_rate": 0.00019613249703189796,
542
+ "loss": 1.1203,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.47770700636942676,
547
+ "grad_norm": 0.11883872747421265,
548
+ "learning_rate": 0.00019598890403277864,
549
+ "loss": 1.0879,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.4840764331210191,
554
+ "grad_norm": 0.11355262994766235,
555
+ "learning_rate": 0.0001958427482458253,
556
+ "loss": 1.1045,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.49044585987261147,
561
+ "grad_norm": 0.11006154865026474,
562
+ "learning_rate": 0.0001956940335732209,
563
+ "loss": 1.1058,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.4968152866242038,
568
+ "grad_norm": 0.11379122734069824,
569
+ "learning_rate": 0.00019554276398546768,
570
+ "loss": 1.1224,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.5031847133757962,
575
+ "grad_norm": 0.11065732687711716,
576
+ "learning_rate": 0.000195388943521281,
577
+ "loss": 1.1033,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.5095541401273885,
582
+ "grad_norm": 0.11113402247428894,
583
+ "learning_rate": 0.00019523257628748146,
584
+ "loss": 1.0912,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.5095541401273885,
589
+ "eval_loss": 1.0586377382278442,
590
+ "eval_runtime": 19.2899,
591
+ "eval_samples_per_second": 56.61,
592
+ "eval_steps_per_second": 0.933,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.5159235668789809,
597
+ "grad_norm": 0.11783529818058014,
598
+ "learning_rate": 0.00019507366645888543,
599
+ "loss": 1.0938,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.5222929936305732,
604
+ "grad_norm": 0.12089723348617554,
605
+ "learning_rate": 0.00019491221827819347,
606
+ "loss": 1.1068,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.5286624203821656,
611
+ "grad_norm": 0.10991813987493515,
612
+ "learning_rate": 0.00019474823605587703,
613
+ "loss": 1.1393,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.535031847133758,
618
+ "grad_norm": 0.11100416630506516,
619
+ "learning_rate": 0.00019458172417006347,
620
+ "loss": 1.1081,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.5414012738853503,
625
+ "grad_norm": 0.11886284500360489,
626
+ "learning_rate": 0.00019441268706641907,
627
+ "loss": 1.1168,
628
+ "step": 85
629
+ },
630
+ {
631
+ "epoch": 0.5477707006369427,
632
+ "grad_norm": 0.11771067976951599,
633
+ "learning_rate": 0.00019424112925803039,
634
+ "loss": 1.098,
635
+ "step": 86
636
+ },
637
+ {
638
+ "epoch": 0.554140127388535,
639
+ "grad_norm": 0.11022554337978363,
640
+ "learning_rate": 0.00019406705532528374,
641
+ "loss": 1.1179,
642
+ "step": 87
643
+ },
644
+ {
645
+ "epoch": 0.5605095541401274,
646
+ "grad_norm": 0.11891311407089233,
647
+ "learning_rate": 0.00019389046991574298,
648
+ "loss": 1.0866,
649
+ "step": 88
650
+ },
651
+ {
652
+ "epoch": 0.5668789808917197,
653
+ "grad_norm": 0.11594802141189575,
654
+ "learning_rate": 0.00019371137774402527,
655
+ "loss": 1.1146,
656
+ "step": 89
657
+ },
658
+ {
659
+ "epoch": 0.5732484076433121,
660
+ "grad_norm": 0.1181577518582344,
661
+ "learning_rate": 0.0001935297835916754,
662
+ "loss": 1.1213,
663
+ "step": 90
664
+ },
665
+ {
666
+ "epoch": 0.5796178343949044,
667
+ "grad_norm": 0.10821503400802612,
668
+ "learning_rate": 0.00019334569230703794,
669
+ "loss": 1.1121,
670
+ "step": 91
671
+ },
672
+ {
673
+ "epoch": 0.5859872611464968,
674
+ "grad_norm": 0.118013896048069,
675
+ "learning_rate": 0.0001931591088051279,
676
+ "loss": 1.117,
677
+ "step": 92
678
+ },
679
+ {
680
+ "epoch": 0.5923566878980892,
681
+ "grad_norm": 0.11678043752908707,
682
+ "learning_rate": 0.0001929700380674995,
683
+ "loss": 1.0974,
684
+ "step": 93
685
+ },
686
+ {
687
+ "epoch": 0.5987261146496815,
688
+ "grad_norm": 0.11073200404644012,
689
+ "learning_rate": 0.00019277848514211317,
690
+ "loss": 1.1059,
691
+ "step": 94
692
+ },
693
+ {
694
+ "epoch": 0.6050955414012739,
695
+ "grad_norm": 0.11440474539995193,
696
+ "learning_rate": 0.00019258445514320065,
697
+ "loss": 1.0913,
698
+ "step": 95
699
+ },
700
+ {
701
+ "epoch": 0.6114649681528662,
702
+ "grad_norm": 0.11020273715257645,
703
+ "learning_rate": 0.0001923879532511287,
704
+ "loss": 1.0836,
705
+ "step": 96
706
+ },
707
+ {
708
+ "epoch": 0.6178343949044586,
709
+ "grad_norm": 0.11285867542028427,
710
+ "learning_rate": 0.0001921889847122605,
711
+ "loss": 1.0842,
712
+ "step": 97
713
+ },
714
+ {
715
+ "epoch": 0.6242038216560509,
716
+ "grad_norm": 0.11981746554374695,
717
+ "learning_rate": 0.00019198755483881583,
718
+ "loss": 1.1062,
719
+ "step": 98
720
+ },
721
+ {
722
+ "epoch": 0.6305732484076433,
723
+ "grad_norm": 0.11882256716489792,
724
+ "learning_rate": 0.0001917836690087291,
725
+ "loss": 1.1012,
726
+ "step": 99
727
+ },
728
+ {
729
+ "epoch": 0.6369426751592356,
730
+ "grad_norm": 0.11642686277627945,
731
+ "learning_rate": 0.00019157733266550575,
732
+ "loss": 1.0823,
733
+ "step": 100
734
+ },
735
+ {
736
+ "epoch": 0.643312101910828,
737
+ "grad_norm": 0.11980683356523514,
738
+ "learning_rate": 0.00019136855131807705,
739
+ "loss": 1.105,
740
+ "step": 101
741
+ },
742
+ {
743
+ "epoch": 0.6496815286624203,
744
+ "grad_norm": 0.1147085651755333,
745
+ "learning_rate": 0.0001911573305406528,
746
+ "loss": 1.0794,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.6560509554140127,
751
+ "grad_norm": 0.12037765234708786,
752
+ "learning_rate": 0.00019094367597257282,
753
+ "loss": 1.1059,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.6624203821656051,
758
+ "grad_norm": 0.12135636061429977,
759
+ "learning_rate": 0.000190727593318156,
760
+ "loss": 1.118,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 0.6687898089171974,
765
+ "grad_norm": 0.13285911083221436,
766
+ "learning_rate": 0.00019050908834654834,
767
+ "loss": 1.0817,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 0.6751592356687898,
772
+ "grad_norm": 0.11360063403844833,
773
+ "learning_rate": 0.00019028816689156878,
774
+ "loss": 1.0711,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 0.6815286624203821,
779
+ "grad_norm": 0.13178926706314087,
780
+ "learning_rate": 0.00019006483485155338,
781
+ "loss": 1.1266,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 0.6878980891719745,
786
+ "grad_norm": 0.1290571093559265,
787
+ "learning_rate": 0.0001898390981891979,
788
+ "loss": 1.0776,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 0.6942675159235668,
793
+ "grad_norm": 0.11376259475946426,
794
+ "learning_rate": 0.0001896109629313987,
795
+ "loss": 1.1026,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 0.7006369426751592,
800
+ "grad_norm": 0.12076874077320099,
801
+ "learning_rate": 0.0001893804351690917,
802
+ "loss": 1.104,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 0.7070063694267515,
807
+ "grad_norm": 0.12165362387895584,
808
+ "learning_rate": 0.0001891475210570898,
809
+ "loss": 1.0884,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 0.7133757961783439,
814
+ "grad_norm": 0.10634943842887878,
815
+ "learning_rate": 0.00018891222681391851,
816
+ "loss": 1.0844,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 0.7197452229299363,
821
+ "grad_norm": 0.11928383260965347,
822
+ "learning_rate": 0.00018867455872165008,
823
+ "loss": 1.1205,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 0.7261146496815286,
828
+ "grad_norm": 0.1243489533662796,
829
+ "learning_rate": 0.00018843452312573554,
830
+ "loss": 1.0704,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.732484076433121,
835
+ "grad_norm": 0.11439479887485504,
836
+ "learning_rate": 0.0001881921264348355,
837
+ "loss": 1.0809,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.7388535031847133,
842
+ "grad_norm": 0.1184995099902153,
843
+ "learning_rate": 0.0001879473751206489,
844
+ "loss": 1.1619,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.7452229299363057,
849
+ "grad_norm": 0.11846223473548889,
850
+ "learning_rate": 0.00018770027571774031,
851
+ "loss": 1.0835,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.7515923566878981,
856
+ "grad_norm": 0.11566226184368134,
857
+ "learning_rate": 0.00018745083482336544,
858
+ "loss": 1.0658,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.7579617834394905,
863
+ "grad_norm": 0.11553015559911728,
864
+ "learning_rate": 0.00018719905909729494,
865
+ "loss": 1.0773,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.7643312101910829,
870
+ "grad_norm": 0.13605500757694244,
871
+ "learning_rate": 0.0001869449552616367,
872
+ "loss": 1.0727,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.7643312101910829,
877
+ "eval_loss": 1.0301120281219482,
878
+ "eval_runtime": 19.2781,
879
+ "eval_samples_per_second": 56.645,
880
+ "eval_steps_per_second": 0.934,
881
+ "step": 120
882
+ },
883
+ {
884
+ "epoch": 0.7707006369426752,
885
+ "grad_norm": 0.1149601861834526,
886
+ "learning_rate": 0.00018668853010065634,
887
+ "loss": 1.0745,
888
+ "step": 121
889
+ },
890
+ {
891
+ "epoch": 0.7770700636942676,
892
+ "grad_norm": 0.11904130131006241,
893
+ "learning_rate": 0.00018642979046059593,
894
+ "loss": 1.0574,
895
+ "step": 122
896
+ },
897
+ {
898
+ "epoch": 0.7834394904458599,
899
+ "grad_norm": 0.11868870258331299,
900
+ "learning_rate": 0.00018616874324949159,
901
+ "loss": 1.0681,
902
+ "step": 123
903
+ },
904
+ {
905
+ "epoch": 0.7898089171974523,
906
+ "grad_norm": 0.11400648951530457,
907
+ "learning_rate": 0.00018590539543698854,
908
+ "loss": 1.0874,
909
+ "step": 124
910
+ },
911
+ {
912
+ "epoch": 0.7961783439490446,
913
+ "grad_norm": 0.12247481942176819,
914
+ "learning_rate": 0.0001856397540541554,
915
+ "loss": 1.0832,
916
+ "step": 125
917
+ },
918
+ {
919
+ "epoch": 0.802547770700637,
920
+ "grad_norm": 0.11855783313512802,
921
+ "learning_rate": 0.0001853718261932964,
922
+ "loss": 1.0775,
923
+ "step": 126
924
+ },
925
+ {
926
+ "epoch": 0.8089171974522293,
927
+ "grad_norm": 0.11434577405452728,
928
+ "learning_rate": 0.00018510161900776187,
929
+ "loss": 1.048,
930
+ "step": 127
931
+ },
932
+ {
933
+ "epoch": 0.8152866242038217,
934
+ "grad_norm": 0.12175115942955017,
935
+ "learning_rate": 0.00018482913971175737,
936
+ "loss": 1.0776,
937
+ "step": 128
938
+ },
939
+ {
940
+ "epoch": 0.821656050955414,
941
+ "grad_norm": 0.1237318217754364,
942
+ "learning_rate": 0.00018455439558015115,
943
+ "loss": 1.0977,
944
+ "step": 129
945
+ },
946
+ {
947
+ "epoch": 0.8280254777070064,
948
+ "grad_norm": 0.12041562050580978,
949
+ "learning_rate": 0.00018427739394827973,
950
+ "loss": 1.0477,
951
+ "step": 130
952
+ },
953
+ {
954
+ "epoch": 0.8343949044585988,
955
+ "grad_norm": 0.11855332553386688,
956
+ "learning_rate": 0.00018399814221175227,
957
+ "loss": 1.1026,
958
+ "step": 131
959
+ },
960
+ {
961
+ "epoch": 0.8407643312101911,
962
+ "grad_norm": 0.12020997703075409,
963
+ "learning_rate": 0.00018371664782625287,
964
+ "loss": 1.0484,
965
+ "step": 132
966
+ },
967
+ {
968
+ "epoch": 0.8471337579617835,
969
+ "grad_norm": 0.1116231232881546,
970
+ "learning_rate": 0.00018343291830734176,
971
+ "loss": 1.0772,
972
+ "step": 133
973
+ },
974
+ {
975
+ "epoch": 0.8535031847133758,
976
+ "grad_norm": 0.12280379235744476,
977
+ "learning_rate": 0.00018314696123025454,
978
+ "loss": 1.0829,
979
+ "step": 134
980
+ },
981
+ {
982
+ "epoch": 0.8598726114649682,
983
+ "grad_norm": 0.11589805781841278,
984
+ "learning_rate": 0.00018285878422969983,
985
+ "loss": 1.0636,
986
+ "step": 135
987
+ },
988
+ {
989
+ "epoch": 0.8662420382165605,
990
+ "grad_norm": 0.11667989194393158,
991
+ "learning_rate": 0.0001825683949996556,
992
+ "loss": 1.0783,
993
+ "step": 136
994
+ },
995
+ {
996
+ "epoch": 0.8726114649681529,
997
+ "grad_norm": 0.11666262894868851,
998
+ "learning_rate": 0.00018227580129316366,
999
+ "loss": 1.0587,
1000
+ "step": 137
1001
+ },
1002
+ {
1003
+ "epoch": 0.8789808917197452,
1004
+ "grad_norm": 0.11791834235191345,
1005
+ "learning_rate": 0.00018198101092212267,
1006
+ "loss": 1.0955,
1007
+ "step": 138
1008
+ },
1009
+ {
1010
+ "epoch": 0.8853503184713376,
1011
+ "grad_norm": 0.12023093551397324,
1012
+ "learning_rate": 0.00018168403175707954,
1013
+ "loss": 1.1133,
1014
+ "step": 139
1015
+ },
1016
+ {
1017
+ "epoch": 0.89171974522293,
1018
+ "grad_norm": 0.12082846462726593,
1019
+ "learning_rate": 0.0001813848717270195,
1020
+ "loss": 1.1083,
1021
+ "step": 140
1022
+ },
1023
+ {
1024
+ "epoch": 0.8980891719745223,
1025
+ "grad_norm": 0.1259888857603073,
1026
+ "learning_rate": 0.00018108353881915402,
1027
+ "loss": 1.0931,
1028
+ "step": 141
1029
+ },
1030
+ {
1031
+ "epoch": 0.9044585987261147,
1032
+ "grad_norm": 0.11900565028190613,
1033
+ "learning_rate": 0.00018078004107870797,
1034
+ "loss": 1.0955,
1035
+ "step": 142
1036
+ },
1037
+ {
1038
+ "epoch": 0.910828025477707,
1039
+ "grad_norm": 0.11422552168369293,
1040
+ "learning_rate": 0.00018047438660870446,
1041
+ "loss": 1.0473,
1042
+ "step": 143
1043
+ },
1044
+ {
1045
+ "epoch": 0.9171974522292994,
1046
+ "grad_norm": 0.13001863658428192,
1047
+ "learning_rate": 0.00018016658356974884,
1048
+ "loss": 1.0273,
1049
+ "step": 144
1050
+ },
1051
+ {
1052
+ "epoch": 0.9235668789808917,
1053
+ "grad_norm": 0.11941977590322495,
1054
+ "learning_rate": 0.0001798566401798106,
1055
+ "loss": 1.0774,
1056
+ "step": 145
1057
+ },
1058
+ {
1059
+ "epoch": 0.9299363057324841,
1060
+ "grad_norm": 0.12032714486122131,
1061
+ "learning_rate": 0.00017954456471400393,
1062
+ "loss": 1.1162,
1063
+ "step": 146
1064
+ },
1065
+ {
1066
+ "epoch": 0.9363057324840764,
1067
+ "grad_norm": 0.13784518837928772,
1068
+ "learning_rate": 0.00017923036550436704,
1069
+ "loss": 1.095,
1070
+ "step": 147
1071
+ },
1072
+ {
1073
+ "epoch": 0.9426751592356688,
1074
+ "grad_norm": 0.12085068970918655,
1075
+ "learning_rate": 0.00017891405093963938,
1076
+ "loss": 1.1024,
1077
+ "step": 148
1078
+ },
1079
+ {
1080
+ "epoch": 0.9490445859872612,
1081
+ "grad_norm": 0.11120469868183136,
1082
+ "learning_rate": 0.00017859562946503788,
1083
+ "loss": 1.0502,
1084
+ "step": 149
1085
+ },
1086
+ {
1087
+ "epoch": 0.9554140127388535,
1088
+ "grad_norm": 0.1275676190853119,
1089
+ "learning_rate": 0.00017827510958203147,
1090
+ "loss": 1.0875,
1091
+ "step": 150
1092
+ },
1093
+ {
1094
+ "epoch": 0.9617834394904459,
1095
+ "grad_norm": 0.13544359803199768,
1096
+ "learning_rate": 0.00017795249984811396,
1097
+ "loss": 1.0985,
1098
+ "step": 151
1099
+ },
1100
+ {
1101
+ "epoch": 0.9681528662420382,
1102
+ "grad_norm": 0.11840228736400604,
1103
+ "learning_rate": 0.00017762780887657574,
1104
+ "loss": 1.059,
1105
+ "step": 152
1106
+ },
1107
+ {
1108
+ "epoch": 0.9745222929936306,
1109
+ "grad_norm": 0.12622268497943878,
1110
+ "learning_rate": 0.0001773010453362737,
1111
+ "loss": 1.1034,
1112
+ "step": 153
1113
+ },
1114
+ {
1115
+ "epoch": 0.9808917197452229,
1116
+ "grad_norm": 0.11485569179058075,
1117
+ "learning_rate": 0.0001769722179513998,
1118
+ "loss": 1.0639,
1119
+ "step": 154
1120
+ },
1121
+ {
1122
+ "epoch": 0.9872611464968153,
1123
+ "grad_norm": 0.11948831379413605,
1124
+ "learning_rate": 0.00017664133550124815,
1125
+ "loss": 1.0635,
1126
+ "step": 155
1127
+ },
1128
+ {
1129
+ "epoch": 0.9936305732484076,
1130
+ "grad_norm": 0.1214427575469017,
1131
+ "learning_rate": 0.00017630840681998066,
1132
+ "loss": 1.1361,
1133
+ "step": 156
1134
+ },
1135
+ {
1136
+ "epoch": 1.0,
1137
+ "grad_norm": 0.11713624000549316,
1138
+ "learning_rate": 0.00017597344079639112,
1139
+ "loss": 1.0619,
1140
+ "step": 157
1141
+ },
1142
+ {
1143
+ "epoch": 1.0063694267515924,
1144
+ "grad_norm": 0.11573248356580734,
1145
+ "learning_rate": 0.00017563644637366788,
1146
+ "loss": 1.1141,
1147
+ "step": 158
1148
+ },
1149
+ {
1150
+ "epoch": 1.0127388535031847,
1151
+ "grad_norm": 0.11592724919319153,
1152
+ "learning_rate": 0.00017529743254915512,
1153
+ "loss": 1.0569,
1154
+ "step": 159
1155
+ },
1156
+ {
1157
+ "epoch": 1.019108280254777,
1158
+ "grad_norm": 0.12063013017177582,
1159
+ "learning_rate": 0.0001749564083741126,
1160
+ "loss": 1.0438,
1161
+ "step": 160
1162
+ },
1163
+ {
1164
+ "epoch": 1.019108280254777,
1165
+ "eval_loss": 1.012627124786377,
1166
+ "eval_runtime": 19.2811,
1167
+ "eval_samples_per_second": 56.636,
1168
+ "eval_steps_per_second": 0.934,
1169
+ "step": 160
1170
+ },
1171
+ {
1172
+ "epoch": 1.0254777070063694,
1173
+ "grad_norm": 1.0452429056167603,
1174
+ "learning_rate": 0.00017461338295347406,
1175
+ "loss": 1.1776,
1176
+ "step": 161
1177
+ },
1178
+ {
1179
+ "epoch": 1.0063694267515924,
1180
+ "grad_norm": 0.13684259355068207,
1181
+ "learning_rate": 0.000174268365445604,
1182
+ "loss": 1.0491,
1183
+ "step": 162
1184
+ },
1185
+ {
1186
+ "epoch": 1.0127388535031847,
1187
+ "grad_norm": 0.13602878153324127,
1188
+ "learning_rate": 0.0001739213650620533,
1189
+ "loss": 1.0311,
1190
+ "step": 163
1191
+ },
1192
+ {
1193
+ "epoch": 1.019108280254777,
1194
+ "grad_norm": 0.1506141573190689,
1195
+ "learning_rate": 0.00017357239106731317,
1196
+ "loss": 1.0233,
1197
+ "step": 164
1198
+ },
1199
+ {
1200
+ "epoch": 1.0254777070063694,
1201
+ "grad_norm": 0.13961653411388397,
1202
+ "learning_rate": 0.00017322145277856794,
1203
+ "loss": 1.0515,
1204
+ "step": 165
1205
+ },
1206
+ {
1207
+ "epoch": 1.0318471337579618,
1208
+ "grad_norm": 0.12875933945178986,
1209
+ "learning_rate": 0.00017286855956544613,
1210
+ "loss": 1.0643,
1211
+ "step": 166
1212
+ },
1213
+ {
1214
+ "epoch": 1.0382165605095541,
1215
+ "grad_norm": 0.13839364051818848,
1216
+ "learning_rate": 0.0001725137208497705,
1217
+ "loss": 1.0853,
1218
+ "step": 167
1219
+ },
1220
+ {
1221
+ "epoch": 1.0445859872611465,
1222
+ "grad_norm": 0.1401708722114563,
1223
+ "learning_rate": 0.0001721569461053062,
1224
+ "loss": 1.0608,
1225
+ "step": 168
1226
+ },
1227
+ {
1228
+ "epoch": 1.0509554140127388,
1229
+ "grad_norm": 0.13666324317455292,
1230
+ "learning_rate": 0.0001717982448575082,
1231
+ "loss": 1.0186,
1232
+ "step": 169
1233
+ },
1234
+ {
1235
+ "epoch": 1.0573248407643312,
1236
+ "grad_norm": 0.13511985540390015,
1237
+ "learning_rate": 0.00017143762668326667,
1238
+ "loss": 1.0775,
1239
+ "step": 170
1240
+ },
1241
+ {
1242
+ "epoch": 1.0636942675159236,
1243
+ "grad_norm": 0.13401229679584503,
1244
+ "learning_rate": 0.00017107510121065138,
1245
+ "loss": 1.0587,
1246
+ "step": 171
1247
+ },
1248
+ {
1249
+ "epoch": 1.070063694267516,
1250
+ "grad_norm": 0.13937029242515564,
1251
+ "learning_rate": 0.00017071067811865476,
1252
+ "loss": 1.0655,
1253
+ "step": 172
1254
+ },
1255
+ {
1256
+ "epoch": 1.0764331210191083,
1257
+ "grad_norm": 0.13978822529315948,
1258
+ "learning_rate": 0.0001703443671369333,
1259
+ "loss": 1.0417,
1260
+ "step": 173
1261
+ },
1262
+ {
1263
+ "epoch": 1.0828025477707006,
1264
+ "grad_norm": 0.1328263282775879,
1265
+ "learning_rate": 0.00016997617804554796,
1266
+ "loss": 1.0609,
1267
+ "step": 174
1268
+ },
1269
+ {
1270
+ "epoch": 1.089171974522293,
1271
+ "grad_norm": 0.13478587567806244,
1272
+ "learning_rate": 0.00016960612067470288,
1273
+ "loss": 1.0314,
1274
+ "step": 175
1275
+ },
1276
+ {
1277
+ "epoch": 1.0955414012738853,
1278
+ "grad_norm": 0.12482774257659912,
1279
+ "learning_rate": 0.00016923420490448296,
1280
+ "loss": 1.0173,
1281
+ "step": 176
1282
+ },
1283
+ {
1284
+ "epoch": 1.1019108280254777,
1285
+ "grad_norm": 0.12970109283924103,
1286
+ "learning_rate": 0.0001688604406645903,
1287
+ "loss": 1.0904,
1288
+ "step": 177
1289
+ },
1290
+ {
1291
+ "epoch": 1.10828025477707,
1292
+ "grad_norm": 0.12363622337579727,
1293
+ "learning_rate": 0.00016848483793407873,
1294
+ "loss": 1.0434,
1295
+ "step": 178
1296
+ },
1297
+ {
1298
+ "epoch": 1.1146496815286624,
1299
+ "grad_norm": 0.13114579021930695,
1300
+ "learning_rate": 0.00016810740674108764,
1301
+ "loss": 1.0456,
1302
+ "step": 179
1303
+ },
1304
+ {
1305
+ "epoch": 1.1210191082802548,
1306
+ "grad_norm": 0.13814528286457062,
1307
+ "learning_rate": 0.00016772815716257412,
1308
+ "loss": 1.0845,
1309
+ "step": 180
1310
+ },
1311
+ {
1312
+ "epoch": 1.127388535031847,
1313
+ "grad_norm": 0.12670482695102692,
1314
+ "learning_rate": 0.00016734709932404403,
1315
+ "loss": 1.0392,
1316
+ "step": 181
1317
+ },
1318
+ {
1319
+ "epoch": 1.1337579617834395,
1320
+ "grad_norm": 0.13344614207744598,
1321
+ "learning_rate": 0.00016696424339928152,
1322
+ "loss": 1.0429,
1323
+ "step": 182
1324
+ },
1325
+ {
1326
+ "epoch": 1.1401273885350318,
1327
+ "grad_norm": 0.14558671414852142,
1328
+ "learning_rate": 0.00016657959961007747,
1329
+ "loss": 1.0615,
1330
+ "step": 183
1331
+ },
1332
+ {
1333
+ "epoch": 1.1464968152866242,
1334
+ "grad_norm": 0.13091522455215454,
1335
+ "learning_rate": 0.00016619317822595667,
1336
+ "loss": 1.0816,
1337
+ "step": 184
1338
+ },
1339
+ {
1340
+ "epoch": 1.1528662420382165,
1341
+ "grad_norm": 0.1288042962551117,
1342
+ "learning_rate": 0.00016580498956390342,
1343
+ "loss": 1.0114,
1344
+ "step": 185
1345
+ },
1346
+ {
1347
+ "epoch": 1.1592356687898089,
1348
+ "grad_norm": 0.12748295068740845,
1349
+ "learning_rate": 0.00016541504398808631,
1350
+ "loss": 1.096,
1351
+ "step": 186
1352
+ },
1353
+ {
1354
+ "epoch": 1.1656050955414012,
1355
+ "grad_norm": 0.13045403361320496,
1356
+ "learning_rate": 0.00016502335190958135,
1357
+ "loss": 0.9977,
1358
+ "step": 187
1359
+ },
1360
+ {
1361
+ "epoch": 1.1719745222929936,
1362
+ "grad_norm": 0.14281457662582397,
1363
+ "learning_rate": 0.00016462992378609407,
1364
+ "loss": 1.0434,
1365
+ "step": 188
1366
+ },
1367
+ {
1368
+ "epoch": 1.178343949044586,
1369
+ "grad_norm": 0.1320338100194931,
1370
+ "learning_rate": 0.00016423477012168038,
1371
+ "loss": 1.0554,
1372
+ "step": 189
1373
+ },
1374
+ {
1375
+ "epoch": 1.1847133757961783,
1376
+ "grad_norm": 0.12324702739715576,
1377
+ "learning_rate": 0.00016383790146646588,
1378
+ "loss": 1.0416,
1379
+ "step": 190
1380
+ },
1381
+ {
1382
+ "epoch": 1.1910828025477707,
1383
+ "grad_norm": 0.1301770806312561,
1384
+ "learning_rate": 0.00016343932841636456,
1385
+ "loss": 1.0613,
1386
+ "step": 191
1387
+ },
1388
+ {
1389
+ "epoch": 1.197452229299363,
1390
+ "grad_norm": 0.14009694755077362,
1391
+ "learning_rate": 0.0001630390616127955,
1392
+ "loss": 1.0139,
1393
+ "step": 192
1394
+ },
1395
+ {
1396
+ "epoch": 1.2038216560509554,
1397
+ "grad_norm": 0.13656193017959595,
1398
+ "learning_rate": 0.00016263711174239914,
1399
+ "loss": 1.0632,
1400
+ "step": 193
1401
+ },
1402
+ {
1403
+ "epoch": 1.2101910828025477,
1404
+ "grad_norm": 0.12946204841136932,
1405
+ "learning_rate": 0.00016223348953675162,
1406
+ "loss": 1.0458,
1407
+ "step": 194
1408
+ },
1409
+ {
1410
+ "epoch": 1.21656050955414,
1411
+ "grad_norm": 0.1356847584247589,
1412
+ "learning_rate": 0.00016182820577207842,
1413
+ "loss": 1.0928,
1414
+ "step": 195
1415
+ },
1416
+ {
1417
+ "epoch": 1.2229299363057324,
1418
+ "grad_norm": 0.1389479786157608,
1419
+ "learning_rate": 0.0001614212712689668,
1420
+ "loss": 1.0577,
1421
+ "step": 196
1422
+ },
1423
+ {
1424
+ "epoch": 1.2292993630573248,
1425
+ "grad_norm": 0.1340690702199936,
1426
+ "learning_rate": 0.00016101269689207655,
1427
+ "loss": 1.0572,
1428
+ "step": 197
1429
+ },
1430
+ {
1431
+ "epoch": 1.2356687898089171,
1432
+ "grad_norm": 0.13188521564006805,
1433
+ "learning_rate": 0.00016060249354985025,
1434
+ "loss": 1.0775,
1435
+ "step": 198
1436
+ },
1437
+ {
1438
+ "epoch": 1.2420382165605095,
1439
+ "grad_norm": 0.12922795116901398,
1440
+ "learning_rate": 0.00016019067219422178,
1441
+ "loss": 1.0434,
1442
+ "step": 199
1443
+ },
1444
+ {
1445
+ "epoch": 1.2484076433121019,
1446
+ "grad_norm": 0.12612590193748474,
1447
+ "learning_rate": 0.0001597772438203241,
1448
+ "loss": 1.0126,
1449
+ "step": 200
1450
+ },
1451
+ {
1452
+ "epoch": 1.2484076433121019,
1453
+ "eval_loss": 1.00348961353302,
1454
+ "eval_runtime": 19.3163,
1455
+ "eval_samples_per_second": 56.533,
1456
+ "eval_steps_per_second": 0.932,
1457
+ "step": 200
1458
+ },
1459
+ {
1460
+ "epoch": 1.2547770700636942,
1461
+ "grad_norm": 0.1387277990579605,
1462
+ "learning_rate": 0.0001593622194661956,
1463
+ "loss": 1.0421,
1464
+ "step": 201
1465
+ },
1466
+ {
1467
+ "epoch": 1.2611464968152866,
1468
+ "grad_norm": 0.13583126664161682,
1469
+ "learning_rate": 0.00015894561021248535,
1470
+ "loss": 1.0441,
1471
+ "step": 202
1472
+ },
1473
+ {
1474
+ "epoch": 1.267515923566879,
1475
+ "grad_norm": 0.12996627390384674,
1476
+ "learning_rate": 0.00015852742718215743,
1477
+ "loss": 1.0342,
1478
+ "step": 203
1479
+ },
1480
+ {
1481
+ "epoch": 1.2738853503184713,
1482
+ "grad_norm": 0.13653862476348877,
1483
+ "learning_rate": 0.00015810768154019385,
1484
+ "loss": 1.0108,
1485
+ "step": 204
1486
+ },
1487
+ {
1488
+ "epoch": 1.2802547770700636,
1489
+ "grad_norm": 0.1289973258972168,
1490
+ "learning_rate": 0.0001576863844932963,
1491
+ "loss": 1.0523,
1492
+ "step": 205
1493
+ },
1494
+ {
1495
+ "epoch": 1.286624203821656,
1496
+ "grad_norm": 0.13348506391048431,
1497
+ "learning_rate": 0.00015726354728958736,
1498
+ "loss": 1.0564,
1499
+ "step": 206
1500
+ },
1501
+ {
1502
+ "epoch": 1.2929936305732483,
1503
+ "grad_norm": 0.12048185616731644,
1504
+ "learning_rate": 0.0001568391812183097,
1505
+ "loss": 1.0457,
1506
+ "step": 207
1507
+ },
1508
+ {
1509
+ "epoch": 1.2993630573248407,
1510
+ "grad_norm": 0.12991134822368622,
1511
+ "learning_rate": 0.00015641329760952513,
1512
+ "loss": 1.05,
1513
+ "step": 208
1514
+ },
1515
+ {
1516
+ "epoch": 1.305732484076433,
1517
+ "grad_norm": 0.13280436396598816,
1518
+ "learning_rate": 0.00015598590783381163,
1519
+ "loss": 1.0747,
1520
+ "step": 209
1521
+ },
1522
+ {
1523
+ "epoch": 1.3121019108280254,
1524
+ "grad_norm": 0.13099676370620728,
1525
+ "learning_rate": 0.00015555702330196023,
1526
+ "loss": 1.0764,
1527
+ "step": 210
1528
+ },
1529
+ {
1530
+ "epoch": 1.3184713375796178,
1531
+ "grad_norm": 0.1397230178117752,
1532
+ "learning_rate": 0.00015512665546467007,
1533
+ "loss": 1.0716,
1534
+ "step": 211
1535
+ },
1536
+ {
1537
+ "epoch": 1.3248407643312101,
1538
+ "grad_norm": 0.13324333727359772,
1539
+ "learning_rate": 0.00015469481581224272,
1540
+ "loss": 1.0926,
1541
+ "step": 212
1542
+ },
1543
+ {
1544
+ "epoch": 1.3312101910828025,
1545
+ "grad_norm": 0.1313484162092209,
1546
+ "learning_rate": 0.00015426151587427547,
1547
+ "loss": 1.0533,
1548
+ "step": 213
1549
+ },
1550
+ {
1551
+ "epoch": 1.3375796178343948,
1552
+ "grad_norm": 0.1433049589395523,
1553
+ "learning_rate": 0.00015382676721935345,
1554
+ "loss": 1.055,
1555
+ "step": 214
1556
+ },
1557
+ {
1558
+ "epoch": 1.3439490445859872,
1559
+ "grad_norm": 0.1309911012649536,
1560
+ "learning_rate": 0.00015339058145474085,
1561
+ "loss": 1.0536,
1562
+ "step": 215
1563
+ },
1564
+ {
1565
+ "epoch": 1.3503184713375795,
1566
+ "grad_norm": 0.13482902944087982,
1567
+ "learning_rate": 0.00015295297022607088,
1568
+ "loss": 1.0176,
1569
+ "step": 216
1570
+ },
1571
+ {
1572
+ "epoch": 1.356687898089172,
1573
+ "grad_norm": 0.13102853298187256,
1574
+ "learning_rate": 0.00015251394521703494,
1575
+ "loss": 1.0849,
1576
+ "step": 217
1577
+ },
1578
+ {
1579
+ "epoch": 1.3630573248407643,
1580
+ "grad_norm": 0.13901150226593018,
1581
+ "learning_rate": 0.00015207351814907068,
1582
+ "loss": 1.0452,
1583
+ "step": 218
1584
+ },
1585
+ {
1586
+ "epoch": 1.3694267515923566,
1587
+ "grad_norm": 0.13824929296970367,
1588
+ "learning_rate": 0.000151631700781049,
1589
+ "loss": 1.0083,
1590
+ "step": 219
1591
+ },
1592
+ {
1593
+ "epoch": 1.3757961783439492,
1594
+ "grad_norm": 0.1309863179922104,
1595
+ "learning_rate": 0.00015118850490896012,
1596
+ "loss": 1.0517,
1597
+ "step": 220
1598
+ },
1599
+ {
1600
+ "epoch": 1.3821656050955413,
1601
+ "grad_norm": 0.1359570473432541,
1602
+ "learning_rate": 0.0001507439423655987,
1603
+ "loss": 1.0452,
1604
+ "step": 221
1605
+ },
1606
+ {
1607
+ "epoch": 1.388535031847134,
1608
+ "grad_norm": 0.13473795354366302,
1609
+ "learning_rate": 0.00015029802502024788,
1610
+ "loss": 1.0234,
1611
+ "step": 222
1612
+ },
1613
+ {
1614
+ "epoch": 1.394904458598726,
1615
+ "grad_norm": 0.13787756860256195,
1616
+ "learning_rate": 0.0001498507647783623,
1617
+ "loss": 1.0811,
1618
+ "step": 223
1619
+ },
1620
+ {
1621
+ "epoch": 1.4012738853503186,
1622
+ "grad_norm": 0.1334763914346695,
1623
+ "learning_rate": 0.00014940217358125042,
1624
+ "loss": 1.0363,
1625
+ "step": 224
1626
+ },
1627
+ {
1628
+ "epoch": 1.4076433121019107,
1629
+ "grad_norm": 0.13535600900650024,
1630
+ "learning_rate": 0.0001489522634057555,
1631
+ "loss": 1.059,
1632
+ "step": 225
1633
+ },
1634
+ {
1635
+ "epoch": 1.4140127388535033,
1636
+ "grad_norm": 0.1335124969482422,
1637
+ "learning_rate": 0.00014850104626393598,
1638
+ "loss": 1.0602,
1639
+ "step": 226
1640
+ },
1641
+ {
1642
+ "epoch": 1.4203821656050954,
1643
+ "grad_norm": 0.13075490295886993,
1644
+ "learning_rate": 0.00014804853420274472,
1645
+ "loss": 1.0344,
1646
+ "step": 227
1647
+ },
1648
+ {
1649
+ "epoch": 1.426751592356688,
1650
+ "grad_norm": 0.13887614011764526,
1651
+ "learning_rate": 0.00014759473930370736,
1652
+ "loss": 1.0728,
1653
+ "step": 228
1654
+ },
1655
+ {
1656
+ "epoch": 1.4331210191082802,
1657
+ "grad_norm": 0.12808558344841003,
1658
+ "learning_rate": 0.0001471396736825998,
1659
+ "loss": 1.0158,
1660
+ "step": 229
1661
+ },
1662
+ {
1663
+ "epoch": 1.4394904458598727,
1664
+ "grad_norm": 0.1339128464460373,
1665
+ "learning_rate": 0.00014668334948912453,
1666
+ "loss": 1.0647,
1667
+ "step": 230
1668
+ },
1669
+ {
1670
+ "epoch": 1.4458598726114649,
1671
+ "grad_norm": 0.13178490102291107,
1672
+ "learning_rate": 0.00014622577890658665,
1673
+ "loss": 1.0684,
1674
+ "step": 231
1675
+ },
1676
+ {
1677
+ "epoch": 1.4522292993630574,
1678
+ "grad_norm": 0.13547855615615845,
1679
+ "learning_rate": 0.00014576697415156817,
1680
+ "loss": 1.0712,
1681
+ "step": 232
1682
+ },
1683
+ {
1684
+ "epoch": 1.4585987261146496,
1685
+ "grad_norm": 0.13795921206474304,
1686
+ "learning_rate": 0.00014530694747360204,
1687
+ "loss": 1.0776,
1688
+ "step": 233
1689
+ },
1690
+ {
1691
+ "epoch": 1.4649681528662422,
1692
+ "grad_norm": 0.13771343231201172,
1693
+ "learning_rate": 0.00014484571115484508,
1694
+ "loss": 1.0517,
1695
+ "step": 234
1696
+ },
1697
+ {
1698
+ "epoch": 1.4713375796178343,
1699
+ "grad_norm": 0.13231024146080017,
1700
+ "learning_rate": 0.0001443832775097501,
1701
+ "loss": 1.0776,
1702
+ "step": 235
1703
+ },
1704
+ {
1705
+ "epoch": 1.4777070063694269,
1706
+ "grad_norm": 0.1319817453622818,
1707
+ "learning_rate": 0.00014391965888473703,
1708
+ "loss": 1.0494,
1709
+ "step": 236
1710
+ },
1711
+ {
1712
+ "epoch": 1.484076433121019,
1713
+ "grad_norm": 0.13426139950752258,
1714
+ "learning_rate": 0.0001434548676578634,
1715
+ "loss": 1.001,
1716
+ "step": 237
1717
+ },
1718
+ {
1719
+ "epoch": 1.4904458598726116,
1720
+ "grad_norm": 0.13087789714336395,
1721
+ "learning_rate": 0.0001429889162384937,
1722
+ "loss": 1.0588,
1723
+ "step": 238
1724
+ },
1725
+ {
1726
+ "epoch": 1.4968152866242037,
1727
+ "grad_norm": 0.13652274012565613,
1728
+ "learning_rate": 0.00014252181706696817,
1729
+ "loss": 1.0124,
1730
+ "step": 239
1731
+ },
1732
+ {
1733
+ "epoch": 1.5031847133757963,
1734
+ "grad_norm": 0.13933531939983368,
1735
+ "learning_rate": 0.00014205358261427074,
1736
+ "loss": 1.048,
1737
+ "step": 240
1738
+ },
1739
+ {
1740
+ "epoch": 1.5031847133757963,
1741
+ "eval_loss": 0.9937697052955627,
1742
+ "eval_runtime": 19.2892,
1743
+ "eval_samples_per_second": 56.612,
1744
+ "eval_steps_per_second": 0.933,
1745
+ "step": 240
1746
+ },
1747
+ {
1748
+ "epoch": 1.5095541401273884,
1749
+ "grad_norm": 0.13970831036567688,
1750
+ "learning_rate": 0.00014158422538169596,
1751
+ "loss": 1.0433,
1752
+ "step": 241
1753
+ },
1754
+ {
1755
+ "epoch": 1.515923566878981,
1756
+ "grad_norm": 0.13193373382091522,
1757
+ "learning_rate": 0.0001411137579005151,
1758
+ "loss": 1.0726,
1759
+ "step": 242
1760
+ },
1761
+ {
1762
+ "epoch": 1.5222929936305731,
1763
+ "grad_norm": 0.14291027188301086,
1764
+ "learning_rate": 0.0001406421927316419,
1765
+ "loss": 1.0825,
1766
+ "step": 243
1767
+ },
1768
+ {
1769
+ "epoch": 1.5286624203821657,
1770
+ "grad_norm": 0.14268159866333008,
1771
+ "learning_rate": 0.00014016954246529696,
1772
+ "loss": 1.0887,
1773
+ "step": 244
1774
+ },
1775
+ {
1776
+ "epoch": 1.5350318471337578,
1777
+ "grad_norm": 0.13607299327850342,
1778
+ "learning_rate": 0.00013969581972067164,
1779
+ "loss": 1.0644,
1780
+ "step": 245
1781
+ },
1782
+ {
1783
+ "epoch": 1.5414012738853504,
1784
+ "grad_norm": 0.13732877373695374,
1785
+ "learning_rate": 0.0001392210371455913,
1786
+ "loss": 1.0339,
1787
+ "step": 246
1788
+ },
1789
+ {
1790
+ "epoch": 1.5477707006369426,
1791
+ "grad_norm": 0.13315479457378387,
1792
+ "learning_rate": 0.00013874520741617735,
1793
+ "loss": 1.0284,
1794
+ "step": 247
1795
+ },
1796
+ {
1797
+ "epoch": 1.5541401273885351,
1798
+ "grad_norm": 0.13376399874687195,
1799
+ "learning_rate": 0.000138268343236509,
1800
+ "loss": 1.0279,
1801
+ "step": 248
1802
+ },
1803
+ {
1804
+ "epoch": 1.5605095541401273,
1805
+ "grad_norm": 0.13698357343673706,
1806
+ "learning_rate": 0.00013779045733828407,
1807
+ "loss": 1.0884,
1808
+ "step": 249
1809
+ },
1810
+ {
1811
+ "epoch": 1.5668789808917198,
1812
+ "grad_norm": 0.13575707376003265,
1813
+ "learning_rate": 0.00013731156248047904,
1814
+ "loss": 1.0383,
1815
+ "step": 250
1816
+ },
1817
+ {
1818
+ "epoch": 1.573248407643312,
1819
+ "grad_norm": 0.14258643984794617,
1820
+ "learning_rate": 0.00013683167144900834,
1821
+ "loss": 1.0812,
1822
+ "step": 251
1823
+ },
1824
+ {
1825
+ "epoch": 1.5796178343949046,
1826
+ "grad_norm": 0.1422533541917801,
1827
+ "learning_rate": 0.00013635079705638298,
1828
+ "loss": 1.0259,
1829
+ "step": 252
1830
+ },
1831
+ {
1832
+ "epoch": 1.5859872611464967,
1833
+ "grad_norm": 0.13875292241573334,
1834
+ "learning_rate": 0.00013586895214136874,
1835
+ "loss": 1.0507,
1836
+ "step": 253
1837
+ },
1838
+ {
1839
+ "epoch": 1.5923566878980893,
1840
+ "grad_norm": 0.1358788013458252,
1841
+ "learning_rate": 0.00013538614956864296,
1842
+ "loss": 1.066,
1843
+ "step": 254
1844
+ },
1845
+ {
1846
+ "epoch": 1.5987261146496814,
1847
+ "grad_norm": 0.13774985074996948,
1848
+ "learning_rate": 0.0001349024022284514,
1849
+ "loss": 1.0485,
1850
+ "step": 255
1851
+ },
1852
+ {
1853
+ "epoch": 1.605095541401274,
1854
+ "grad_norm": 0.13040746748447418,
1855
+ "learning_rate": 0.00013441772303626387,
1856
+ "loss": 1.0173,
1857
+ "step": 256
1858
+ },
1859
+ {
1860
+ "epoch": 1.611464968152866,
1861
+ "grad_norm": 0.1312469244003296,
1862
+ "learning_rate": 0.00013393212493242963,
1863
+ "loss": 1.0489,
1864
+ "step": 257
1865
+ },
1866
+ {
1867
+ "epoch": 1.6178343949044587,
1868
+ "grad_norm": 0.14885447919368744,
1869
+ "learning_rate": 0.00013344562088183165,
1870
+ "loss": 1.0403,
1871
+ "step": 258
1872
+ },
1873
+ {
1874
+ "epoch": 1.6242038216560508,
1875
+ "grad_norm": 0.12916652858257294,
1876
+ "learning_rate": 0.00013295822387354071,
1877
+ "loss": 1.024,
1878
+ "step": 259
1879
+ },
1880
+ {
1881
+ "epoch": 1.6305732484076434,
1882
+ "grad_norm": 0.14133484661579132,
1883
+ "learning_rate": 0.00013246994692046836,
1884
+ "loss": 1.0708,
1885
+ "step": 260
1886
+ },
1887
+ {
1888
+ "epoch": 1.6369426751592355,
1889
+ "grad_norm": 0.1382388323545456,
1890
+ "learning_rate": 0.0001319808030590197,
1891
+ "loss": 1.0245,
1892
+ "step": 261
1893
+ },
1894
+ {
1895
+ "epoch": 1.643312101910828,
1896
+ "grad_norm": 0.133922278881073,
1897
+ "learning_rate": 0.0001314908053487452,
1898
+ "loss": 1.0811,
1899
+ "step": 262
1900
+ },
1901
+ {
1902
+ "epoch": 1.6496815286624202,
1903
+ "grad_norm": 0.13291525840759277,
1904
+ "learning_rate": 0.00013099996687199203,
1905
+ "loss": 1.0158,
1906
+ "step": 263
1907
+ },
1908
+ {
1909
+ "epoch": 1.6560509554140128,
1910
+ "grad_norm": 0.13765017688274384,
1911
+ "learning_rate": 0.00013050830073355488,
1912
+ "loss": 1.051,
1913
+ "step": 264
1914
+ },
1915
+ {
1916
+ "epoch": 1.662420382165605,
1917
+ "grad_norm": 0.13831576704978943,
1918
+ "learning_rate": 0.000130015820060326,
1919
+ "loss": 1.0277,
1920
+ "step": 265
1921
+ },
1922
+ {
1923
+ "epoch": 1.6687898089171975,
1924
+ "grad_norm": 0.13770005106925964,
1925
+ "learning_rate": 0.00012952253800094468,
1926
+ "loss": 1.0982,
1927
+ "step": 266
1928
+ },
1929
+ {
1930
+ "epoch": 1.6751592356687897,
1931
+ "grad_norm": 0.13507647812366486,
1932
+ "learning_rate": 0.00012902846772544624,
1933
+ "loss": 0.9961,
1934
+ "step": 267
1935
+ },
1936
+ {
1937
+ "epoch": 1.6815286624203822,
1938
+ "grad_norm": 0.13365790247917175,
1939
+ "learning_rate": 0.00012853362242491053,
1940
+ "loss": 1.0191,
1941
+ "step": 268
1942
+ },
1943
+ {
1944
+ "epoch": 1.6878980891719744,
1945
+ "grad_norm": 0.13307291269302368,
1946
+ "learning_rate": 0.00012803801531110955,
1947
+ "loss": 1.0709,
1948
+ "step": 269
1949
+ },
1950
+ {
1951
+ "epoch": 1.694267515923567,
1952
+ "grad_norm": 0.1397312730550766,
1953
+ "learning_rate": 0.0001275416596161548,
1954
+ "loss": 1.0412,
1955
+ "step": 270
1956
+ },
1957
+ {
1958
+ "epoch": 1.700636942675159,
1959
+ "grad_norm": 0.14555448293685913,
1960
+ "learning_rate": 0.00012704456859214397,
1961
+ "loss": 1.0675,
1962
+ "step": 271
1963
+ },
1964
+ {
1965
+ "epoch": 1.7070063694267517,
1966
+ "grad_norm": 0.14011207222938538,
1967
+ "learning_rate": 0.00012654675551080724,
1968
+ "loss": 1.0632,
1969
+ "step": 272
1970
+ },
1971
+ {
1972
+ "epoch": 1.7133757961783438,
1973
+ "grad_norm": 0.14120171964168549,
1974
+ "learning_rate": 0.00012604823366315273,
1975
+ "loss": 1.0307,
1976
+ "step": 273
1977
+ },
1978
+ {
1979
+ "epoch": 1.7197452229299364,
1980
+ "grad_norm": 0.13699355721473694,
1981
+ "learning_rate": 0.00012554901635911187,
1982
+ "loss": 1.0482,
1983
+ "step": 274
1984
+ },
1985
+ {
1986
+ "epoch": 1.7261146496815285,
1987
+ "grad_norm": 0.14194992184638977,
1988
+ "learning_rate": 0.00012504911692718385,
1989
+ "loss": 1.0944,
1990
+ "step": 275
1991
+ },
1992
+ {
1993
+ "epoch": 1.732484076433121,
1994
+ "grad_norm": 0.13791659474372864,
1995
+ "learning_rate": 0.00012454854871407994,
1996
+ "loss": 1.0276,
1997
+ "step": 276
1998
+ },
1999
+ {
2000
+ "epoch": 1.7388535031847132,
2001
+ "grad_norm": 0.1348312497138977,
2002
+ "learning_rate": 0.0001240473250843669,
2003
+ "loss": 1.0388,
2004
+ "step": 277
2005
+ },
2006
+ {
2007
+ "epoch": 1.7452229299363058,
2008
+ "grad_norm": 0.13901084661483765,
2009
+ "learning_rate": 0.00012354545942011057,
2010
+ "loss": 1.0605,
2011
+ "step": 278
2012
+ },
2013
+ {
2014
+ "epoch": 1.7515923566878981,
2015
+ "grad_norm": 0.13213810324668884,
2016
+ "learning_rate": 0.00012304296512051814,
2017
+ "loss": 1.0163,
2018
+ "step": 279
2019
+ },
2020
+ {
2021
+ "epoch": 1.7579617834394905,
2022
+ "grad_norm": 0.13962963223457336,
2023
+ "learning_rate": 0.00012253985560158062,
2024
+ "loss": 1.0839,
2025
+ "step": 280
2026
+ },
2027
+ {
2028
+ "epoch": 1.7579617834394905,
2029
+ "eval_loss": 0.9859278202056885,
2030
+ "eval_runtime": 19.3296,
2031
+ "eval_samples_per_second": 56.494,
2032
+ "eval_steps_per_second": 0.931,
2033
+ "step": 280
2034
+ },
2035
+ {
2036
+ "epoch": 1.7643312101910829,
2037
+ "grad_norm": 0.13637703657150269,
2038
+ "learning_rate": 0.00012203614429571475,
2039
+ "loss": 1.0466,
2040
+ "step": 281
2041
+ },
2042
+ {
2043
+ "epoch": 1.7707006369426752,
2044
+ "grad_norm": 0.13617432117462158,
2045
+ "learning_rate": 0.00012153184465140413,
2046
+ "loss": 1.086,
2047
+ "step": 282
2048
+ },
2049
+ {
2050
+ "epoch": 1.7770700636942676,
2051
+ "grad_norm": 0.1326834112405777,
2052
+ "learning_rate": 0.00012102697013284034,
2053
+ "loss": 1.0692,
2054
+ "step": 283
2055
+ },
2056
+ {
2057
+ "epoch": 1.78343949044586,
2058
+ "grad_norm": 0.1359279453754425,
2059
+ "learning_rate": 0.00012052153421956342,
2060
+ "loss": 1.0337,
2061
+ "step": 284
2062
+ },
2063
+ {
2064
+ "epoch": 1.7898089171974523,
2065
+ "grad_norm": 0.13754823803901672,
2066
+ "learning_rate": 0.00012001555040610197,
2067
+ "loss": 1.0377,
2068
+ "step": 285
2069
+ },
2070
+ {
2071
+ "epoch": 1.7961783439490446,
2072
+ "grad_norm": 0.1381075084209442,
2073
+ "learning_rate": 0.00011950903220161285,
2074
+ "loss": 1.0311,
2075
+ "step": 286
2076
+ },
2077
+ {
2078
+ "epoch": 1.802547770700637,
2079
+ "grad_norm": 0.14102081954479218,
2080
+ "learning_rate": 0.00011900199312952047,
2081
+ "loss": 1.0645,
2082
+ "step": 287
2083
+ },
2084
+ {
2085
+ "epoch": 1.8089171974522293,
2086
+ "grad_norm": 0.14201205968856812,
2087
+ "learning_rate": 0.00011849444672715586,
2088
+ "loss": 1.043,
2089
+ "step": 288
2090
+ },
2091
+ {
2092
+ "epoch": 1.8152866242038217,
2093
+ "grad_norm": 0.13808976113796234,
2094
+ "learning_rate": 0.0001179864065453951,
2095
+ "loss": 1.0263,
2096
+ "step": 289
2097
+ },
2098
+ {
2099
+ "epoch": 1.821656050955414,
2100
+ "grad_norm": 0.13844111561775208,
2101
+ "learning_rate": 0.00011747788614829758,
2102
+ "loss": 1.0483,
2103
+ "step": 290
2104
+ },
2105
+ {
2106
+ "epoch": 1.8280254777070064,
2107
+ "grad_norm": 0.13990408182144165,
2108
+ "learning_rate": 0.00011696889911274393,
2109
+ "loss": 1.0591,
2110
+ "step": 291
2111
+ },
2112
+ {
2113
+ "epoch": 1.8343949044585988,
2114
+ "grad_norm": 0.14219453930854797,
2115
+ "learning_rate": 0.00011645945902807341,
2116
+ "loss": 1.0702,
2117
+ "step": 292
2118
+ },
2119
+ {
2120
+ "epoch": 1.8407643312101911,
2121
+ "grad_norm": 0.13736915588378906,
2122
+ "learning_rate": 0.0001159495794957211,
2123
+ "loss": 1.0457,
2124
+ "step": 293
2125
+ },
2126
+ {
2127
+ "epoch": 1.8471337579617835,
2128
+ "grad_norm": 0.1305588185787201,
2129
+ "learning_rate": 0.00011543927412885489,
2130
+ "loss": 1.0006,
2131
+ "step": 294
2132
+ },
2133
+ {
2134
+ "epoch": 1.8535031847133758,
2135
+ "grad_norm": 0.1360785961151123,
2136
+ "learning_rate": 0.0001149285565520119,
2137
+ "loss": 1.0055,
2138
+ "step": 295
2139
+ },
2140
+ {
2141
+ "epoch": 1.8598726114649682,
2142
+ "grad_norm": 0.13506443798542023,
2143
+ "learning_rate": 0.00011441744040073468,
2144
+ "loss": 1.0519,
2145
+ "step": 296
2146
+ },
2147
+ {
2148
+ "epoch": 1.8662420382165605,
2149
+ "grad_norm": 0.1369323432445526,
2150
+ "learning_rate": 0.0001139059393212074,
2151
+ "loss": 1.0547,
2152
+ "step": 297
2153
+ },
2154
+ {
2155
+ "epoch": 1.872611464968153,
2156
+ "grad_norm": 0.13333867490291595,
2157
+ "learning_rate": 0.00011339406696989128,
2158
+ "loss": 1.0537,
2159
+ "step": 298
2160
+ },
2161
+ {
2162
+ "epoch": 1.8789808917197452,
2163
+ "grad_norm": 0.13622106611728668,
2164
+ "learning_rate": 0.00011288183701315995,
2165
+ "loss": 1.0517,
2166
+ "step": 299
2167
+ },
2168
+ {
2169
+ "epoch": 1.8853503184713376,
2170
+ "grad_norm": 0.14023956656455994,
2171
+ "learning_rate": 0.00011236926312693479,
2172
+ "loss": 1.0559,
2173
+ "step": 300
2174
+ },
2175
+ {
2176
+ "epoch": 1.89171974522293,
2177
+ "grad_norm": 0.1363711655139923,
2178
+ "learning_rate": 0.00011185635899631963,
2179
+ "loss": 1.0291,
2180
+ "step": 301
2181
+ },
2182
+ {
2183
+ "epoch": 1.8980891719745223,
2184
+ "grad_norm": 0.13854017853736877,
2185
+ "learning_rate": 0.00011134313831523547,
2186
+ "loss": 1.0605,
2187
+ "step": 302
2188
+ },
2189
+ {
2190
+ "epoch": 1.9044585987261147,
2191
+ "grad_norm": 0.13852174580097198,
2192
+ "learning_rate": 0.00011082961478605475,
2193
+ "loss": 1.0553,
2194
+ "step": 303
2195
+ },
2196
+ {
2197
+ "epoch": 1.910828025477707,
2198
+ "grad_norm": 0.14662423729896545,
2199
+ "learning_rate": 0.00011031580211923571,
2200
+ "loss": 1.0619,
2201
+ "step": 304
2202
+ },
2203
+ {
2204
+ "epoch": 1.9171974522292994,
2205
+ "grad_norm": 0.14127817749977112,
2206
+ "learning_rate": 0.0001098017140329561,
2207
+ "loss": 1.0698,
2208
+ "step": 305
2209
+ },
2210
+ {
2211
+ "epoch": 1.9235668789808917,
2212
+ "grad_norm": 0.1394420862197876,
2213
+ "learning_rate": 0.00010928736425274701,
2214
+ "loss": 1.0433,
2215
+ "step": 306
2216
+ },
2217
+ {
2218
+ "epoch": 1.929936305732484,
2219
+ "grad_norm": 0.1438218653202057,
2220
+ "learning_rate": 0.00010877276651112662,
2221
+ "loss": 1.0498,
2222
+ "step": 307
2223
+ },
2224
+ {
2225
+ "epoch": 1.9363057324840764,
2226
+ "grad_norm": 0.1500382274389267,
2227
+ "learning_rate": 0.00010825793454723325,
2228
+ "loss": 1.0613,
2229
+ "step": 308
2230
+ },
2231
+ {
2232
+ "epoch": 1.9426751592356688,
2233
+ "grad_norm": 0.14135834574699402,
2234
+ "learning_rate": 0.00010774288210645862,
2235
+ "loss": 1.0435,
2236
+ "step": 309
2237
+ },
2238
+ {
2239
+ "epoch": 1.9490445859872612,
2240
+ "grad_norm": 0.1469028890132904,
2241
+ "learning_rate": 0.00010722762294008106,
2242
+ "loss": 1.0064,
2243
+ "step": 310
2244
+ },
2245
+ {
2246
+ "epoch": 1.9554140127388535,
2247
+ "grad_norm": 0.14101552963256836,
2248
+ "learning_rate": 0.00010671217080489814,
2249
+ "loss": 1.0485,
2250
+ "step": 311
2251
+ },
2252
+ {
2253
+ "epoch": 1.9617834394904459,
2254
+ "grad_norm": 0.1395803987979889,
2255
+ "learning_rate": 0.00010619653946285947,
2256
+ "loss": 1.0405,
2257
+ "step": 312
2258
+ },
2259
+ {
2260
+ "epoch": 1.9681528662420382,
2261
+ "grad_norm": 0.1441717892885208,
2262
+ "learning_rate": 0.00010568074268069928,
2263
+ "loss": 1.0183,
2264
+ "step": 313
2265
+ },
2266
+ {
2267
+ "epoch": 1.9745222929936306,
2268
+ "grad_norm": 0.14449232816696167,
2269
+ "learning_rate": 0.00010516479422956882,
2270
+ "loss": 1.035,
2271
+ "step": 314
2272
+ },
2273
+ {
2274
+ "epoch": 1.980891719745223,
2275
+ "grad_norm": 0.14461494982242584,
2276
+ "learning_rate": 0.00010464870788466873,
2277
+ "loss": 1.0911,
2278
+ "step": 315
2279
+ },
2280
+ {
2281
+ "epoch": 1.9872611464968153,
2282
+ "grad_norm": 0.13796767592430115,
2283
+ "learning_rate": 0.00010413249742488131,
2284
+ "loss": 1.0425,
2285
+ "step": 316
2286
+ },
2287
+ {
2288
+ "epoch": 1.9936305732484076,
2289
+ "grad_norm": 0.1377556025981903,
2290
+ "learning_rate": 0.00010361617663240253,
2291
+ "loss": 1.0773,
2292
+ "step": 317
2293
+ },
2294
+ {
2295
+ "epoch": 2.0,
2296
+ "grad_norm": 0.14611703157424927,
2297
+ "learning_rate": 0.00010309975929237408,
2298
+ "loss": 1.0333,
2299
+ "step": 318
2300
+ },
2301
+ {
2302
+ "epoch": 2.0063694267515926,
2303
+ "grad_norm": 0.1386556774377823,
2304
+ "learning_rate": 0.00010258325919251537,
2305
+ "loss": 0.9997,
2306
+ "step": 319
2307
+ },
2308
+ {
2309
+ "epoch": 2.0127388535031847,
2310
+ "grad_norm": 0.13707421720027924,
2311
+ "learning_rate": 0.00010206669012275545,
2312
+ "loss": 1.0817,
2313
+ "step": 320
2314
+ },
2315
+ {
2316
+ "epoch": 2.0127388535031847,
2317
+ "eval_loss": 0.9801168441772461,
2318
+ "eval_runtime": 19.3185,
2319
+ "eval_samples_per_second": 56.526,
2320
+ "eval_steps_per_second": 0.932,
2321
+ "step": 320
2322
+ },
2323
+ {
2324
+ "epoch": 2.019108280254777,
2325
+ "grad_norm": 0.13602325320243835,
2326
+ "learning_rate": 0.00010155006587486469,
2327
+ "loss": 1.0337,
2328
+ "step": 321
2329
+ },
2330
+ {
2331
+ "epoch": 2.0254777070063694,
2332
+ "grad_norm": 0.6095888018608093,
2333
+ "learning_rate": 0.00010103340024208674,
2334
+ "loss": 1.1783,
2335
+ "step": 322
2336
+ },
2337
+ {
2338
+ "epoch": 2.0063694267515926,
2339
+ "grad_norm": 0.1478217989206314,
2340
+ "learning_rate": 0.00010051670701877012,
2341
+ "loss": 1.0114,
2342
+ "step": 323
2343
+ },
2344
+ {
2345
+ "epoch": 2.0127388535031847,
2346
+ "grad_norm": 0.1493089348077774,
2347
+ "learning_rate": 0.0001,
2348
+ "loss": 1.0167,
2349
+ "step": 324
2350
+ },
2351
+ {
2352
+ "epoch": 2.0191082802547773,
2353
+ "grad_norm": 0.15172579884529114,
2354
+ "learning_rate": 9.948329298122988e-05,
2355
+ "loss": 1.0161,
2356
+ "step": 325
2357
+ },
2358
+ {
2359
+ "epoch": 2.0254777070063694,
2360
+ "grad_norm": 0.14516572654247284,
2361
+ "learning_rate": 9.89665997579133e-05,
2362
+ "loss": 1.0375,
2363
+ "step": 326
2364
+ },
2365
+ {
2366
+ "epoch": 2.031847133757962,
2367
+ "grad_norm": 0.15873479843139648,
2368
+ "learning_rate": 9.844993412513532e-05,
2369
+ "loss": 1.0214,
2370
+ "step": 327
2371
+ },
2372
+ {
2373
+ "epoch": 2.038216560509554,
2374
+ "grad_norm": 0.1409904658794403,
2375
+ "learning_rate": 9.793330987724459e-05,
2376
+ "loss": 1.001,
2377
+ "step": 328
2378
+ },
2379
+ {
2380
+ "epoch": 2.0445859872611467,
2381
+ "grad_norm": 0.15463833510875702,
2382
+ "learning_rate": 9.741674080748464e-05,
2383
+ "loss": 1.0325,
2384
+ "step": 329
2385
+ },
2386
+ {
2387
+ "epoch": 2.050955414012739,
2388
+ "grad_norm": 0.15082892775535583,
2389
+ "learning_rate": 9.690024070762596e-05,
2390
+ "loss": 1.0292,
2391
+ "step": 330
2392
+ },
2393
+ {
2394
+ "epoch": 2.0573248407643314,
2395
+ "grad_norm": 0.1486956775188446,
2396
+ "learning_rate": 9.638382336759749e-05,
2397
+ "loss": 0.9867,
2398
+ "step": 331
2399
+ },
2400
+ {
2401
+ "epoch": 2.0636942675159236,
2402
+ "grad_norm": 0.14457155764102936,
2403
+ "learning_rate": 9.586750257511867e-05,
2404
+ "loss": 1.0255,
2405
+ "step": 332
2406
+ },
2407
+ {
2408
+ "epoch": 2.070063694267516,
2409
+ "grad_norm": 0.15076091885566711,
2410
+ "learning_rate": 9.535129211533129e-05,
2411
+ "loss": 1.005,
2412
+ "step": 333
2413
+ },
2414
+ {
2415
+ "epoch": 2.0764331210191083,
2416
+ "grad_norm": 0.1533278077840805,
2417
+ "learning_rate": 9.483520577043121e-05,
2418
+ "loss": 0.9923,
2419
+ "step": 334
2420
+ },
2421
+ {
2422
+ "epoch": 2.082802547770701,
2423
+ "grad_norm": 0.14563091099262238,
2424
+ "learning_rate": 9.431925731930078e-05,
2425
+ "loss": 1.0548,
2426
+ "step": 335
2427
+ },
2428
+ {
2429
+ "epoch": 2.089171974522293,
2430
+ "grad_norm": 0.14984974265098572,
2431
+ "learning_rate": 9.380346053714055e-05,
2432
+ "loss": 1.0417,
2433
+ "step": 336
2434
+ },
2435
+ {
2436
+ "epoch": 2.0955414012738856,
2437
+ "grad_norm": 0.14393095672130585,
2438
+ "learning_rate": 9.328782919510185e-05,
2439
+ "loss": 1.0163,
2440
+ "step": 337
2441
+ },
2442
+ {
2443
+ "epoch": 2.1019108280254777,
2444
+ "grad_norm": 0.14722150564193726,
2445
+ "learning_rate": 9.277237705991894e-05,
2446
+ "loss": 1.0418,
2447
+ "step": 338
2448
+ },
2449
+ {
2450
+ "epoch": 2.1082802547770703,
2451
+ "grad_norm": 0.1614050716161728,
2452
+ "learning_rate": 9.225711789354137e-05,
2453
+ "loss": 0.9721,
2454
+ "step": 339
2455
+ },
2456
+ {
2457
+ "epoch": 2.1146496815286624,
2458
+ "grad_norm": 0.15309081971645355,
2459
+ "learning_rate": 9.174206545276677e-05,
2460
+ "loss": 1.0198,
2461
+ "step": 340
2462
+ },
2463
+ {
2464
+ "epoch": 2.121019108280255,
2465
+ "grad_norm": 0.1521766036748886,
2466
+ "learning_rate": 9.122723348887339e-05,
2467
+ "loss": 1.0196,
2468
+ "step": 341
2469
+ },
2470
+ {
2471
+ "epoch": 2.127388535031847,
2472
+ "grad_norm": 0.15561290085315704,
2473
+ "learning_rate": 9.0712635747253e-05,
2474
+ "loss": 1.0537,
2475
+ "step": 342
2476
+ },
2477
+ {
2478
+ "epoch": 2.1337579617834397,
2479
+ "grad_norm": 0.1435907781124115,
2480
+ "learning_rate": 9.019828596704394e-05,
2481
+ "loss": 0.9999,
2482
+ "step": 343
2483
+ },
2484
+ {
2485
+ "epoch": 2.140127388535032,
2486
+ "grad_norm": 0.15161436796188354,
2487
+ "learning_rate": 8.968419788076431e-05,
2488
+ "loss": 1.0154,
2489
+ "step": 344
2490
+ },
2491
+ {
2492
+ "epoch": 2.1464968152866244,
2493
+ "grad_norm": 0.14869481325149536,
2494
+ "learning_rate": 8.917038521394526e-05,
2495
+ "loss": 0.9847,
2496
+ "step": 345
2497
+ },
2498
+ {
2499
+ "epoch": 2.1528662420382165,
2500
+ "grad_norm": 0.14515374600887299,
2501
+ "learning_rate": 8.865686168476457e-05,
2502
+ "loss": 1.0069,
2503
+ "step": 346
2504
+ },
2505
+ {
2506
+ "epoch": 2.159235668789809,
2507
+ "grad_norm": 0.14634117484092712,
2508
+ "learning_rate": 8.81436410036804e-05,
2509
+ "loss": 1.008,
2510
+ "step": 347
2511
+ },
2512
+ {
2513
+ "epoch": 2.1656050955414012,
2514
+ "grad_norm": 0.15083561837673187,
2515
+ "learning_rate": 8.763073687306524e-05,
2516
+ "loss": 0.9891,
2517
+ "step": 348
2518
+ },
2519
+ {
2520
+ "epoch": 2.171974522292994,
2521
+ "grad_norm": 0.16083382070064545,
2522
+ "learning_rate": 8.71181629868401e-05,
2523
+ "loss": 1.0291,
2524
+ "step": 349
2525
+ },
2526
+ {
2527
+ "epoch": 2.178343949044586,
2528
+ "grad_norm": 0.14988526701927185,
2529
+ "learning_rate": 8.660593303010876e-05,
2530
+ "loss": 1.0217,
2531
+ "step": 350
2532
+ },
2533
+ {
2534
+ "epoch": 2.1847133757961785,
2535
+ "grad_norm": 0.15332889556884766,
2536
+ "learning_rate": 8.609406067879258e-05,
2537
+ "loss": 1.0502,
2538
+ "step": 351
2539
+ },
2540
+ {
2541
+ "epoch": 2.1910828025477707,
2542
+ "grad_norm": 0.1509145349264145,
2543
+ "learning_rate": 8.558255959926533e-05,
2544
+ "loss": 1.0021,
2545
+ "step": 352
2546
+ },
2547
+ {
2548
+ "epoch": 2.1974522292993632,
2549
+ "grad_norm": 0.14952103793621063,
2550
+ "learning_rate": 8.507144344798814e-05,
2551
+ "loss": 1.0052,
2552
+ "step": 353
2553
+ },
2554
+ {
2555
+ "epoch": 2.2038216560509554,
2556
+ "grad_norm": 0.14787828922271729,
2557
+ "learning_rate": 8.456072587114515e-05,
2558
+ "loss": 0.929,
2559
+ "step": 354
2560
+ },
2561
+ {
2562
+ "epoch": 2.210191082802548,
2563
+ "grad_norm": 0.1580924093723297,
2564
+ "learning_rate": 8.405042050427891e-05,
2565
+ "loss": 1.0071,
2566
+ "step": 355
2567
+ },
2568
+ {
2569
+ "epoch": 2.21656050955414,
2570
+ "grad_norm": 0.15078537166118622,
2571
+ "learning_rate": 8.35405409719266e-05,
2572
+ "loss": 0.999,
2573
+ "step": 356
2574
+ },
2575
+ {
2576
+ "epoch": 2.2229299363057327,
2577
+ "grad_norm": 0.1510494202375412,
2578
+ "learning_rate": 8.303110088725608e-05,
2579
+ "loss": 1.0222,
2580
+ "step": 357
2581
+ },
2582
+ {
2583
+ "epoch": 2.229299363057325,
2584
+ "grad_norm": 0.15881799161434174,
2585
+ "learning_rate": 8.252211385170242e-05,
2586
+ "loss": 1.0053,
2587
+ "step": 358
2588
+ },
2589
+ {
2590
+ "epoch": 2.2356687898089174,
2591
+ "grad_norm": 0.15945011377334595,
2592
+ "learning_rate": 8.201359345460496e-05,
2593
+ "loss": 1.0145,
2594
+ "step": 359
2595
+ },
2596
+ {
2597
+ "epoch": 2.2420382165605095,
2598
+ "grad_norm": 0.15022100508213043,
2599
+ "learning_rate": 8.150555327284417e-05,
2600
+ "loss": 1.0115,
2601
+ "step": 360
2602
+ },
2603
+ {
2604
+ "epoch": 2.2420382165605095,
2605
+ "eval_loss": 0.9787687659263611,
2606
+ "eval_runtime": 19.3111,
2607
+ "eval_samples_per_second": 56.548,
2608
+ "eval_steps_per_second": 0.932,
2609
+ "step": 360
2610
+ },
2611
+ {
2612
+ "epoch": 2.248407643312102,
2613
+ "grad_norm": 0.15681840479373932,
2614
+ "learning_rate": 8.099800687047958e-05,
2615
+ "loss": 1.0398,
2616
+ "step": 361
2617
+ },
2618
+ {
2619
+ "epoch": 2.254777070063694,
2620
+ "grad_norm": 0.14988869428634644,
2621
+ "learning_rate": 8.049096779838719e-05,
2622
+ "loss": 0.9828,
2623
+ "step": 362
2624
+ },
2625
+ {
2626
+ "epoch": 2.261146496815287,
2627
+ "grad_norm": 0.1477968841791153,
2628
+ "learning_rate": 7.998444959389803e-05,
2629
+ "loss": 1.0276,
2630
+ "step": 363
2631
+ },
2632
+ {
2633
+ "epoch": 2.267515923566879,
2634
+ "grad_norm": 0.1529729813337326,
2635
+ "learning_rate": 7.947846578043659e-05,
2636
+ "loss": 1.0172,
2637
+ "step": 364
2638
+ },
2639
+ {
2640
+ "epoch": 2.2738853503184715,
2641
+ "grad_norm": 0.15440192818641663,
2642
+ "learning_rate": 7.897302986715967e-05,
2643
+ "loss": 1.0387,
2644
+ "step": 365
2645
+ },
2646
+ {
2647
+ "epoch": 2.2802547770700636,
2648
+ "grad_norm": 0.16899262368679047,
2649
+ "learning_rate": 7.846815534859591e-05,
2650
+ "loss": 1.0352,
2651
+ "step": 366
2652
+ },
2653
+ {
2654
+ "epoch": 2.286624203821656,
2655
+ "grad_norm": 0.15240244567394257,
2656
+ "learning_rate": 7.796385570428526e-05,
2657
+ "loss": 1.0264,
2658
+ "step": 367
2659
+ },
2660
+ {
2661
+ "epoch": 2.2929936305732483,
2662
+ "grad_norm": 0.15043969452381134,
2663
+ "learning_rate": 7.74601443984194e-05,
2664
+ "loss": 0.9838,
2665
+ "step": 368
2666
+ },
2667
+ {
2668
+ "epoch": 2.299363057324841,
2669
+ "grad_norm": 0.16128422319889069,
2670
+ "learning_rate": 7.695703487948189e-05,
2671
+ "loss": 1.0317,
2672
+ "step": 369
2673
+ },
2674
+ {
2675
+ "epoch": 2.305732484076433,
2676
+ "grad_norm": 0.159554123878479,
2677
+ "learning_rate": 7.645454057988942e-05,
2678
+ "loss": 1.0122,
2679
+ "step": 370
2680
+ },
2681
+ {
2682
+ "epoch": 2.3121019108280256,
2683
+ "grad_norm": 0.15471342206001282,
2684
+ "learning_rate": 7.59526749156331e-05,
2685
+ "loss": 1.0077,
2686
+ "step": 371
2687
+ },
2688
+ {
2689
+ "epoch": 2.3184713375796178,
2690
+ "grad_norm": 0.1584528684616089,
2691
+ "learning_rate": 7.54514512859201e-05,
2692
+ "loss": 1.0074,
2693
+ "step": 372
2694
+ },
2695
+ {
2696
+ "epoch": 2.3248407643312103,
2697
+ "grad_norm": 0.16024437546730042,
2698
+ "learning_rate": 7.495088307281618e-05,
2699
+ "loss": 1.0066,
2700
+ "step": 373
2701
+ },
2702
+ {
2703
+ "epoch": 2.3312101910828025,
2704
+ "grad_norm": 0.15269304811954498,
2705
+ "learning_rate": 7.445098364088815e-05,
2706
+ "loss": 1.0083,
2707
+ "step": 374
2708
+ },
2709
+ {
2710
+ "epoch": 2.337579617834395,
2711
+ "grad_norm": 0.15843960642814636,
2712
+ "learning_rate": 7.395176633684726e-05,
2713
+ "loss": 0.982,
2714
+ "step": 375
2715
+ },
2716
+ {
2717
+ "epoch": 2.343949044585987,
2718
+ "grad_norm": 0.155010387301445,
2719
+ "learning_rate": 7.34532444891928e-05,
2720
+ "loss": 1.019,
2721
+ "step": 376
2722
+ },
2723
+ {
2724
+ "epoch": 2.3503184713375798,
2725
+ "grad_norm": 0.16114681959152222,
2726
+ "learning_rate": 7.295543140785603e-05,
2727
+ "loss": 1.0056,
2728
+ "step": 377
2729
+ },
2730
+ {
2731
+ "epoch": 2.356687898089172,
2732
+ "grad_norm": 0.15911327302455902,
2733
+ "learning_rate": 7.245834038384522e-05,
2734
+ "loss": 1.0172,
2735
+ "step": 378
2736
+ },
2737
+ {
2738
+ "epoch": 2.3630573248407645,
2739
+ "grad_norm": 0.1528182476758957,
2740
+ "learning_rate": 7.196198468889047e-05,
2741
+ "loss": 0.989,
2742
+ "step": 379
2743
+ },
2744
+ {
2745
+ "epoch": 2.3694267515923566,
2746
+ "grad_norm": 0.1665172576904297,
2747
+ "learning_rate": 7.146637757508949e-05,
2748
+ "loss": 1.0249,
2749
+ "step": 380
2750
+ },
2751
+ {
2752
+ "epoch": 2.375796178343949,
2753
+ "grad_norm": 0.16792528331279755,
2754
+ "learning_rate": 7.097153227455379e-05,
2755
+ "loss": 1.0017,
2756
+ "step": 381
2757
+ },
2758
+ {
2759
+ "epoch": 2.3821656050955413,
2760
+ "grad_norm": 0.15666238963603973,
2761
+ "learning_rate": 7.047746199905536e-05,
2762
+ "loss": 1.021,
2763
+ "step": 382
2764
+ },
2765
+ {
2766
+ "epoch": 2.388535031847134,
2767
+ "grad_norm": 0.15589690208435059,
2768
+ "learning_rate": 6.998417993967403e-05,
2769
+ "loss": 1.0325,
2770
+ "step": 383
2771
+ },
2772
+ {
2773
+ "epoch": 2.394904458598726,
2774
+ "grad_norm": 0.15027858316898346,
2775
+ "learning_rate": 6.949169926644514e-05,
2776
+ "loss": 1.0215,
2777
+ "step": 384
2778
+ },
2779
+ {
2780
+ "epoch": 2.4012738853503186,
2781
+ "grad_norm": 0.15848621726036072,
2782
+ "learning_rate": 6.9000033128008e-05,
2783
+ "loss": 1.0324,
2784
+ "step": 385
2785
+ },
2786
+ {
2787
+ "epoch": 2.4076433121019107,
2788
+ "grad_norm": 0.15717780590057373,
2789
+ "learning_rate": 6.850919465125482e-05,
2790
+ "loss": 0.9591,
2791
+ "step": 386
2792
+ },
2793
+ {
2794
+ "epoch": 2.4140127388535033,
2795
+ "grad_norm": 0.16189338266849518,
2796
+ "learning_rate": 6.801919694098033e-05,
2797
+ "loss": 0.9963,
2798
+ "step": 387
2799
+ },
2800
+ {
2801
+ "epoch": 2.4203821656050954,
2802
+ "grad_norm": 0.16102810204029083,
2803
+ "learning_rate": 6.753005307953167e-05,
2804
+ "loss": 1.0205,
2805
+ "step": 388
2806
+ },
2807
+ {
2808
+ "epoch": 2.426751592356688,
2809
+ "grad_norm": 0.15888215601444244,
2810
+ "learning_rate": 6.70417761264593e-05,
2811
+ "loss": 0.9904,
2812
+ "step": 389
2813
+ },
2814
+ {
2815
+ "epoch": 2.43312101910828,
2816
+ "grad_norm": 0.16042260825634003,
2817
+ "learning_rate": 6.655437911816838e-05,
2818
+ "loss": 1.0394,
2819
+ "step": 390
2820
+ },
2821
+ {
2822
+ "epoch": 2.4394904458598727,
2823
+ "grad_norm": 0.17097777128219604,
2824
+ "learning_rate": 6.60678750675704e-05,
2825
+ "loss": 1.0279,
2826
+ "step": 391
2827
+ },
2828
+ {
2829
+ "epoch": 2.445859872611465,
2830
+ "grad_norm": 0.1708676666021347,
2831
+ "learning_rate": 6.558227696373616e-05,
2832
+ "loss": 0.9913,
2833
+ "step": 392
2834
+ },
2835
+ {
2836
+ "epoch": 2.4522292993630574,
2837
+ "grad_norm": 0.16568711400032043,
2838
+ "learning_rate": 6.509759777154864e-05,
2839
+ "loss": 1.0058,
2840
+ "step": 393
2841
+ },
2842
+ {
2843
+ "epoch": 2.4585987261146496,
2844
+ "grad_norm": 0.16431483626365662,
2845
+ "learning_rate": 6.461385043135704e-05,
2846
+ "loss": 1.0528,
2847
+ "step": 394
2848
+ },
2849
+ {
2850
+ "epoch": 2.464968152866242,
2851
+ "grad_norm": 0.15568807721138,
2852
+ "learning_rate": 6.413104785863128e-05,
2853
+ "loss": 1.044,
2854
+ "step": 395
2855
+ },
2856
+ {
2857
+ "epoch": 2.4713375796178343,
2858
+ "grad_norm": 0.1519811451435089,
2859
+ "learning_rate": 6.3649202943617e-05,
2860
+ "loss": 1.0269,
2861
+ "step": 396
2862
+ },
2863
+ {
2864
+ "epoch": 2.477707006369427,
2865
+ "grad_norm": 0.159037247300148,
2866
+ "learning_rate": 6.316832855099173e-05,
2867
+ "loss": 1.0221,
2868
+ "step": 397
2869
+ },
2870
+ {
2871
+ "epoch": 2.484076433121019,
2872
+ "grad_norm": 0.15528284013271332,
2873
+ "learning_rate": 6.2688437519521e-05,
2874
+ "loss": 0.985,
2875
+ "step": 398
2876
+ },
2877
+ {
2878
+ "epoch": 2.4904458598726116,
2879
+ "grad_norm": 0.15442180633544922,
2880
+ "learning_rate": 6.220954266171596e-05,
2881
+ "loss": 1.0071,
2882
+ "step": 399
2883
+ },
2884
+ {
2885
+ "epoch": 2.4968152866242037,
2886
+ "grad_norm": 0.15721610188484192,
2887
+ "learning_rate": 6.173165676349103e-05,
2888
+ "loss": 1.0356,
2889
+ "step": 400
2890
+ },
2891
+ {
2892
+ "epoch": 2.4968152866242037,
2893
+ "eval_loss": 0.9729906916618347,
2894
+ "eval_runtime": 19.5681,
2895
+ "eval_samples_per_second": 55.805,
2896
+ "eval_steps_per_second": 0.92,
2897
+ "step": 400
2898
+ },
2899
+ {
2900
+ "epoch": 2.5031847133757963,
2901
+ "grad_norm": 0.16139522194862366,
2902
+ "learning_rate": 6.125479258382268e-05,
2903
+ "loss": 1.0247,
2904
+ "step": 401
2905
+ },
2906
+ {
2907
+ "epoch": 2.5095541401273884,
2908
+ "grad_norm": 0.16305910050868988,
2909
+ "learning_rate": 6.077896285440874e-05,
2910
+ "loss": 1.0617,
2911
+ "step": 402
2912
+ },
2913
+ {
2914
+ "epoch": 2.515923566878981,
2915
+ "grad_norm": 0.1648111492395401,
2916
+ "learning_rate": 6.030418027932835e-05,
2917
+ "loss": 1.0367,
2918
+ "step": 403
2919
+ },
2920
+ {
2921
+ "epoch": 2.522292993630573,
2922
+ "grad_norm": 0.1614786684513092,
2923
+ "learning_rate": 5.983045753470308e-05,
2924
+ "loss": 1.0159,
2925
+ "step": 404
2926
+ },
2927
+ {
2928
+ "epoch": 2.5286624203821657,
2929
+ "grad_norm": 0.15744082629680634,
2930
+ "learning_rate": 5.935780726835811e-05,
2931
+ "loss": 1.0317,
2932
+ "step": 405
2933
+ },
2934
+ {
2935
+ "epoch": 2.535031847133758,
2936
+ "grad_norm": 0.16021069884300232,
2937
+ "learning_rate": 5.888624209948495e-05,
2938
+ "loss": 1.0468,
2939
+ "step": 406
2940
+ },
2941
+ {
2942
+ "epoch": 2.5414012738853504,
2943
+ "grad_norm": 0.16327615082263947,
2944
+ "learning_rate": 5.841577461830407e-05,
2945
+ "loss": 1.0017,
2946
+ "step": 407
2947
+ },
2948
+ {
2949
+ "epoch": 2.5477707006369426,
2950
+ "grad_norm": 0.16415022313594818,
2951
+ "learning_rate": 5.794641738572925e-05,
2952
+ "loss": 0.9745,
2953
+ "step": 408
2954
+ },
2955
+ {
2956
+ "epoch": 2.554140127388535,
2957
+ "grad_norm": 0.16266576945781708,
2958
+ "learning_rate": 5.747818293303184e-05,
2959
+ "loss": 0.9881,
2960
+ "step": 409
2961
+ },
2962
+ {
2963
+ "epoch": 2.5605095541401273,
2964
+ "grad_norm": 0.1699274182319641,
2965
+ "learning_rate": 5.7011083761506344e-05,
2966
+ "loss": 1.041,
2967
+ "step": 410
2968
+ },
2969
+ {
2970
+ "epoch": 2.56687898089172,
2971
+ "grad_norm": 0.16479632258415222,
2972
+ "learning_rate": 5.6545132342136634e-05,
2973
+ "loss": 0.9983,
2974
+ "step": 411
2975
+ },
2976
+ {
2977
+ "epoch": 2.573248407643312,
2978
+ "grad_norm": 0.1586018204689026,
2979
+ "learning_rate": 5.608034111526298e-05,
2980
+ "loss": 1.0322,
2981
+ "step": 412
2982
+ },
2983
+ {
2984
+ "epoch": 2.5796178343949046,
2985
+ "grad_norm": 0.16549105942249298,
2986
+ "learning_rate": 5.561672249024988e-05,
2987
+ "loss": 0.9938,
2988
+ "step": 413
2989
+ },
2990
+ {
2991
+ "epoch": 2.5859872611464967,
2992
+ "grad_norm": 0.16589821875095367,
2993
+ "learning_rate": 5.515428884515494e-05,
2994
+ "loss": 1.0039,
2995
+ "step": 414
2996
+ },
2997
+ {
2998
+ "epoch": 2.5923566878980893,
2999
+ "grad_norm": 0.16915416717529297,
3000
+ "learning_rate": 5.469305252639796e-05,
3001
+ "loss": 1.0109,
3002
+ "step": 415
3003
+ },
3004
+ {
3005
+ "epoch": 2.5987261146496814,
3006
+ "grad_norm": 0.1557624787092209,
3007
+ "learning_rate": 5.423302584843186e-05,
3008
+ "loss": 0.9918,
3009
+ "step": 416
3010
+ },
3011
+ {
3012
+ "epoch": 2.605095541401274,
3013
+ "grad_norm": 0.16412273049354553,
3014
+ "learning_rate": 5.377422109341332e-05,
3015
+ "loss": 1.016,
3016
+ "step": 417
3017
+ },
3018
+ {
3019
+ "epoch": 2.611464968152866,
3020
+ "grad_norm": 0.163206547498703,
3021
+ "learning_rate": 5.331665051087549e-05,
3022
+ "loss": 1.0528,
3023
+ "step": 418
3024
+ },
3025
+ {
3026
+ "epoch": 2.6178343949044587,
3027
+ "grad_norm": 0.16450117528438568,
3028
+ "learning_rate": 5.286032631740023e-05,
3029
+ "loss": 1.0314,
3030
+ "step": 419
3031
+ },
3032
+ {
3033
+ "epoch": 2.624203821656051,
3034
+ "grad_norm": 0.16499797999858856,
3035
+ "learning_rate": 5.240526069629265e-05,
3036
+ "loss": 0.985,
3037
+ "step": 420
3038
+ },
3039
+ {
3040
+ "epoch": 2.6305732484076434,
3041
+ "grad_norm": 0.17124028503894806,
3042
+ "learning_rate": 5.19514657972553e-05,
3043
+ "loss": 0.9932,
3044
+ "step": 421
3045
+ },
3046
+ {
3047
+ "epoch": 2.6369426751592355,
3048
+ "grad_norm": 0.1563197821378708,
3049
+ "learning_rate": 5.149895373606405e-05,
3050
+ "loss": 1.0221,
3051
+ "step": 422
3052
+ },
3053
+ {
3054
+ "epoch": 2.643312101910828,
3055
+ "grad_norm": 0.16314244270324707,
3056
+ "learning_rate": 5.104773659424453e-05,
3057
+ "loss": 1.0274,
3058
+ "step": 423
3059
+ },
3060
+ {
3061
+ "epoch": 2.6496815286624202,
3062
+ "grad_norm": 0.16842271387577057,
3063
+ "learning_rate": 5.059782641874962e-05,
3064
+ "loss": 0.9844,
3065
+ "step": 424
3066
+ },
3067
+ {
3068
+ "epoch": 2.656050955414013,
3069
+ "grad_norm": 0.16713784635066986,
3070
+ "learning_rate": 5.0149235221637724e-05,
3071
+ "loss": 1.0368,
3072
+ "step": 425
3073
+ },
3074
+ {
3075
+ "epoch": 2.662420382165605,
3076
+ "grad_norm": 0.16381680965423584,
3077
+ "learning_rate": 4.970197497975216e-05,
3078
+ "loss": 0.9824,
3079
+ "step": 426
3080
+ },
3081
+ {
3082
+ "epoch": 2.6687898089171975,
3083
+ "grad_norm": 0.15927736461162567,
3084
+ "learning_rate": 4.92560576344013e-05,
3085
+ "loss": 1.0187,
3086
+ "step": 427
3087
+ },
3088
+ {
3089
+ "epoch": 2.6751592356687897,
3090
+ "grad_norm": 0.17020700871944427,
3091
+ "learning_rate": 4.8811495091039926e-05,
3092
+ "loss": 1.0174,
3093
+ "step": 428
3094
+ },
3095
+ {
3096
+ "epoch": 2.6815286624203822,
3097
+ "grad_norm": 0.1601068079471588,
3098
+ "learning_rate": 4.836829921895103e-05,
3099
+ "loss": 1.0177,
3100
+ "step": 429
3101
+ },
3102
+ {
3103
+ "epoch": 2.6878980891719744,
3104
+ "grad_norm": 0.15823066234588623,
3105
+ "learning_rate": 4.792648185092937e-05,
3106
+ "loss": 1.0062,
3107
+ "step": 430
3108
+ },
3109
+ {
3110
+ "epoch": 2.694267515923567,
3111
+ "grad_norm": 0.15921784937381744,
3112
+ "learning_rate": 4.748605478296507e-05,
3113
+ "loss": 1.0211,
3114
+ "step": 431
3115
+ },
3116
+ {
3117
+ "epoch": 2.700636942675159,
3118
+ "grad_norm": 0.1611403077840805,
3119
+ "learning_rate": 4.704702977392914e-05,
3120
+ "loss": 0.9955,
3121
+ "step": 432
3122
+ },
3123
+ {
3124
+ "epoch": 2.7070063694267517,
3125
+ "grad_norm": 0.16314539313316345,
3126
+ "learning_rate": 4.660941854525917e-05,
3127
+ "loss": 0.9749,
3128
+ "step": 433
3129
+ },
3130
+ {
3131
+ "epoch": 2.713375796178344,
3132
+ "grad_norm": 0.161176398396492,
3133
+ "learning_rate": 4.617323278064657e-05,
3134
+ "loss": 1.0242,
3135
+ "step": 434
3136
+ },
3137
+ {
3138
+ "epoch": 2.7197452229299364,
3139
+ "grad_norm": 0.16189491748809814,
3140
+ "learning_rate": 4.573848412572458e-05,
3141
+ "loss": 1.0461,
3142
+ "step": 435
3143
+ },
3144
+ {
3145
+ "epoch": 2.7261146496815285,
3146
+ "grad_norm": 0.16615349054336548,
3147
+ "learning_rate": 4.530518418775733e-05,
3148
+ "loss": 1.0072,
3149
+ "step": 436
3150
+ },
3151
+ {
3152
+ "epoch": 2.732484076433121,
3153
+ "grad_norm": 0.16004875302314758,
3154
+ "learning_rate": 4.4873344535329976e-05,
3155
+ "loss": 0.9512,
3156
+ "step": 437
3157
+ },
3158
+ {
3159
+ "epoch": 2.738853503184713,
3160
+ "grad_norm": 0.16015282273292542,
3161
+ "learning_rate": 4.444297669803981e-05,
3162
+ "loss": 1.0274,
3163
+ "step": 438
3164
+ },
3165
+ {
3166
+ "epoch": 2.745222929936306,
3167
+ "grad_norm": 0.16400328278541565,
3168
+ "learning_rate": 4.401409216618837e-05,
3169
+ "loss": 1.0202,
3170
+ "step": 439
3171
+ },
3172
+ {
3173
+ "epoch": 2.7515923566878984,
3174
+ "grad_norm": 0.16385433077812195,
3175
+ "learning_rate": 4.35867023904749e-05,
3176
+ "loss": 0.992,
3177
+ "step": 440
3178
+ },
3179
+ {
3180
+ "epoch": 2.7515923566878984,
3181
+ "eval_loss": 0.9724947810173035,
3182
+ "eval_runtime": 19.3397,
3183
+ "eval_samples_per_second": 56.464,
3184
+ "eval_steps_per_second": 0.931,
3185
+ "step": 440
3186
+ },
3187
+ {
3188
+ "epoch": 2.7579617834394905,
3189
+ "grad_norm": 0.15915533900260925,
3190
+ "learning_rate": 4.316081878169028e-05,
3191
+ "loss": 0.9942,
3192
+ "step": 441
3193
+ },
3194
+ {
3195
+ "epoch": 2.7643312101910826,
3196
+ "grad_norm": 0.1640160232782364,
3197
+ "learning_rate": 4.273645271041265e-05,
3198
+ "loss": 1.0249,
3199
+ "step": 442
3200
+ },
3201
+ {
3202
+ "epoch": 2.770700636942675,
3203
+ "grad_norm": 0.16595910489559174,
3204
+ "learning_rate": 4.231361550670368e-05,
3205
+ "loss": 0.9731,
3206
+ "step": 443
3207
+ },
3208
+ {
3209
+ "epoch": 2.777070063694268,
3210
+ "grad_norm": 0.16304102540016174,
3211
+ "learning_rate": 4.189231845980618e-05,
3212
+ "loss": 0.9744,
3213
+ "step": 444
3214
+ },
3215
+ {
3216
+ "epoch": 2.78343949044586,
3217
+ "grad_norm": 0.16614365577697754,
3218
+ "learning_rate": 4.147257281784257e-05,
3219
+ "loss": 1.0322,
3220
+ "step": 445
3221
+ },
3222
+ {
3223
+ "epoch": 2.789808917197452,
3224
+ "grad_norm": 0.16803008317947388,
3225
+ "learning_rate": 4.105438978751465e-05,
3226
+ "loss": 1.0433,
3227
+ "step": 446
3228
+ },
3229
+ {
3230
+ "epoch": 2.7961783439490446,
3231
+ "grad_norm": 0.16848289966583252,
3232
+ "learning_rate": 4.063778053380446e-05,
3233
+ "loss": 1.0024,
3234
+ "step": 447
3235
+ },
3236
+ {
3237
+ "epoch": 2.802547770700637,
3238
+ "grad_norm": 0.1626000553369522,
3239
+ "learning_rate": 4.022275617967591e-05,
3240
+ "loss": 1.0139,
3241
+ "step": 448
3242
+ },
3243
+ {
3244
+ "epoch": 2.8089171974522293,
3245
+ "grad_norm": 0.16323398053646088,
3246
+ "learning_rate": 3.980932780577826e-05,
3247
+ "loss": 0.9812,
3248
+ "step": 449
3249
+ },
3250
+ {
3251
+ "epoch": 2.8152866242038215,
3252
+ "grad_norm": 0.16567878425121307,
3253
+ "learning_rate": 3.939750645014977e-05,
3254
+ "loss": 1.0059,
3255
+ "step": 450
3256
+ },
3257
+ {
3258
+ "epoch": 2.821656050955414,
3259
+ "grad_norm": 0.16283658146858215,
3260
+ "learning_rate": 3.8987303107923456e-05,
3261
+ "loss": 0.975,
3262
+ "step": 451
3263
+ },
3264
+ {
3265
+ "epoch": 2.8280254777070066,
3266
+ "grad_norm": 0.162727952003479,
3267
+ "learning_rate": 3.857872873103322e-05,
3268
+ "loss": 1.0087,
3269
+ "step": 452
3270
+ },
3271
+ {
3272
+ "epoch": 2.8343949044585988,
3273
+ "grad_norm": 0.16250313818454742,
3274
+ "learning_rate": 3.817179422792159e-05,
3275
+ "loss": 1.0225,
3276
+ "step": 453
3277
+ },
3278
+ {
3279
+ "epoch": 2.840764331210191,
3280
+ "grad_norm": 0.17140831053256989,
3281
+ "learning_rate": 3.776651046324843e-05,
3282
+ "loss": 1.0445,
3283
+ "step": 454
3284
+ },
3285
+ {
3286
+ "epoch": 2.8471337579617835,
3287
+ "grad_norm": 0.16704216599464417,
3288
+ "learning_rate": 3.7362888257600895e-05,
3289
+ "loss": 1.0108,
3290
+ "step": 455
3291
+ },
3292
+ {
3293
+ "epoch": 2.853503184713376,
3294
+ "grad_norm": 0.16444292664527893,
3295
+ "learning_rate": 3.69609383872045e-05,
3296
+ "loss": 1.0357,
3297
+ "step": 456
3298
+ },
3299
+ {
3300
+ "epoch": 2.859872611464968,
3301
+ "grad_norm": 0.163473442196846,
3302
+ "learning_rate": 3.6560671583635467e-05,
3303
+ "loss": 1.0211,
3304
+ "step": 457
3305
+ },
3306
+ {
3307
+ "epoch": 2.8662420382165603,
3308
+ "grad_norm": 0.1613229364156723,
3309
+ "learning_rate": 3.616209853353409e-05,
3310
+ "loss": 1.0095,
3311
+ "step": 458
3312
+ },
3313
+ {
3314
+ "epoch": 2.872611464968153,
3315
+ "grad_norm": 0.16236041486263275,
3316
+ "learning_rate": 3.576522987831965e-05,
3317
+ "loss": 1.0443,
3318
+ "step": 459
3319
+ },
3320
+ {
3321
+ "epoch": 2.8789808917197455,
3322
+ "grad_norm": 0.1598891168832779,
3323
+ "learning_rate": 3.53700762139059e-05,
3324
+ "loss": 1.0239,
3325
+ "step": 460
3326
+ },
3327
+ {
3328
+ "epoch": 2.8853503184713376,
3329
+ "grad_norm": 0.159934863448143,
3330
+ "learning_rate": 3.4976648090418685e-05,
3331
+ "loss": 0.9633,
3332
+ "step": 461
3333
+ },
3334
+ {
3335
+ "epoch": 2.8917197452229297,
3336
+ "grad_norm": 0.16620267927646637,
3337
+ "learning_rate": 3.4584956011913696e-05,
3338
+ "loss": 1.0087,
3339
+ "step": 462
3340
+ },
3341
+ {
3342
+ "epoch": 2.8980891719745223,
3343
+ "grad_norm": 0.15960000455379486,
3344
+ "learning_rate": 3.419501043609662e-05,
3345
+ "loss": 1.0176,
3346
+ "step": 463
3347
+ },
3348
+ {
3349
+ "epoch": 2.904458598726115,
3350
+ "grad_norm": 0.16119760274887085,
3351
+ "learning_rate": 3.380682177404335e-05,
3352
+ "loss": 0.9979,
3353
+ "step": 464
3354
+ },
3355
+ {
3356
+ "epoch": 2.910828025477707,
3357
+ "grad_norm": 0.16766443848609924,
3358
+ "learning_rate": 3.342040038992253e-05,
3359
+ "loss": 1.0253,
3360
+ "step": 465
3361
+ },
3362
+ {
3363
+ "epoch": 2.917197452229299,
3364
+ "grad_norm": 0.16117678582668304,
3365
+ "learning_rate": 3.303575660071852e-05,
3366
+ "loss": 0.9819,
3367
+ "step": 466
3368
+ },
3369
+ {
3370
+ "epoch": 2.9235668789808917,
3371
+ "grad_norm": 0.16629359126091003,
3372
+ "learning_rate": 3.2652900675956e-05,
3373
+ "loss": 1.0317,
3374
+ "step": 467
3375
+ },
3376
+ {
3377
+ "epoch": 2.9299363057324843,
3378
+ "grad_norm": 0.15698491036891937,
3379
+ "learning_rate": 3.227184283742591e-05,
3380
+ "loss": 1.0077,
3381
+ "step": 468
3382
+ },
3383
+ {
3384
+ "epoch": 2.9363057324840764,
3385
+ "grad_norm": 0.16256022453308105,
3386
+ "learning_rate": 3.1892593258912406e-05,
3387
+ "loss": 1.0033,
3388
+ "step": 469
3389
+ },
3390
+ {
3391
+ "epoch": 2.9426751592356686,
3392
+ "grad_norm": 0.16279557347297668,
3393
+ "learning_rate": 3.1515162065921276e-05,
3394
+ "loss": 1.0041,
3395
+ "step": 470
3396
+ },
3397
+ {
3398
+ "epoch": 2.949044585987261,
3399
+ "grad_norm": 0.1671912968158722,
3400
+ "learning_rate": 3.113955933540973e-05,
3401
+ "loss": 1.02,
3402
+ "step": 471
3403
+ }
3404
+ ],
3405
+ "logging_steps": 1,
3406
+ "max_steps": 628,
3407
+ "num_input_tokens_seen": 0,
3408
+ "num_train_epochs": 4,
3409
+ "save_steps": 157,
3410
+ "total_flos": 6.144816845642957e+17,
3411
+ "train_batch_size": 64,
3412
+ "trial_name": null,
3413
+ "trial_params": null
3414
+ }
checkpoint-471/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3ec2d42f7297673d946070db22cc38c40ecdb7e5fb5b23a335c46b1268e0b80
3
+ size 5816
checkpoint-628/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: openlm-research/open_llama_3b_v2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-628/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_3b_v2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "gate_proj",
27
+ "down_proj",
28
+ "up_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-628/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66693d9662800d6ea9cbdbbe104239ccf19ffc74a7ae9d3c84ccf1eb4619e903
3
+ size 50899792
checkpoint-628/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1888d6063aba805ea1e66fc00e3ee8489d1c9a9670a5f92a6ca9d9d01f2c797
3
+ size 25871876
checkpoint-628/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9afbf853352cfbcfea61884ff6a2ddcd2aee1ce8618589cf5b56912c1b160011
3
+ size 14244
checkpoint-628/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27b5ff522ca195b4d045a3bbae9ec1a3713d4653eb5dd22b56677a79af604b26
3
+ size 1064
checkpoint-628/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-628/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-628/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }
checkpoint-628/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-628/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3ec2d42f7297673d946070db22cc38c40ecdb7e5fb5b23a335c46b1268e0b80
3
+ size 5816
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openlm-research/open_llama_3b_v2",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3200,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8640,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 26,
18
+ "num_key_value_heads": 32,
19
+ "pad_token_id": 0,
20
+ "pretraining_tp": 1,
21
+ "quantization_config": {
22
+ "_load_in_4bit": false,
23
+ "_load_in_8bit": true,
24
+ "bnb_4bit_compute_dtype": "float32",
25
+ "bnb_4bit_quant_storage": "uint8",
26
+ "bnb_4bit_quant_type": "fp4",
27
+ "bnb_4bit_use_double_quant": false,
28
+ "llm_int8_enable_fp32_cpu_offload": false,
29
+ "llm_int8_has_fp16_weight": false,
30
+ "llm_int8_skip_modules": null,
31
+ "llm_int8_threshold": 6.0,
32
+ "load_in_4bit": false,
33
+ "load_in_8bit": true,
34
+ "quant_method": "bitsandbytes"
35
+ },
36
+ "rms_norm_eps": 1e-06,
37
+ "rope_scaling": null,
38
+ "rope_theta": 10000.0,
39
+ "tie_word_embeddings": false,
40
+ "torch_dtype": "float16",
41
+ "transformers_version": "4.40.2",
42
+ "use_cache": false,
43
+ "vocab_size": 32000
44
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574