Abstract
The paper introduces Web-Shepherd, a process reward model for web navigation, which improves accuracy and cost-effectiveness in step-level trajectory assessment compared to existing multimodal large language models.
Web navigation is a unique domain that can automate many repetitive real-life tasks and is challenging as it requires long-horizon sequential decision making beyond typical multimodal large language model (MLLM) tasks. Yet, specialized reward models for web navigation that can be utilized during both training and test-time have been absent until now. Despite the importance of speed and cost-effectiveness, prior works have utilized MLLMs as reward models, which poses significant constraints for real-world deployment. To address this, in this work, we propose the first process reward model (PRM) called Web-Shepherd which could assess web navigation trajectories in a step-level. To achieve this, we first construct the WebPRM Collection, a large-scale dataset with 40K step-level preference pairs and annotated checklists spanning diverse domains and difficulty levels. Next, we also introduce the WebRewardBench, the first meta-evaluation benchmark for evaluating PRMs. In our experiments, we observe that our Web-Shepherd achieves about 30 points better accuracy compared to using GPT-4o on WebRewardBench. Furthermore, when testing on WebArena-lite by using GPT-4o-mini as the policy and Web-Shepherd as the verifier, we achieve 10.9 points better performance, in 10 less cost compared to using GPT-4o-mini as the verifier. Our model, dataset, and code are publicly available at LINK.
Community
Wow
An audio overview: https://youtu.be/5c2lA9ow2pM?si=uDIENyYNef_oxC_d
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- GenPRM: Scaling Test-Time Compute of Process Reward Models via Generative Reasoning (2025)
- ViLBench: A Suite for Vision-Language Process Reward Modeling (2025)
- R-PRM: Reasoning-Driven Process Reward Modeling (2025)
- General-Reasoner: Advancing LLM Reasoning Across All Domains (2025)
- AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories (2025)
- Efficient Process Reward Model Training via Active Learning (2025)
- Reward Reasoning Model (2025)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 2
Datasets citing this paper 2
Spaces citing this paper 0
No Space linking this paper