Upload folder using huggingface_hub
Browse files- 16_03_t2v_140_tgst1k_loras/epoch20/16_03_t2v_140_tgst1k_config.toml +65 -0
- 16_03_t2v_140_tgst1k_loras/epoch20/adapter_config.json +36 -0
- 16_03_t2v_140_tgst1k_loras/epoch20/adapter_model.safetensors +3 -0
- 16_03_t2v_140_tgst1k_loras/epoch25/16_03_t2v_140_tgst1k_config.toml +65 -0
- 16_03_t2v_140_tgst1k_loras/epoch25/adapter_config.json +36 -0
- 16_03_t2v_140_tgst1k_loras/epoch25/adapter_model.safetensors +3 -0
- 16_03_t2v_140_tgst1k_loras/epoch30/16_03_t2v_140_tgst1k_config.toml +65 -0
- 16_03_t2v_140_tgst1k_loras/epoch30/adapter_config.json +36 -0
- 16_03_t2v_140_tgst1k_loras/epoch30/adapter_model.safetensors +3 -0
16_03_t2v_140_tgst1k_loras/epoch20/16_03_t2v_140_tgst1k_config.toml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir = '/workspace/output_models/16_03_t2v_140_tgst1k_model'
|
2 |
+
|
3 |
+
# Dataset config file.
|
4 |
+
dataset = 'examples/16_03_t2v_140_tgst1k_dataset.toml'
|
5 |
+
|
6 |
+
# training settings
|
7 |
+
|
8 |
+
epochs = 30
|
9 |
+
micro_batch_size_per_gpu = 1
|
10 |
+
pipeline_stages = 1
|
11 |
+
# Number of micro-batches sent through the pipeline for each training step.
|
12 |
+
# If pipeline_stages > 1, a higher GAS means better GPU utilization due to smaller pipeline bubbles (where GPUs aren't overlapping computation).
|
13 |
+
gradient_accumulation_steps = 1
|
14 |
+
# Grad norm clipping.
|
15 |
+
gradient_clipping = 1.0
|
16 |
+
# Learning rate warmup.
|
17 |
+
warmup_steps = 100
|
18 |
+
|
19 |
+
# Block swapping is supported for Wan, HunyuanVideo, Flux, and Chroma. This value controls the number
|
20 |
+
# of blocks kept offloaded to RAM. Increasing it lowers VRAM use, but has a performance penalty. The
|
21 |
+
# exactly performance penalty depends on the model and the type of training you are doing (e.g. images vs video).
|
22 |
+
# Block swapping only works for LoRA training, and requires pipeline_stages=1.
|
23 |
+
#blocks_to_swap = 20
|
24 |
+
|
25 |
+
# eval settings
|
26 |
+
|
27 |
+
eval_every_n_epochs = 1
|
28 |
+
eval_before_first_step = true
|
29 |
+
# Might want to set these lower for eval so that less images get dropped (eval dataset size is usually much smaller than training set).
|
30 |
+
# Each size bucket of images/videos is rounded down to the nearest multiple of the global batch size, so higher global batch size means
|
31 |
+
# more dropped images. Usually doesn't matter for training but the eval set is much smaller so it can matter.
|
32 |
+
eval_micro_batch_size_per_gpu = 1
|
33 |
+
eval_gradient_accumulation_steps = 1
|
34 |
+
|
35 |
+
# misc settings
|
36 |
+
|
37 |
+
save_every_n_epochs = 5
|
38 |
+
checkpoint_every_n_minutes = 20
|
39 |
+
activation_checkpointing = true
|
40 |
+
# Controls how Deepspeed decides how to divide layers across GPUs. Probably don't change this.
|
41 |
+
partition_method = 'parameters'
|
42 |
+
save_dtype = 'bfloat16'
|
43 |
+
# Batch size for caching latents and text embeddings. Increasing can lead to higher GPU utilization during caching phase but uses more memory.
|
44 |
+
caching_batch_size = 1
|
45 |
+
steps_per_print = 1
|
46 |
+
video_clip_mode = 'single_beginning'
|
47 |
+
|
48 |
+
[model]
|
49 |
+
type = 'wan'
|
50 |
+
ckpt_path = '/workspace/models/wan21t2v'
|
51 |
+
dtype = 'bfloat16'
|
52 |
+
timestep_sample_method = 'logit_normal'
|
53 |
+
|
54 |
+
[adapter]
|
55 |
+
type = 'lora'
|
56 |
+
rank = 32
|
57 |
+
# Dtype for the LoRA weights you are training.
|
58 |
+
dtype = 'bfloat16'
|
59 |
+
|
60 |
+
[optimizer]
|
61 |
+
type = 'adamw_optimi'
|
62 |
+
lr = 1e-4
|
63 |
+
betas = [0.9, 0.99]
|
64 |
+
weight_decay = 0.01
|
65 |
+
eps = 1e-8
|
16_03_t2v_140_tgst1k_loras/epoch20/adapter_config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": null,
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": false,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 32,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"v",
|
27 |
+
"q",
|
28 |
+
"k",
|
29 |
+
"ffn.2",
|
30 |
+
"o",
|
31 |
+
"ffn.0"
|
32 |
+
],
|
33 |
+
"task_type": null,
|
34 |
+
"use_dora": false,
|
35 |
+
"use_rslora": false
|
36 |
+
}
|
16_03_t2v_140_tgst1k_loras/epoch20/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b79fd8f8675b0835fccd51ad0f43100bc58f83f91cf0f915a5a98b22ba2e36b9
|
3 |
+
size 306807976
|
16_03_t2v_140_tgst1k_loras/epoch25/16_03_t2v_140_tgst1k_config.toml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir = '/workspace/output_models/16_03_t2v_140_tgst1k_model'
|
2 |
+
|
3 |
+
# Dataset config file.
|
4 |
+
dataset = 'examples/16_03_t2v_140_tgst1k_dataset.toml'
|
5 |
+
|
6 |
+
# training settings
|
7 |
+
|
8 |
+
epochs = 30
|
9 |
+
micro_batch_size_per_gpu = 1
|
10 |
+
pipeline_stages = 1
|
11 |
+
# Number of micro-batches sent through the pipeline for each training step.
|
12 |
+
# If pipeline_stages > 1, a higher GAS means better GPU utilization due to smaller pipeline bubbles (where GPUs aren't overlapping computation).
|
13 |
+
gradient_accumulation_steps = 1
|
14 |
+
# Grad norm clipping.
|
15 |
+
gradient_clipping = 1.0
|
16 |
+
# Learning rate warmup.
|
17 |
+
warmup_steps = 100
|
18 |
+
|
19 |
+
# Block swapping is supported for Wan, HunyuanVideo, Flux, and Chroma. This value controls the number
|
20 |
+
# of blocks kept offloaded to RAM. Increasing it lowers VRAM use, but has a performance penalty. The
|
21 |
+
# exactly performance penalty depends on the model and the type of training you are doing (e.g. images vs video).
|
22 |
+
# Block swapping only works for LoRA training, and requires pipeline_stages=1.
|
23 |
+
#blocks_to_swap = 20
|
24 |
+
|
25 |
+
# eval settings
|
26 |
+
|
27 |
+
eval_every_n_epochs = 1
|
28 |
+
eval_before_first_step = true
|
29 |
+
# Might want to set these lower for eval so that less images get dropped (eval dataset size is usually much smaller than training set).
|
30 |
+
# Each size bucket of images/videos is rounded down to the nearest multiple of the global batch size, so higher global batch size means
|
31 |
+
# more dropped images. Usually doesn't matter for training but the eval set is much smaller so it can matter.
|
32 |
+
eval_micro_batch_size_per_gpu = 1
|
33 |
+
eval_gradient_accumulation_steps = 1
|
34 |
+
|
35 |
+
# misc settings
|
36 |
+
|
37 |
+
save_every_n_epochs = 5
|
38 |
+
checkpoint_every_n_minutes = 20
|
39 |
+
activation_checkpointing = true
|
40 |
+
# Controls how Deepspeed decides how to divide layers across GPUs. Probably don't change this.
|
41 |
+
partition_method = 'parameters'
|
42 |
+
save_dtype = 'bfloat16'
|
43 |
+
# Batch size for caching latents and text embeddings. Increasing can lead to higher GPU utilization during caching phase but uses more memory.
|
44 |
+
caching_batch_size = 1
|
45 |
+
steps_per_print = 1
|
46 |
+
video_clip_mode = 'single_beginning'
|
47 |
+
|
48 |
+
[model]
|
49 |
+
type = 'wan'
|
50 |
+
ckpt_path = '/workspace/models/wan21t2v'
|
51 |
+
dtype = 'bfloat16'
|
52 |
+
timestep_sample_method = 'logit_normal'
|
53 |
+
|
54 |
+
[adapter]
|
55 |
+
type = 'lora'
|
56 |
+
rank = 32
|
57 |
+
# Dtype for the LoRA weights you are training.
|
58 |
+
dtype = 'bfloat16'
|
59 |
+
|
60 |
+
[optimizer]
|
61 |
+
type = 'adamw_optimi'
|
62 |
+
lr = 1e-4
|
63 |
+
betas = [0.9, 0.99]
|
64 |
+
weight_decay = 0.01
|
65 |
+
eps = 1e-8
|
16_03_t2v_140_tgst1k_loras/epoch25/adapter_config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": null,
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": false,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 32,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"v",
|
27 |
+
"q",
|
28 |
+
"k",
|
29 |
+
"ffn.2",
|
30 |
+
"o",
|
31 |
+
"ffn.0"
|
32 |
+
],
|
33 |
+
"task_type": null,
|
34 |
+
"use_dora": false,
|
35 |
+
"use_rslora": false
|
36 |
+
}
|
16_03_t2v_140_tgst1k_loras/epoch25/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3564330ebbe0fe3f0019f6cfa34fcec8bef4c404b8b0e090e7267b0f8c5155ca
|
3 |
+
size 306807976
|
16_03_t2v_140_tgst1k_loras/epoch30/16_03_t2v_140_tgst1k_config.toml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output_dir = '/workspace/output_models/16_03_t2v_140_tgst1k_model'
|
2 |
+
|
3 |
+
# Dataset config file.
|
4 |
+
dataset = 'examples/16_03_t2v_140_tgst1k_dataset.toml'
|
5 |
+
|
6 |
+
# training settings
|
7 |
+
|
8 |
+
epochs = 30
|
9 |
+
micro_batch_size_per_gpu = 1
|
10 |
+
pipeline_stages = 1
|
11 |
+
# Number of micro-batches sent through the pipeline for each training step.
|
12 |
+
# If pipeline_stages > 1, a higher GAS means better GPU utilization due to smaller pipeline bubbles (where GPUs aren't overlapping computation).
|
13 |
+
gradient_accumulation_steps = 1
|
14 |
+
# Grad norm clipping.
|
15 |
+
gradient_clipping = 1.0
|
16 |
+
# Learning rate warmup.
|
17 |
+
warmup_steps = 100
|
18 |
+
|
19 |
+
# Block swapping is supported for Wan, HunyuanVideo, Flux, and Chroma. This value controls the number
|
20 |
+
# of blocks kept offloaded to RAM. Increasing it lowers VRAM use, but has a performance penalty. The
|
21 |
+
# exactly performance penalty depends on the model and the type of training you are doing (e.g. images vs video).
|
22 |
+
# Block swapping only works for LoRA training, and requires pipeline_stages=1.
|
23 |
+
#blocks_to_swap = 20
|
24 |
+
|
25 |
+
# eval settings
|
26 |
+
|
27 |
+
eval_every_n_epochs = 1
|
28 |
+
eval_before_first_step = true
|
29 |
+
# Might want to set these lower for eval so that less images get dropped (eval dataset size is usually much smaller than training set).
|
30 |
+
# Each size bucket of images/videos is rounded down to the nearest multiple of the global batch size, so higher global batch size means
|
31 |
+
# more dropped images. Usually doesn't matter for training but the eval set is much smaller so it can matter.
|
32 |
+
eval_micro_batch_size_per_gpu = 1
|
33 |
+
eval_gradient_accumulation_steps = 1
|
34 |
+
|
35 |
+
# misc settings
|
36 |
+
|
37 |
+
save_every_n_epochs = 5
|
38 |
+
checkpoint_every_n_minutes = 20
|
39 |
+
activation_checkpointing = true
|
40 |
+
# Controls how Deepspeed decides how to divide layers across GPUs. Probably don't change this.
|
41 |
+
partition_method = 'parameters'
|
42 |
+
save_dtype = 'bfloat16'
|
43 |
+
# Batch size for caching latents and text embeddings. Increasing can lead to higher GPU utilization during caching phase but uses more memory.
|
44 |
+
caching_batch_size = 1
|
45 |
+
steps_per_print = 1
|
46 |
+
video_clip_mode = 'single_beginning'
|
47 |
+
|
48 |
+
[model]
|
49 |
+
type = 'wan'
|
50 |
+
ckpt_path = '/workspace/models/wan21t2v'
|
51 |
+
dtype = 'bfloat16'
|
52 |
+
timestep_sample_method = 'logit_normal'
|
53 |
+
|
54 |
+
[adapter]
|
55 |
+
type = 'lora'
|
56 |
+
rank = 32
|
57 |
+
# Dtype for the LoRA weights you are training.
|
58 |
+
dtype = 'bfloat16'
|
59 |
+
|
60 |
+
[optimizer]
|
61 |
+
type = 'adamw_optimi'
|
62 |
+
lr = 1e-4
|
63 |
+
betas = [0.9, 0.99]
|
64 |
+
weight_decay = 0.01
|
65 |
+
eps = 1e-8
|
16_03_t2v_140_tgst1k_loras/epoch30/adapter_config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": null,
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": false,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 32,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"v",
|
27 |
+
"q",
|
28 |
+
"k",
|
29 |
+
"ffn.2",
|
30 |
+
"o",
|
31 |
+
"ffn.0"
|
32 |
+
],
|
33 |
+
"task_type": null,
|
34 |
+
"use_dora": false,
|
35 |
+
"use_rslora": false
|
36 |
+
}
|
16_03_t2v_140_tgst1k_loras/epoch30/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a15b497bd5612f5c1193de2165b58933fa349cc143217a29f21be6f308fb27a
|
3 |
+
size 306807976
|