File size: 2,574 Bytes
33a4fc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf755a3
 
33a4fc6
 
bf755a3
 
 
 
 
 
 
 
 
 
 
33a4fc6
 
 
 
 
 
 
 
 
bf755a3
 
 
 
 
 
33a4fc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf755a3
 
 
 
 
 
 
 
 
 
33a4fc6
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: peft
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- ntnu-smil/sandi2025-ds
metrics:
- wer
model-index:
- name: whisper-large-v3-sandi-3k-1024-28steps
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: ntnu-smil/sandi2025-ds
      type: ntnu-smil/sandi2025-ds
    metrics:
    - type: wer
      value: 78.0237561916606
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-sandi-3k-1024-28steps

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ntnu-smil/sandi2025-ds dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0370
- Wer: 78.0238
- Cer: 215.7449
- Decode Runtime: 252.2954
- Wer Runtime: 0.1988
- Cer Runtime: 0.4668

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 28

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     | Cer      | Decode Runtime | Wer Runtime | Cer Runtime |
|:-------------:|:------:|:----:|:---------------:|:-------:|:--------:|:--------------:|:-----------:|:-----------:|
| 2.6493        | 2.0357 | 7    | 1.3706          | 67.2148 | 209.8014 | 252.1421       | 0.2012      | 0.4813      |
| 1.1778        | 4.0714 | 14   | 1.1881          | 82.9771 | 226.7708 | 259.9550       | 0.1999      | 0.4853      |
| 0.9983        | 6.1071 | 21   | 1.0717          | 79.1953 | 220.4455 | 259.7244       | 0.2083      | 0.4860      |
| 1.9008        | 9.0357 | 28   | 1.0370          | 78.0238 | 215.7449 | 252.2954       | 0.1988      | 0.4668      |


### Framework versions

- PEFT 0.15.2
- Transformers 4.48.2
- Pytorch 2.4.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1