File size: 3,904 Bytes
2acec6c fde409b a7445e6 2acec6c 2c772a9 fde409b 2c772a9 fde409b 2c772a9 fde409b 2c772a9 fde409b 86e9869 c7ff68b 86e9869 44a4ae2 86e9869 44a4ae2 1d172df 2acec6c 8204ae2 2acec6c 56a59d6 47d58ba 56a59d6 2acec6c 86e9869 2acec6c 86e9869 2acec6c 86e9869 2acec6c 86e9869 2acec6c 86e9869 2acec6c 86e9869 44a4ae2 86e9869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
license: apache-2.0
datasets:
- opennyaiorg/InLegalNER
language:
- en
model-index:
- name: en_legal_ner_sm
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
type: token-classification
name: InLegalNER
split: Test
metrics:
- type: F1-Score
value: 74.87
name: Test F1-Score
---
## This model is for efficiency purposes for better accuracy refer to [en_legal_ner_trf](https://huggingface.co/opennyaiorg/en_legal_ner_trf)
---
# Paper details
[Named Entity Recognition in Indian court judgments](https://aclanthology.org/2022.nllp-1.15)
[Arxiv](https://arxiv.org/abs/2211.03442)
---
Indian Legal Named Entity Recognition(NER): Identifying relevant named entities in an Indian legal judgement using legal NER trained on [spacy](https://github.com/explosion/spaCy).
### Scores
| Type | Score |
| --- | --- |
| **F1-Score** | **74.87** |
| `Precision` | 72.98 |
| `Recall` | 76.85 |
| Feature | Description |
| --- | --- |
| **Name** | `en_legal_ner_sm` |
| **Version** | `3.2.0` |
| **spaCy** | `>=3.2.2,<3.3.0` |
| **Default Pipeline** | `token2vec`, `ner` |
| **Components** | `token2vec`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [InLegalNER Train Data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)|
| **License** | `MIT` |
| **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) |
## Load Pretrained Model
Install the model using pip
```sh
pip install https://huggingface.co/opennyaiorg/en_legal_ner_sm/resolve/main/en_legal_ner_sm-any-py3-none-any.whl
```
Using pretrained NER model
```python
# Using spacy.load().
import spacy
nlp = spacy.load("en_legal_ner_sm")
text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
doc = nlp(text)
# Print indentified entites
for ent in doc.ents:
print(ent,ent.label_)
##OUTPUT
#Section 319 PROVISION
#Cr.P.C. STATUTE
#G. Sambiah RESPONDENT
#20th June 1984 DATE
```
### Label Scheme
<details>
<summary>View label scheme (14 labels for 1 components)</summary>
| ENTITY | BELONGS TO |
| --- | --- |
| `LAWYER` | PREAMBLE |
| `COURT` | PREAMBLE, JUDGEMENT |
| `JUDGE` | PREAMBLE, JUDGEMENT |
| `PETITIONER` | PREAMBLE, JUDGEMENT |
| `RESPONDENT` | PREAMBLE, JUDGEMENT |
| `CASE_NUMBER` | JUDGEMENT |
| `GPE` | JUDGEMENT |
| `DATE` | JUDGEMENT |
| `ORG` | JUDGEMENT |
| `STATUTE` | JUDGEMENT |
| `WITNESS` | JUDGEMENT |
| `PRECEDENT` | JUDGEMENT |
| `PROVISION` | JUDGEMENT |
| `OTHER_PERSON` | JUDGEMENT |
</details>
## Author - Publication
```
@inproceedings{kalamkar-etal-2022-named,
title = "Named Entity Recognition in {I}ndian court judgments",
author = "Kalamkar, Prathamesh and
Agarwal, Astha and
Tiwari, Aman and
Gupta, Smita and
Karn, Saurabh and
Raghavan, Vivek",
booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nllp-1.15",
doi = "10.18653/v1/2022.nllp-1.15",
pages = "184--193",
abstract = "Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.",
}
``` |