English
Eval Results
File size: 3,904 Bytes
2acec6c
fde409b
a7445e6
 
2acec6c
 
2c772a9
 
 
 
fde409b
 
2c772a9
fde409b
2c772a9
fde409b
2c772a9
fde409b
 
 
86e9869
c7ff68b
86e9869
44a4ae2
86e9869
44a4ae2
1d172df
2acec6c
8204ae2
2acec6c
56a59d6
 
 
 
47d58ba
 
 
56a59d6
 
2acec6c
 
 
 
 
86e9869
 
2acec6c
86e9869
2acec6c
86e9869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acec6c
 
 
 
 
 
 
86e9869
2acec6c
86e9869
 
 
 
 
 
 
 
 
 
 
 
 
 
2acec6c
 
 
86e9869
 
 
 
44a4ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e9869
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: apache-2.0
datasets:
- opennyaiorg/InLegalNER
language:
- en
model-index:
- name: en_legal_ner_sm
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      type: token-classification
      name: InLegalNER
      split: Test
    metrics:
    - type: F1-Score
      value: 74.87
      name: Test F1-Score
---
## This model is for efficiency purposes for better accuracy refer to [en_legal_ner_trf](https://huggingface.co/opennyaiorg/en_legal_ner_trf)
---
# Paper details

[Named Entity Recognition in Indian court judgments](https://aclanthology.org/2022.nllp-1.15)
[Arxiv](https://arxiv.org/abs/2211.03442)
---
Indian Legal Named Entity Recognition(NER): Identifying relevant named entities in an Indian legal judgement using legal NER trained on [spacy](https://github.com/explosion/spaCy).


### Scores
| Type | Score |
| --- | --- |
| **F1-Score** | **74.87** |
| `Precision` | 72.98 |
| `Recall` | 76.85 |


| Feature | Description |
| --- | --- |
| **Name** | `en_legal_ner_sm` |
| **Version** | `3.2.0` |
| **spaCy** | `>=3.2.2,<3.3.0` |
| **Default Pipeline** | `token2vec`, `ner` |
| **Components** | `token2vec`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [InLegalNER Train Data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)|
| **License** | `MIT` |
| **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) |

## Load Pretrained Model

Install the model using pip

```sh
pip install https://huggingface.co/opennyaiorg/en_legal_ner_sm/resolve/main/en_legal_ner_sm-any-py3-none-any.whl
```

Using pretrained NER model

```python
# Using spacy.load().
import spacy
nlp = spacy.load("en_legal_ner_sm")
text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
doc = nlp(text)

# Print indentified entites
for ent in doc.ents:
     print(ent,ent.label_)

##OUTPUT     
#Section 319 PROVISION
#Cr.P.C. STATUTE
#G. Sambiah RESPONDENT
#20th June 1984 DATE
```


### Label Scheme

<details>

<summary>View label scheme (14 labels for 1 components)</summary>

| ENTITY | BELONGS TO |
| --- | --- |
| `LAWYER` | PREAMBLE |
| `COURT` | PREAMBLE, JUDGEMENT |
| `JUDGE` | PREAMBLE, JUDGEMENT |
| `PETITIONER` | PREAMBLE, JUDGEMENT |
| `RESPONDENT` | PREAMBLE, JUDGEMENT |
| `CASE_NUMBER` | JUDGEMENT | 
| `GPE` | JUDGEMENT |
| `DATE` | JUDGEMENT |
| `ORG` | JUDGEMENT |
| `STATUTE` | JUDGEMENT |
| `WITNESS` | JUDGEMENT |
| `PRECEDENT` | JUDGEMENT |
| `PROVISION` | JUDGEMENT |
| `OTHER_PERSON` | JUDGEMENT |

</details>


## Author - Publication

```
@inproceedings{kalamkar-etal-2022-named,
    title = "Named Entity Recognition in {I}ndian court judgments",
    author = "Kalamkar, Prathamesh  and
      Agarwal, Astha  and
      Tiwari, Aman  and
      Gupta, Smita  and
      Karn, Saurabh  and
      Raghavan, Vivek",
    booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.nllp-1.15",
    doi = "10.18653/v1/2022.nllp-1.15",
    pages = "184--193",
    abstract = "Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.",
}
```