File size: 4,118 Bytes
38a5ac6
 
 
bf38c70
38a5ac6
 
 
 
 
64ce6a7
b07c0b3
 
a069fd3
1f1d72b
a093c19
 
 
 
b07c0b3
 
 
6cc0b6a
b07c0b3
b232162
b07c0b3
 
1f1d72b
 
097f572
 
 
 
 
 
 
 
 
 
e4bbe64
a830477
097f572
a830477
097f572
93a9b52
 
bcc734c
 
 
 
 
 
 
 
 
a069fd3
bcc734c
 
 
f928d4f
bcc734c
 
8578b73
bcc734c
98dc221
f928d4f
98dc221
 
f928d4f
 
a093c19
 
f928d4f
 
 
1f1d72b
f928d4f
 
bf38c70
3d42a3f
 
 
 
 
 
 
 
 
 
 
 
64ce6a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
datasets:
- open-r1/codeforces-cots
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
---

# Model Card for OlympicCoder-7B

OlympicCoder-7B is a code model that achieves strong performance on competitive coding benchmarks such as LiveCodeBench and the 2024 International Olympiad in Informatics. 

* Repository: https://github.com/huggingface/open-r1
* Blog post: https://huggingface.co/blog/open-r1/update-3

## Model description

- **Model type:** A 7B parameter model fine-tuned on a decontaminated version of the codeforces dataset.
- **Language(s) (NLP):** Primarily English
- **License:** apache-2.0
- **Finetuned from model:** [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct)

## Evaluation

We compare the performance of OlympicCoder models on two main benchmarks for competitive coding:

* **[IOI'2024:](https://github.com/huggingface/ioi)** 6 very challenging problems from the 2024 International Olympiad in Informatics. Models are allowed up to 50 submissions per problem.
* **[LiveCodeBench:](https://livecodebench.github.io)** Python programming problems source from platforms like CodeForces and LeetCoder. We use the `v4_v5` subset of [`livecodebench/code_generation_lite`](https://huggingface.co/datasets/livecodebench/code_generation_lite), which corresponds to 268 problems. We use `lighteval` to evaluate models on LiveCodeBench using the sampling parameters described [here](https://github.com/huggingface/open-r1?tab=readme-ov-file#livecodebench).

> [!NOTE]
> The OlympicCoder models were post-trained exclusively on C++ solutions generated by DeepSeek-R1. As a result the performance on LiveCodeBench should be considered to be partially _out-of-domain_, since this expects models to output solutions in Python.

### IOI'24

![](./ioi-evals.png)

### LiveCodeBench

![](./lcb-evals.png)

## Usage
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:

```python
# pip install transformers
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="open-r1/OlympicCoder-7B", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {"role": "user", "content": "Write a python program to calculate the 10th Fibonacci number"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=8000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
#<|im_start|>user
#Write a python program to calculate the 10th fibonacci number<|im_end|>
#<|im_start|>assistant
#<think>Okay, I need to write a Python program that calculates the 10th Fibonacci number. Hmm, the Fibonacci sequence starts with 0 and 1. Each subsequent number is the sum of the two preceding ones. So the sequence goes: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and so on. ...
```

> [!WARNING]
> To ensure that the model consistently outputs a long chain-of-thought, we have edited the chat template to prefill the first assistant turn with a `<think>` token. As a result, the outputs from this model will not show the opening `<think>` token if you use the model's `generate()` method.  To apply reinforcement learning with a format reward, either prepend the `<think>` token to the model's completions or amend the chat template to remove the prefill. 

## Training procedure
### Training hyper-parameters

The following hyperparameters were used during training:

- dataset: open-r1/codeforces-cots
- learning_rate: 4.0e-5
- train_batch_size: 2
- seed: 42
- packing: false
- distributed_type: deepspeed-zero-3
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_min_lr
- min_lr_rate: 0.1
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10.0