|
--- |
|
license: apache-2.0 |
|
base_model: google/electra-small-discriminator |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: nguyennghia0902/electra-small-discriminator_0.0005_16 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# nguyennghia0902/electra-small-discriminator_0.0005_16 |
|
|
|
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 1.2099 |
|
- Train End Logits Accuracy: 0.6982 |
|
- Train Start Logits Accuracy: 0.6666 |
|
- Validation Loss: 0.7830 |
|
- Validation End Logits Accuracy: 0.7964 |
|
- Validation Start Logits Accuracy: 0.7852 |
|
- Epoch: 9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 31270, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |
|
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| |
|
| 3.8593 | 0.1838 | 0.1690 | 2.9074 | 0.3506 | 0.3319 | 0 | |
|
| 3.0501 | 0.3257 | 0.2954 | 2.5522 | 0.4171 | 0.3859 | 1 | |
|
| 2.7183 | 0.3845 | 0.3534 | 2.2123 | 0.4803 | 0.4547 | 2 | |
|
| 2.4780 | 0.4325 | 0.4004 | 1.9826 | 0.5248 | 0.5046 | 3 | |
|
| 2.2672 | 0.4747 | 0.4389 | 1.8034 | 0.5660 | 0.5425 | 4 | |
|
| 2.0640 | 0.5162 | 0.4814 | 1.5610 | 0.6207 | 0.6037 | 5 | |
|
| 1.8439 | 0.5608 | 0.5265 | 1.3128 | 0.6811 | 0.6639 | 6 | |
|
| 1.6214 | 0.6104 | 0.5736 | 1.0714 | 0.7326 | 0.7206 | 7 | |
|
| 1.3990 | 0.6574 | 0.6232 | 0.8891 | 0.7744 | 0.7630 | 8 | |
|
| 1.2099 | 0.6982 | 0.6666 | 0.7830 | 0.7964 | 0.7852 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|