Papers
arxiv:2505.11711

Reinforcement Learning Finetunes Small Subnetworks in Large Language Models

Published on May 16
· Submitted by sagnikM on May 23
Authors:
,
,

Abstract

Reinforcement learning improves large language models with minimal parameter updates, affecting only a small subnetwork without explicit sparsity techniques.

AI-generated summary

Reinforcement learning (RL) yields substantial improvements in large language models (LLMs) downstream task performance and alignment with human values. Surprisingly, such large gains result from updating only a small subnetwork comprising just 5 percent to 30 percent of the parameters, with the rest effectively unchanged. We refer to this phenomenon as parameter update sparsity induced by RL. It is observed across all 7 widely used RL algorithms (e.g., PPO, GRPO, DPO) and all 10 LLMs from different families in our experiments. This sparsity is intrinsic and occurs without any explicit sparsity promoting regularizations or architectural constraints. Finetuning the subnetwork alone recovers the test accuracy, and, remarkably, produces a model nearly identical to the one obtained via full finetuning. The subnetworks from different random seeds, training data, and even RL algorithms show substantially greater overlap than expected by chance. Our analysis suggests that this sparsity is not due to updating only a subset of layers, instead, nearly all parameter matrices receive similarly sparse updates. Moreover, the updates to almost all parameter matrices are nearly full-rank, suggesting RL updates a small subset of parameters that nevertheless span almost the full subspaces that the parameter matrices can represent. We conjecture that the this update sparsity can be primarily attributed to training on data that is near the policy distribution, techniques that encourage the policy to remain close to the pretrained model, such as the KL regularization and gradient clipping, have limited impact.

Community

Paper author Paper submitter

Reinforcement learning (RL) yields substantial improvements in large language models’ (LLMs) downstream task performance and alignment with human values. Surprisingly, such large gains result from updating only a small subnetwork comprising just 5%-30% of the parameters, with the rest effectively unchanged. We refer to this phenomenon as parameter update sparsity induced by RL. It is observed across all 7 widely-used RL algorithms (e.g., PPO, GRPO, DPO) and all 10 LLMs from different families in our experiments. This sparsity is intrinsic and occurs without any explicit sparsity-promoting regularizations or architectural constraints. Finetuning the subnetwork alone recovers the test accuracy, and, remarkably, produces a model nearly identical to the one obtained via full finetuning. The subnetworks from different random seeds, training data, and even RL algorithms show substantially greater overlap than expected by chance. Our analysis suggests that this sparsity is not due to updating only a subset of layers; instead, nearly all parameter matrices receive similarly sparse updates. Moreover, the updates to almost all parameter matrices are nearly full-rank, suggesting RL updates a small subset of parameters that nevertheless span almost the full subspaces that the parameter matrices can represent. We conjecture that the this update sparsity can be primarily attributed to training on data that is near the policy distribution; techniques that encourage the policy to remain close to the pretrained model, such as the KL regularization and gradient clipping, have limited impact.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2505.11711 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2505.11711 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2505.11711 in a Space README.md to link it from this page.

Collections including this paper 2