--- library_name: peft language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/sandi2025-ds metrics: - wer model-index: - name: whisper-large-v3-sandi-3k-1024-28steps results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/sandi2025-ds type: ntnu-smil/sandi2025-ds metrics: - type: wer value: 78.0237561916606 name: Wer --- # whisper-large-v3-sandi-3k-1024-28steps This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set: - Loss: 1.0370 - Wer: 78.0238 - Cer: 215.7449 - Decode Runtime: 252.2954 - Wer Runtime: 0.1988 - Cer Runtime: 0.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 1024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 28 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:------:|:----:|:---------------:|:-------:|:--------:|:--------------:|:-----------:|:-----------:| | 2.6493 | 2.0357 | 7 | 1.3706 | 67.2148 | 209.8014 | 252.1421 | 0.2012 | 0.4813 | | 1.1778 | 4.0714 | 14 | 1.1881 | 82.9771 | 226.7708 | 259.9550 | 0.1999 | 0.4853 | | 0.9983 | 6.1071 | 21 | 1.0717 | 79.1953 | 220.4455 | 259.7244 | 0.2083 | 0.4860 | | 1.9008 | 9.0357 | 28 | 1.0370 | 78.0238 | 215.7449 | 252.2954 | 0.1988 | 0.4668 | ### Framework versions - PEFT 0.15.2 - Transformers 4.48.2 - Pytorch 2.4.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1