File size: 2,583 Bytes
4c83b17
 
f78a5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c83b17
 
f78a5bc
 
4c83b17
f78a5bc
4c83b17
f78a5bc
 
 
 
 
 
 
 
4c83b17
f78a5bc
4c83b17
f78a5bc
4c83b17
f78a5bc
4c83b17
f78a5bc
4c83b17
f78a5bc
4c83b17
f78a5bc
4c83b17
f78a5bc
4c83b17
f78a5bc
4c83b17
f78a5bc
 
 
 
 
 
 
 
 
 
4c83b17
f78a5bc
4c83b17
f78a5bc
 
 
 
 
 
4c83b17
 
f78a5bc
4c83b17
f78a5bc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- ntnu-smil/sandi2025-ds
metrics:
- wer
model-index:
- name: whisper-large-v3-sandi-7k-1024-28steps
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: ntnu-smil/sandi2025-ds
      type: ntnu-smil/sandi2025-ds
    metrics:
    - type: wer
      value: 73.82367281180885
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-sandi-7k-1024-28steps

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ntnu-smil/sandi2025-ds dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0275
- Wer: 73.8237
- Cer: 203.1654
- Decode Runtime: 257.7123
- Wer Runtime: 0.2072
- Cer Runtime: 0.4935

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 28

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     | Cer      | Decode Runtime | Wer Runtime | Cer Runtime |
|:-------------:|:------:|:----:|:---------------:|:-------:|:--------:|:--------------:|:-----------:|:-----------:|
| 1.9026        | 1.0357 | 7    | 1.3670          | 70.5577 | 206.9010 | 266.1791       | 0.2147      | 0.5053      |
| 1.2477        | 2.0714 | 14   | 1.1783          | 86.2572 | 223.6346 | 268.9910       | 0.2241      | 0.5015      |
| 1.07          | 3.1071 | 21   | 1.0605          | 78.7713 | 211.1141 | 262.5822       | 0.2186      | 0.5076      |
| 1.0348        | 4.1429 | 28   | 1.0275          | 73.8237 | 203.1654 | 257.7123       | 0.2072      | 0.4935      |


### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.4.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1