--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openlm-research/open_llama_3b_v2 model-index: - name: outputs/lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: openlm-research/open_llama_3b_v2 model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false push_dataset_to_hub: datasets: - path: teknium/GPT4-LLM-Cleaned type: alpaca dataset_prepared_path: val_set_size: 0.02 adapter: lora lora_model_dir: sequence_len: 1024 sample_packing: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.0 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./outputs/lora-out gradient_accumulation_steps: 1 micro_batch_size: 64 num_epochs: 4 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: s2_attention: gptq_model_v1: warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# outputs/lora-out This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3031 | 0.0064 | 1 | 1.5004 | | 1.1084 | 0.2548 | 40 | 1.1224 | | 1.0912 | 0.5096 | 80 | 1.0586 | | 1.0727 | 0.7643 | 120 | 1.0301 | | 1.0438 | 1.0191 | 160 | 1.0126 | | 1.0126 | 1.2484 | 200 | 1.0035 | | 1.048 | 1.5032 | 240 | 0.9938 | | 1.0839 | 1.7580 | 280 | 0.9859 | | 1.0817 | 2.0127 | 320 | 0.9801 | | 1.0115 | 2.2420 | 360 | 0.9788 | | 1.0356 | 2.4968 | 400 | 0.9730 | | 0.992 | 2.7516 | 440 | 0.9725 | | 1.0219 | 3.0064 | 480 | 0.9682 | | 0.9637 | 3.2357 | 520 | 0.9707 | | 1.0085 | 3.4904 | 560 | 0.9698 | | 0.9547 | 3.7452 | 600 | 0.9697 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1