File size: 9,803 Bytes
5a5dda2 bf41859 5a5dda2 97e0ce9 90e0439 5a5dda2 8c647a6 5a5dda2 97e0ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
datasets:
- nvidia/describe-anything-dataset
language:
- en
base_model:
- Efficient-Large-Model/VILA1.5-3b
pipeline_tag: image-text-to-text
license: other
license_name: nvidia-non-commercial-license
license_link: https://huggingface.co/nvidia/DAM-3B-Self-Contained/blob/main/LICENSE
---
# Describe Anything
**NVIDIA, UC Berkeley, UCSF**
[Long Lian](https://tonylian.com), [Yifan Ding](https://research.nvidia.com/person/yifan-ding), [Yunhao Ge](https://gyhandy.github.io/), [Sifei Liu](https://sifeiliu.net/), [Hanzi Mao](https://hanzimao.me/), [Boyi Li](https://sites.google.com/site/boyilics/home), [Marco Pavone](https://research.nvidia.com/person/marco-pavone), [Ming-Yu Liu](https://mingyuliu.net/), [Trevor Darrell](https://people.eecs.berkeley.edu/~trevor/), [Adam Yala](https://www.adamyala.org/), [Yin Cui](https://ycui.me/)
[[Paper](https://arxiv.org/abs/2504.16072)] | [[Code](https://github.com/NVlabs/describe-anything)] | [[Project Page](https://describe-anything.github.io/)] | [[Video](https://describe-anything.github.io/#video)] | [[HuggingFace Demo](https://huggingface.co/spaces/nvidia/describe-anything-model-demo)] | [[Model/Benchmark/Datasets](https://huggingface.co/collections/nvidia/describe-anything-680825bb8f5e41ff0785834c)] | [[Citation](#citation)]
An example code of inference using this self-contained model:
```python
# Copyright 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
import torch
import numpy as np
from PIL import Image
from transformers import SamModel, SamProcessor, AutoModel
import cv2
import requests
from io import BytesIO
def apply_sam(image, input_points=None, input_boxes=None, input_labels=None):
inputs = sam_processor(image, input_points=input_points, input_boxes=input_boxes,
input_labels=input_labels, return_tensors="pt").to(device)
with torch.no_grad():
outputs = sam_model(**inputs)
masks = sam_processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0]
scores = outputs.iou_scores[0, 0]
mask_selection_index = scores.argmax()
mask_np = masks[mask_selection_index].numpy()
return mask_np
def add_contour(img, mask, input_points=None, input_boxes=None):
img = img.copy()
mask = mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, (1.0, 1.0, 1.0), thickness=6)
if input_points is not None:
for points in input_points:
for x, y in points:
cv2.circle(img, (int(x), int(y)), radius=10, color=(1.0, 0.0, 0.0), thickness=-1)
cv2.circle(img, (int(x), int(y)), radius=10, color=(1.0, 1.0, 1.0), thickness=2)
if input_boxes is not None:
for box_batch in input_boxes:
for box in box_batch:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(img, (x1, y1), (x2, y2), color=(1.0, 1.0, 1.0), thickness=4)
cv2.rectangle(img, (x1, y1), (x2, y2), color=(1.0, 0.0, 0.0), thickness=2)
return img
def print_streaming(text):
print(text, end="", flush=True)
if __name__ == '__main__':
# Download the image via HTTP
image_url = 'https://github.com/NVlabs/describe-anything/blob/main/images/1.jpg?raw=true'
response = requests.get(image_url)
img = Image.open(BytesIO(response.content)).convert('RGB')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
image_size = img.size # (width, height)
# Initialize DAM model once
model = AutoModel.from_pretrained(
'nvidia/DAM-3B-Self-Contained',
trust_remote_code=True,
torch_dtype='torch.float16'
).to(device)
dam = model.init_dam(conv_mode='v1', prompt_mode='full+focal_crop')
# Define two runs: one with points, one with box
runs = [
{
'use_box': False,
'points': [[1172, 812], [1572, 800]],
'output_image_path': 'output_visualization_points.png'
},
{
'use_box': True,
'box': [800, 500, 1800, 1000],
'output_image_path': 'output_visualization_box.png'
}
]
for run in runs:
if run['use_box']:
# Prepare box input
coords = run['box']
input_boxes = [[coords]]
print(f"Running inference with input_boxes: {input_boxes}")
mask_np = apply_sam(img, input_boxes=input_boxes)
vis_points = None
vis_boxes = input_boxes
else:
# Prepare point input
pts = run['points']
input_points = [pts]
input_labels = [[1] * len(pts)]
print(f"Running inference with input_points: {input_points}")
mask_np = apply_sam(img, input_points=input_points, input_labels=input_labels)
vis_points = input_points
vis_boxes = None
# Convert mask and describe
mask = Image.fromarray((mask_np * 255).astype(np.uint8))
print("Description:")
for token in dam.get_description(
img,
mask,
'<image>\nDescribe the masked region in detail.',
streaming=True,
temperature=0.2,
top_p=0.5,
num_beams=1,
max_new_tokens=512
):
print_streaming(token)
print() # newline
# Save visualization with contour
img_np = np.asarray(img).astype(float) / 255.0
img_with_contour_np = add_contour(img_np, mask_np,
input_points=vis_points,
input_boxes=vis_boxes)
img_with_contour_pil = Image.fromarray((img_with_contour_np * 255.0).astype(np.uint8))
img_with_contour_pil.save(run['output_image_path'])
print(f"Output image with contour saved as {run['output_image_path']}")
```
# Model Card for DAM-3B
## Description
Describe Anything Model 3B (DAM-3B) takes inputs of user-specified regions in the form of points/boxes/scribbles/masks within images, and generates detailed localized descriptions of images. DAM integrates full-image context with fine-grained local details using a novel focal prompt and a localized vision backbone enhanced with gated cross-attention. The model is for research and development only. This model is ready for non-commercial use.
## License
[NVIDIA Noncommercial License](https://huggingface.co/nvidia/DAM-3B-Self-Contained/blob/main/LICENSE)
## Intended Usage
This model is intended to demonstrate and facilitate the understanding and usage of the describe anything models. It should primarily be used for research and non-commercial purposes.
## Model Architecture
**Architecture Type:** Transformer <br>
**Network Architecture:** ViT and Llama <br>
This model was developed based on [VILA-1.5](https://github.com/NVlabs/VILA). <br>
This model has 3B of model parameters. <br>
## Input
**Input Type(s):** Image, Text, Binary Mask <br>
**Input Format(s):** RGB Image, Binary Mask <br>
**Input Parameters:** 2D Image, 2D Binary Mask <br>
**Other Properties Related to Input:** 3 channels for RGB image, 1 channel for binary mask. Resolution is 384x384. <br>
## Output
**Output Type(s):** Text <br>
**Output Format:** String <br>
**Output Parameters:** 1D Text <br>
**Other Properties Related to Output:** Detailed descriptions for the visual region. <br>
**Supported Hardware Microarchitecture Compatibility:** <br>
* NVIDIA Ampere
* NVIDIA Hopper
* NVIDIA Lovelace
**Preferred/Supported Operating System(s):** <br>
* Linux
## Training Dataset
[Describe Anything Training Datasets](https://huggingface.co/datasets/nvidia/describe-anything-dataset)
## Evaluation Dataset
We evaluate our models our detailed localized captioning benchmark: [DLC-Bench](https://huggingface.co/datasets/nvidia/DLC-Bench)
## Inference
PyTorch
## Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
# Citation
If you use our work or our implementation in this repo, or find them helpful, please consider giving a citation.
```
@article{lian2025describe,
title={Describe Anything: Detailed Localized Image and Video Captioning},
author={Long Lian and Yifan Ding and Yunhao Ge and Sifei Liu and Hanzi Mao and Boyi Li and Marco Pavone and Ming-Yu Liu and Trevor Darrell and Adam Yala and Yin Cui},
journal={arXiv preprint arXiv:2504.16072},
year={2025}
}
``` |