mgoin commited on
Commit
a47b840
Β·
verified Β·
1 Parent(s): 72d256f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -2
README.md CHANGED
@@ -35,12 +35,40 @@ extra_gated_description: >-
35
  pipeline_tag: image-text-to-text
36
  ---
37
 
38
- Checkpoint of Mistral-Small-3.1-24B-Instruct-2503 with FP8 per-tensor quantization in the Mistral-format. Please run with vLLM like so:
 
 
39
  ```
40
  vllm serve nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --limit_mm_per_prompt 'image=10'
41
  ```
42
 
43
- # Model Card for Mistral-Small-3.1-24B-Instruct-2503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) **adds state-of-the-art vision understanding** and enhances **long context capabilities up to 128k tokens** without compromising text performance.
46
  With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.
 
35
  pipeline_tag: image-text-to-text
36
  ---
37
 
38
+ Checkpoint of Mistral-Small-3.1-24B-Instruct-2503 with FP8 per-tensor quantization in the Mistral-format.
39
+
40
+ Please run with vLLM like so:
41
  ```
42
  vllm serve nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --limit_mm_per_prompt 'image=10'
43
  ```
44
 
45
+ Evaluations against the unquantized baseline on ChartQA:
46
+ ```
47
+ vllm serve mistralai/Mistral-Small-3.1-24B-Instruct-2503 --tokenizer_mode mistral --config_format mistral --load_format mistral
48
+ python -m eval.run eval_vllm --model_name mistralai/Mistral-Small-3.1-24B-Instruct-2503 --url http://0.0.0.0:8000 --output_dir output/ --eval_name "chartqa"
49
+ Querying model: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2500/2500 [07:37<00:00, 5.47it/s]
50
+ ================================================================================
51
+ Metrics:
52
+ {
53
+ "explicit_prompt_relaxed_correctness": 0.8604,
54
+ "anywhere_in_answer_relaxed_correctness": 0.8604
55
+ }
56
+ ================================================================================
57
+
58
+ vllm serve nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8 --tokenizer_mode mistral --config_format mistral --load_format mistral
59
+ python -m eval.run eval_vllm --model_name nm-testing/Mistral-Small-3.1-24B-Instruct-2503-FP8 --url http://0.0.0.0:8000 --output_dir output/ --eval_name "chartqa"
60
+ Querying model: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2500/2500 [06:37<00:00, 6.28it/s]
61
+ ================================================================================
62
+ Metrics:
63
+ {
64
+ "explicit_prompt_relaxed_correctness": 0.8596,
65
+ "anywhere_in_answer_relaxed_correctness": 0.86
66
+ }
67
+ ================================================================================
68
+ ```
69
+
70
+
71
+ # Original Model Card for Mistral-Small-3.1-24B-Instruct-2503
72
 
73
  Building upon Mistral Small 3 (2501), Mistral Small 3.1 (2503) **adds state-of-the-art vision understanding** and enhances **long context capabilities up to 128k tokens** without compromising text performance.
74
  With 24 billion parameters, this model achieves top-tier capabilities in both text and vision tasks.