--- library_name: transformers tags: - Inductive - Reasoning language: - en base_model: - meta-llama/Meta-Llama-3-8B-Instruct pipeline_tag: text-generation datasets: - nsadeq/redis_generate_rule_alignment - nsadeq/redis_generate_rule_sft - nsadeq/redis_follow_rule_sft --- # Model Card for Model ID ReDis-Llama is trained for improved inductive reasoning performance. ### Model Description - **Developed by:** Nafis Sadeq - **Language(s) (NLP):** English - **Finetuned from model:** meta-llama/Meta-Llama-3-8B-Instruct ### Model Sources [optional] - **Repository:** https://github.com/NafisSadeq/reasoning-distillation - **Paper:** https://arxiv.org/abs/2504.10647 ## How to Get Started with the Model Follow the instructions here: https://github.com/NafisSadeq/reasoning-distillation ## Training Details Training details can be found in the paper: https://arxiv.org/abs/2504.10647 ## Environmental Impact - **Hardware Type:** 2 × 48 GB Nvidia RTX A6000 GPUs - **Hours used:** 72 hours ### Model Architecture and Objective This model has the same architecture as meta-llama/Meta-Llama-3-8B-Instruct ### Compute Infrastructure 2 × 48 GB Nvidia RTX A6000 GPUs ## Citation If you use this model, please cite the following paper. @misc{sadeq2025improvingincontextlearningreasoning, title={Improving In-Context Learning with Reasoning Distillation}, author={Nafis Sadeq and Xin Xu and Zhouhang Xie and Julian McAuley and Byungkyu Kang and Prarit Lamba and Xiang Gao}, year={2025}, eprint={2504.10647}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.10647}, }