--- library_name: transformers language: - kk license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small KK - Kazakh - Fleurs Augmented results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Fleurs type: google/fleurs config: kk_kz split: test args: 'config: kk, split: validation' metrics: - name: Wer type: wer value: 22.28911587634445 --- # Whisper Small KK - Kazakh - Fleurs Augmented This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2814 - Wer: 22.2891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3714 | 1.0 | 200 | 0.2556 | 23.7164 | | 0.2797 | 2.0 | 400 | 0.2565 | 23.1212 | | 0.1609 | 3.0 | 600 | 0.2644 | 22.2688 | | 0.084 | 4.0 | 800 | 0.2738 | 22.3906 | | 0.059 | 5.0 | 1000 | 0.2814 | 22.2891 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu118 - Datasets 3.3.2 - Tokenizers 0.21.0