lbourdois commited on
Commit
9b81624
·
verified ·
1 Parent(s): dc34677

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +131 -147
README.md CHANGED
@@ -1,148 +1,132 @@
1
- ---
2
- license: other
3
- license_name: qwen-research
4
- license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE
5
- base_model:
6
- - Qwen/Qwen2.5-3B-Instruct
7
- library_name: transformers
8
- language:
9
- - en
10
- - zh
11
- - fr
12
- - es
13
- - pt
14
- - de
15
- - it
16
- - ru
17
- - ja
18
- - ko
19
- - vi
20
- - th
21
- - ar
22
- - fa
23
- - he
24
- - tr
25
- - cs
26
- - pl
27
- - hi
28
- - bn
29
- - ur
30
- - id
31
- - ms
32
- - lo
33
- - my
34
- - ceb
35
- - km
36
- - tl
37
- - nl
38
- tags:
39
- - trl
40
- - Reasoning
41
- - open-llm
42
- - synthetic-data
43
- - Deepseek-R1
44
- - Qwen2.5
45
- - fine-tune
46
- - unsloth
47
- - Conversational
48
- - Agentic
49
- new_version: open-neo/Kyro-n1.1-3B
50
- ---
51
- # **Kyro-n1: A powerful family of models made for reasoning**
52
- > [!IMPORTANT]
53
- > This model uses some features from **AIDC-AI/Marco-o1** tokenizer and this model is a Qwen2.5-3B fine-tune.
54
-
55
- Kyro-n1 is a lightweight and fast reasoning model based on **Qwen/Qwen2.5-3B-Instruct**. We have further increased the quality of reasoning in certain aspects such as maths and science, but in this version, our main goal was maths and reasoning in general conversations. We intend to expand on this in future models. The whole purpose of Kyro is so that almost every device can run a reasoning model no matter their compute. This is why we are releasing 3B, 7B and 14B variants to achieve this goal.
56
-
57
- ## **Model Details**
58
- - Developed by: [Spestly (Open-Neo)](https://x.com/Spestly) & [Kazex (Open-Neo)](https://x.com/32GIGABYTES_YT)
59
- - Type: Causal Language Models
60
- - Training Stage: Pretraining & Post-training
61
- - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
62
- - Number of Parameters: 3.09B
63
- - Number of Paramaters (Non-Embedding): 2.77B
64
- - Number of Layers: 36
65
- - Number of Attention Heads (GQA): 16 for Q and 2 for KV
66
- - Context Length: Full 32,768 tokens and generation 8192 tokens
67
-
68
- ## **Model Downloads**
69
-
70
- ### Kyro-n1 Models
71
-
72
- <div align="center">
73
-
74
- | | **Training Data** | **Params** | **Input modalities** | **Output modalities** | **Context length** | **Download Link** |
75
- |--------------|------------------------------------|---------|------------------|----------------------|----------------|----------------|
76
- | **Kyro (text only)** | A new mix of publicly available online data. | **3B** | Multilingual Text | Multilingual Text and code | 128k | [🤗 HuggingFace](https://huggingface.co/open-neo/Kyro-n1-3B) |
77
- | | | **7B** | Multilingual Text | Multilingual Text and code | 128k | [🤗 HuggingFace](https://huggingface.co/open-neo/Kyro-n1-7B) |
78
- | | | **14B** | Multilingual Text | Multilingual Text and code | 128k | [🤗 HuggingFace](https://huggingface.co/open-neo/Kyro-n1-14B) |
79
-
80
- </div>
81
-
82
- ### Kyro-1 Models
83
-
84
- ## **Usage**
85
-
86
- The code of Kyro-n1 (Qwen2.5) has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
87
-
88
- With `transformers<4.37.0`, you will encounter the following error:
89
- ```
90
- KeyError: 'qwen2'
91
- ```
92
-
93
- ### **Quickstart**
94
-
95
- ```python
96
- from transformers import AutoModelForCausalLM, AutoTokenizer
97
- model_name = "open-neo/Kyro-n1-3B"
98
- model = AutoModelForCausalLM.from_pretrained(
99
- model_name,
100
- torch_dtype="auto",
101
- device_map="auto"
102
- )
103
- tokenizer = AutoTokenizer.from_pretrained(model_name)
104
- prompt = "What do you think about CRISPR and its effect on the future of humanity?"
105
- messages = [
106
- {"role": "user", "content": prompt}
107
- ]
108
- text = tokenizer.apply_chat_template(
109
- messages,
110
- tokenize=False,
111
- add_generation_prompt=True
112
- )
113
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
114
- generated_ids = model.generate(
115
- **model_inputs,
116
- max_new_tokens=2048
117
- )
118
- generated_ids = [
119
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
120
- ]
121
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
122
- ```
123
-
124
- ## Citation
125
-
126
- If you find our work helpful, feel free to give us a cite.
127
-
128
- ```
129
- @misc{qwen2.5,
130
- title = {Qwen2.5: A Party of Foundation Models},
131
- url = {https://qwenlm.github.io/blog/qwen2.5/},
132
- author = {Qwen Team},
133
- month = {September},
134
- year = {2024}
135
- }
136
- @article{qwen2,
137
- title={Qwen2 Technical Report},
138
- author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
139
- journal={arXiv preprint arXiv:2407.10671},
140
- year={2024}
141
- }
142
- @misc{kyro-n1,
143
- title={Kyro-n1: A powerful family of models made for reasoning},
144
- author={Aayan Mishra and Krish Thumar},
145
- howpublished={https://huggingface.co/collections/open-neo/kyro-n1-67ab2e7bbc76a9aab3030c21},
146
- year={2025}
147
- }
148
  ```
 
1
+ ---
2
+ license: other
3
+ license_name: qwen-research
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE
5
+ base_model:
6
+ - Qwen/Qwen2.5-3B-Instruct
7
+ library_name: transformers
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ tags:
23
+ - trl
24
+ - Reasoning
25
+ - open-llm
26
+ - synthetic-data
27
+ - Deepseek-R1
28
+ - Qwen2.5
29
+ - fine-tune
30
+ - unsloth
31
+ - Conversational
32
+ - Agentic
33
+ new_version: open-neo/Kyro-n1.1-3B
34
+ ---
35
+ # **Kyro-n1: A powerful family of models made for reasoning**
36
+ > [!IMPORTANT]
37
+ > This model uses some features from **AIDC-AI/Marco-o1** tokenizer and this model is a Qwen2.5-3B fine-tune.
38
+
39
+ Kyro-n1 is a lightweight and fast reasoning model based on **Qwen/Qwen2.5-3B-Instruct**. We have further increased the quality of reasoning in certain aspects such as maths and science, but in this version, our main goal was maths and reasoning in general conversations. We intend to expand on this in future models. The whole purpose of Kyro is so that almost every device can run a reasoning model no matter their compute. This is why we are releasing 3B, 7B and 14B variants to achieve this goal.
40
+
41
+ ## **Model Details**
42
+ - Developed by: [Spestly (Open-Neo)](https://x.com/Spestly) & [Kazex (Open-Neo)](https://x.com/32GIGABYTES_YT)
43
+ - Type: Causal Language Models
44
+ - Training Stage: Pretraining & Post-training
45
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
46
+ - Number of Parameters: 3.09B
47
+ - Number of Paramaters (Non-Embedding): 2.77B
48
+ - Number of Layers: 36
49
+ - Number of Attention Heads (GQA): 16 for Q and 2 for KV
50
+ - Context Length: Full 32,768 tokens and generation 8192 tokens
51
+
52
+ ## **Model Downloads**
53
+
54
+ ### Kyro-n1 Models
55
+
56
+ <div align="center">
57
+
58
+ | | **Training Data** | **Params** | **Input modalities** | **Output modalities** | **Context length** | **Download Link** |
59
+ |--------------|------------------------------------|---------|------------------|----------------------|----------------|----------------|
60
+ | **Kyro (text only)** | A new mix of publicly available online data. | **3B** | Multilingual Text | Multilingual Text and code | 128k | [🤗 HuggingFace](https://huggingface.co/open-neo/Kyro-n1-3B) |
61
+ | | | **7B** | Multilingual Text | Multilingual Text and code | 128k | [🤗 HuggingFace](https://huggingface.co/open-neo/Kyro-n1-7B) |
62
+ | | | **14B** | Multilingual Text | Multilingual Text and code | 128k | [🤗 HuggingFace](https://huggingface.co/open-neo/Kyro-n1-14B) |
63
+
64
+ </div>
65
+
66
+ ### Kyro-1 Models
67
+
68
+ ## **Usage**
69
+
70
+ The code of Kyro-n1 (Qwen2.5) has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
71
+
72
+ With `transformers<4.37.0`, you will encounter the following error:
73
+ ```
74
+ KeyError: 'qwen2'
75
+ ```
76
+
77
+ ### **Quickstart**
78
+
79
+ ```python
80
+ from transformers import AutoModelForCausalLM, AutoTokenizer
81
+ model_name = "open-neo/Kyro-n1-3B"
82
+ model = AutoModelForCausalLM.from_pretrained(
83
+ model_name,
84
+ torch_dtype="auto",
85
+ device_map="auto"
86
+ )
87
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
88
+ prompt = "What do you think about CRISPR and its effect on the future of humanity?"
89
+ messages = [
90
+ {"role": "user", "content": prompt}
91
+ ]
92
+ text = tokenizer.apply_chat_template(
93
+ messages,
94
+ tokenize=False,
95
+ add_generation_prompt=True
96
+ )
97
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
98
+ generated_ids = model.generate(
99
+ **model_inputs,
100
+ max_new_tokens=2048
101
+ )
102
+ generated_ids = [
103
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
104
+ ]
105
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
106
+ ```
107
+
108
+ ## Citation
109
+
110
+ If you find our work helpful, feel free to give us a cite.
111
+
112
+ ```
113
+ @misc{qwen2.5,
114
+ title = {Qwen2.5: A Party of Foundation Models},
115
+ url = {https://qwenlm.github.io/blog/qwen2.5/},
116
+ author = {Qwen Team},
117
+ month = {September},
118
+ year = {2024}
119
+ }
120
+ @article{qwen2,
121
+ title={Qwen2 Technical Report},
122
+ author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
123
+ journal={arXiv preprint arXiv:2407.10671},
124
+ year={2024}
125
+ }
126
+ @misc{kyro-n1,
127
+ title={Kyro-n1: A powerful family of models made for reasoning},
128
+ author={Aayan Mishra and Krish Thumar},
129
+ howpublished={https://huggingface.co/collections/open-neo/kyro-n1-67ab2e7bbc76a9aab3030c21},
130
+ year={2025}
131
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
  ```