Nithin Rao Koluguri commited on
Commit
9101a74
·
1 Parent(s): 0b6bf8d

add latest parakeet-v2 model

Browse files

Signed-off-by: Nithin Rao Koluguri <nithinraok>

Files changed (3) hide show
  1. .gitattributes +2 -0
  2. README.md +464 -3
  3. parakeet-tdt-0.6b-v2.nemo +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ parakeet2-0.6b-En.nemo filter=lfs diff=lfs merge=lfs -text
37
+ *.nemo filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,464 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - en
5
+ pipeline_tag: automatic-speech-recognition
6
+ library_name: nemo
7
+ datasets:
8
+ - librispeech_asr
9
+ - fisher_corpus
10
+ - mozilla-foundation/common_voice_8_0
11
+ - National-Singapore-Corpus-Part-1
12
+ - vctk
13
+ - voxpopuli
14
+ - europarl
15
+ - multilingual_librispeech
16
+ thumbnail: null
17
+ tags:
18
+ - automatic-speech-recognition
19
+ - speech
20
+ - audio
21
+ - Transducer
22
+ - TDT
23
+ - FastConformer
24
+ - Conformer
25
+ - pytorch
26
+ - NeMo
27
+ - hf-asr-leaderboard
28
+ widget:
29
+ - example_title: Librispeech sample 1
30
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
31
+ - example_title: Librispeech sample 2
32
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
33
+ model-index:
34
+ - name: parakeet-tdt-0.6b-v2
35
+ results:
36
+ - task:
37
+ name: Automatic Speech Recognition
38
+ type: automatic-speech-recognition
39
+ dataset:
40
+ name: AMI (Meetings test)
41
+ type: edinburghcstr/ami
42
+ config: ihm
43
+ split: test
44
+ args:
45
+ language: en
46
+ metrics:
47
+ - name: Test WER
48
+ type: wer
49
+ value: 11.16
50
+ - task:
51
+ name: Automatic Speech Recognition
52
+ type: automatic-speech-recognition
53
+ dataset:
54
+ name: Earnings-22
55
+ type: revdotcom/earnings22
56
+ split: test
57
+ args:
58
+ language: en
59
+ metrics:
60
+ - name: Test WER
61
+ type: wer
62
+ value: 11.15
63
+ - task:
64
+ name: Automatic Speech Recognition
65
+ type: automatic-speech-recognition
66
+ dataset:
67
+ name: GigaSpeech
68
+ type: speechcolab/gigaspeech
69
+ split: test
70
+ args:
71
+ language: en
72
+ metrics:
73
+ - name: Test WER
74
+ type: wer
75
+ value: 9.74
76
+ - task:
77
+ name: Automatic Speech Recognition
78
+ type: automatic-speech-recognition
79
+ dataset:
80
+ name: LibriSpeech (clean)
81
+ type: librispeech_asr
82
+ config: other
83
+ split: test
84
+ args:
85
+ language: en
86
+ metrics:
87
+ - name: Test WER
88
+ type: wer
89
+ value: 1.69
90
+ - task:
91
+ name: Automatic Speech Recognition
92
+ type: automatic-speech-recognition
93
+ dataset:
94
+ name: LibriSpeech (other)
95
+ type: librispeech_asr
96
+ config: other
97
+ split: test
98
+ args:
99
+ language: en
100
+ metrics:
101
+ - name: Test WER
102
+ type: wer
103
+ value: 3.19
104
+ - task:
105
+ type: Automatic Speech Recognition
106
+ name: automatic-speech-recognition
107
+ dataset:
108
+ name: SPGI Speech
109
+ type: kensho/spgispeech
110
+ config: test
111
+ split: test
112
+ args:
113
+ language: en
114
+ metrics:
115
+ - name: Test WER
116
+ type: wer
117
+ value: 2.17
118
+ - task:
119
+ type: Automatic Speech Recognition
120
+ name: automatic-speech-recognition
121
+ dataset:
122
+ name: tedlium-v3
123
+ type: LIUM/tedlium
124
+ config: release1
125
+ split: test
126
+ args:
127
+ language: en
128
+ metrics:
129
+ - name: Test WER
130
+ type: wer
131
+ value: 3.38
132
+ - task:
133
+ name: Automatic Speech Recognition
134
+ type: automatic-speech-recognition
135
+ dataset:
136
+ name: Vox Populi
137
+ type: facebook/voxpopuli
138
+ config: en
139
+ split: test
140
+ args:
141
+ language: en
142
+ metrics:
143
+ - name: Test WER
144
+ type: wer
145
+ value: 5.95
146
+ metrics:
147
+ - wer
148
+ ---
149
+
150
+ # **Parakeet TDT 0.6B V2 (En)**
151
+
152
+ <style>
153
+ img {
154
+ display: inline;
155
+ }
156
+ </style>
157
+
158
+ [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-blue#model-badge)](#model-architecture)
159
+ | [![Model size](https://img.shields.io/badge/Params-0.6B-green#model-badge)](#model-architecture)
160
+ | [![Language](https://img.shields.io/badge/Language-en-orange#model-badge)](#datasets)
161
+
162
+
163
+ ## <span style="color:#466f00;">Description:</span>
164
+
165
+ `Parakeet-tdt-0.6b-v2` is a 600-million-parameter automatic speech recognition (ASR) model designed for high-quality English transcription, featuring support for punctuation, capitalization, and accurate timestamp prediction. Try Demo here: https://huggingface.co/spaces/nvidia/parakeet-tdt-0.6b-v2
166
+
167
+ This XL variant of the FastConformer [1] architecture integrates the TDT [2] decoder and is trained with full attention, enabling efficient transcription of audio segments up to 24 minutes in a single pass. The model achieves an RTFx of 2940 on the HF-Open-ASR leaderboard with a batch size of 128. Note: *RTFx Performance may vary depending on dataset audio duration and batch size.*
168
+
169
+ **Key Features**
170
+ - Accurate word-level timestamp predictions
171
+ - Automatic punctuation and capitalization
172
+ - Robust performance on spoken numbers, and song lyrics transcription
173
+
174
+ For more information, refer to the [Model Architecture](#model-architecture) section and the [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
175
+
176
+ This model is ready for commercial/non-commercial use.
177
+
178
+
179
+ ## <span style="color:#466f00;">License/Terms of Use:</span>
180
+
181
+ GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
182
+
183
+
184
+ ### <span style="color:#466f00;">Deployment Geography:</span>
185
+ Global
186
+
187
+
188
+ ### <span style="color:#466f00;">Use Case:</span>
189
+
190
+ This model serves developers, researchers, academics, and industries building applications that require speech-to-text capabilities, including but not limited to: conversational AI, voice assistants, transcription services, subtitle generation, and voice analytics platforms.
191
+
192
+
193
+ ### <span style="color:#466f00;">Release Date:</span>
194
+
195
+ 05/01/2025
196
+
197
+ ### <span style="color:#466f00;">Model Architecture:</span>
198
+
199
+ **Architecture Type**:
200
+
201
+ FastConformer-TDT
202
+
203
+ **Network Architecture**:
204
+
205
+ * This model was developed based on [FastConformer encoder](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) architecture[1] and TDT decoder[2]
206
+ * This model has 600 million model parameters.
207
+
208
+ ### <span style="color:#466f00;">Input:</span>
209
+ - **Input Type(s):** 16kHz Audio
210
+ - **Input Format(s):** `.wav` and `.flac` audio formats
211
+ - **Input Parameters:** 1D (audio signal)
212
+ - **Other Properties Related to Input:** Monochannel audio
213
+
214
+ ### <span style="color:#466f00;">Output:</span>
215
+ - **Output Type(s):** Text
216
+ - **Output Format:** String
217
+ - **Output Parameters:** 1D (text)
218
+ - **Other Properties Related to Output:** Punctuations and Capitalizations included.
219
+
220
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA's hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
221
+
222
+ ## <span style="color:#466f00;">How to Use this Model:</span>
223
+
224
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
225
+ ```bash
226
+ pip install -U nemo_toolkit['asr']
227
+ ```
228
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
229
+
230
+ #### Automatically instantiate the model
231
+
232
+ ```python
233
+ import nemo.collections.asr as nemo_asr
234
+ asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt-0.6b-v2")
235
+ ```
236
+
237
+ #### Transcribing using Python
238
+ First, let's get a sample
239
+ ```bash
240
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
241
+ ```
242
+ Then simply do:
243
+ ```python
244
+ output = asr_model.transcribe(['2086-149220-0033.wav'])
245
+ print(output[0].text)
246
+ ```
247
+
248
+ #### Transcribing with timestamps
249
+
250
+ To transcribe with timestamps:
251
+ ```python
252
+ output = asr_model.transcribe(['2086-149220-0033.wav'], timestamps=True)
253
+ # by default, timestamps are enabled for char, word and segment level
254
+ word_timestamps = output[0].timestamp['word'] # word level timestamps for first sample
255
+ segment_timestamps = output[0].timestamp['segment'] # segment level timestamps
256
+ char_timestamps = output[0].timestamp['char'] # char level timestamps
257
+
258
+ for stamp in segment_timestamps:
259
+ print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}")
260
+ ```
261
+
262
+
263
+ ## <span style="color:#466f00;">Software Integration:</span>
264
+
265
+ **Runtime Engine(s):**
266
+ * NeMo 2.2
267
+
268
+
269
+ **Supported Hardware Microarchitecture Compatibility:**
270
+ * NVIDIA Ampere
271
+ * NVIDIA Blackwell
272
+ * NVIDIA Hopper
273
+ * NVIDIA Volta
274
+
275
+ **[Preferred/Supported] Operating System(s):**
276
+
277
+ - Linux
278
+
279
+ **Hardware Specific Requirements:**
280
+
281
+ Atleast 2GB RAM for model to load. The bigger the RAM, the larger audio input it supports.
282
+
283
+ #### Model Version
284
+
285
+ Current version: parakeet-tdt-0.6b-v2. Previous versions can be [accessed](https://huggingface.co/collections/nvidia/parakeet-659711f49d1469e51546e021) here.
286
+
287
+ ## <span style="color:#466f00;">Training and Evaluation Datasets:</span>
288
+
289
+ ### <span style="color:#466f00;">Training</span>
290
+
291
+ This model was trained using the NeMo toolkit [3], following the strategies below:
292
+
293
+ - Initialized from a wav2vec SSL checkpoint pretrained on the LibriLight dataset[7].
294
+ - Trained for 150,000 steps on 128 A100 GPUs.
295
+ - Dataset corpora were balanced using a temperature sampling value of 0.5.
296
+ - Stage 2 fine-tuning was performed for 2,500 steps on 4 A100 GPUs using approximately 500 hours of high-quality, human-transcribed data of NeMo ASR Set 3.0.
297
+
298
+ Training was conducted using this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and [TDT configuration](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_tdt_ctc_bpe.yaml).
299
+
300
+ The tokenizer was constructed from the training set transcripts using this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
301
+
302
+ ### <span style="color:#466f00;">Training Dataset</span>
303
+ The model was trained on the Granary dataset, consisting of approximately 120,000 hours of English speech data:
304
+
305
+ - 10,000 hours from human-transcribed NeMo ASR Set 3.0, including:
306
+ - LibriSpeech (960 hours)
307
+ - Fisher Corpus
308
+ - National Speech Corpus Part 1
309
+ - VCTK
310
+ - VoxPopuli (English)
311
+ - Europarl-ASR (English)
312
+ - Multilingual LibriSpeech (MLS English) – 2,000-hour subset
313
+ - Mozilla Common Voice (v7.0)
314
+ - AMI
315
+
316
+ - 110,000 hours of pseudo-labeled data from:
317
+ - YTC (YouTube-Commons) dataset[4]
318
+ - YODAS dataset [5]
319
+ - Librilight [7]
320
+
321
+ All transcriptions preserve punctuation and capitalization. The Granary dataset will be made publicly available after presentation at Interspeech 2025.
322
+
323
+ **Data Collection Method by dataset**
324
+
325
+ * Hybrid: Automated, Human
326
+
327
+ **Labeling Method by dataset**
328
+
329
+ * Hybrid: Synthetic, Human
330
+
331
+ **Properties:**
332
+
333
+ * Noise robust data from various sources
334
+ * Single channel, 16kHz sampled data
335
+
336
+ #### Evaluation Dataset
337
+
338
+ Huggingface Open ASR Leaderboard datasets are used to evaluate the performance of this model.
339
+
340
+ **Data Collection Method by dataset**
341
+ * Human
342
+
343
+ **Labeling Method by dataset**
344
+ * Human
345
+
346
+ **Properties:**
347
+
348
+ * All are commonly used for benchmarking English ASR systems.
349
+ * Audio data is typically processed into a 16kHz mono channel format for ASR evaluation, consistent with benchmarks like the [Open ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).
350
+
351
+ ## <span style="color:#466f00;">Performance</span>
352
+
353
+ #### Huggingface Open-ASR-Leaderboard Performance
354
+ The performance of Automatic Speech Recognition (ASR) models is measured using Word Error Rate (WER). Given that this model is trained on a large and diverse dataset spanning multiple domains, it is generally more robust and accurate across various types of audio.
355
+
356
+ ### Base Performance
357
+ The table below summarizes the WER (%) using a Transducer decoder with greedy decoding (without an external language model):
358
+
359
+ | **Model** | **Avg WER** | **AMI** | **Earnings-22** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI Speech** | **TEDLIUM-v3** | **VoxPopuli** |
360
+ |:-------------|:-------------:|:---------:|:------------------:|:----------------:|:-----------------:|:-----------------:|:------------------:|:----------------:|:---------------:|
361
+ | parakeet-tdt-0.6b-v2 | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
362
+
363
+ ### Noise Robustness
364
+ Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples:
365
+
366
+ | **SNR Level** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** |
367
+ |:---------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
368
+ | Clean | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
369
+ | SNR 50 | 6.04 | 11.11 | 11.12 | 9.74 | 1.70 | 3.18 | 2.18 | 3.34 | 5.98 | +0.25% |
370
+ | SNR 25 | 6.50 | 12.76 | 11.50 | 9.98 | 1.78 | 3.63 | 2.54 | 3.46 | 6.34 | -7.04% |
371
+ | SNR 5 | 8.39 | 19.33 | 13.83 | 11.28 | 2.36 | 5.50 | 3.91 | 3.91 | 6.96 | -38.11% |
372
+
373
+ ### Telephony Audio Performance
374
+ Performance comparison between standard 16kHz audio and telephony-style audio (using μ-law encoding with 16kHz→8kHz→16kHz conversion):
375
+
376
+ | **Audio Format** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** |
377
+ |:-----------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
378
+ | Standard 16kHz | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
379
+ | μ-law 8kHz | 6.32 | 11.98 | 11.16 | 10.02 | 1.78 | 3.52 | 2.20 | 3.38 | 6.52 | -4.10% |
380
+
381
+ These WER scores were obtained using greedy decoding without an external language model. Additional evaluation details are available on the [Hugging Face ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).[6]
382
+
383
+
384
+
385
+ ## <span style="color:#466f00;">References</span>
386
+
387
+ [1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
388
+
389
+ [2] [Efficient Sequence Transduction by Jointly Predicting Tokens and Durations](https://arxiv.org/abs/2304.06795)
390
+
391
+ [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
392
+
393
+ [4] [Youtube-commons: A massive open corpus for conversational and multimodal data](https://huggingface.co/blog/Pclanglais/youtube-commons)
394
+
395
+ [5] [Yodas: Youtube-oriented dataset for audio and speech](https://arxiv.org/abs/2406.00899)
396
+
397
+ [6] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
398
+
399
+ [7] [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](https://arxiv.org/abs/2410.01036)
400
+
401
+ ## <span style="color:#466f00;">Inference:</span>
402
+
403
+ **Engine**:
404
+ * NVIDIA NeMo
405
+
406
+ **Test Hardware**:
407
+ * NVIDIA A10
408
+ * NVIDIA A100
409
+ * NVIDIA A30
410
+ * NVIDIA H100
411
+ * NVIDIA L4
412
+ * NVIDIA L40
413
+ * NVIDIA Turing T4
414
+ * NVIDIA Volta V100
415
+
416
+ ## <span style="color:#466f00;">Ethical Considerations:</span>
417
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
418
+
419
+ For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards [here](https://developer.nvidia.com/blog/enhancing-ai-transparency-and-ethical-considerations-with-model-card/).
420
+
421
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
422
+
423
+ ## <span style="color:#466f00;">Bias:</span>
424
+
425
+ Field | Response
426
+ ---------------------------------------------------------------------------------------------------|---------------
427
+ Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing | None
428
+ Measures taken to mitigate against unwanted bias | None
429
+
430
+ ## <span style="color:#466f00;">Explainability:</span>
431
+
432
+ Field | Response
433
+ ------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------
434
+ Intended Domain | Speech to Text Transcription
435
+ Model Type | FastConformer
436
+ Intended Users | This model is intended for developers, researchers, academics, and industries building conversational based applications.
437
+ Output | Text
438
+ Describe how the model works | Speech input is encoded into embeddings and passed into conformer-based model and output a text response.
439
+ Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of | Not Applicable
440
+ Technical Limitations & Mitigation | Transcripts may be not 100% accurate. Accuracy varies based on language and characteristics of input audio (Domain, Use Case, Accent, Noise, Speech Type, Context of speech, etc.)
441
+ Verified to have met prescribed NVIDIA quality standards | Yes
442
+ Performance Metrics | Word Error Rate
443
+ Potential Known Risks | If a word is not trained in the language model and not presented in vocabulary, the word is not likely to be recognized. Not recommended for word-for-word/incomplete sentences as accuracy varies based on the context of input text
444
+ Licensing | GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.
445
+
446
+ ## <span style="color:#466f00;">Privacy:</span>
447
+
448
+ Field | Response
449
+ ----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------
450
+ Generatable or reverse engineerable personal data? | None
451
+ Personal data used to create this model? | None
452
+ Is there provenance for all datasets used in training? | Yes
453
+ Does data labeling (annotation, metadata) comply with privacy laws? | Yes
454
+ Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data.
455
+ Applicable Privacy Policy | https://www.nvidia.com/en-us/about-nvidia/privacy-policy/
456
+
457
+ ## <span style="color:#466f00;">Safety:</span>
458
+
459
+ Field | Response
460
+ ---------------------------------------------------|----------------------------------
461
+ Model Application(s) | Speech to Text Transcription
462
+ Describe the life critical impact | None
463
+ Use Case Restrictions | Abide by [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) License
464
+ Model and dataset restrictions | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to.
parakeet-tdt-0.6b-v2.nemo ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d99e39955c9d3d0350d8fb7c75e40c64a2b2eaeb003883d7c941fd2e8747b28c
3
+ size 2472222720