Papers
arxiv:2505.19314

SoloSpeech: Enhancing Intelligibility and Quality in Target Speech Extraction through a Cascaded Generative Pipeline

Published on May 25
· Submitted by westbrook on May 28
Authors:
,
,
,
,
,
,
,
,

Abstract

SoloSpeech, a cascaded generative pipeline, improves target speech extraction and speech separation by addressing artifact introduction, naturalness reduction, and environment mismatches, achieving state-of-the-art intelligibility and quality.

AI-generated summary

Target Speech Extraction (TSE) aims to isolate a target speaker's voice from a mixture of multiple speakers by leveraging speaker-specific cues, typically provided as auxiliary audio (a.k.a. cue audio). Although recent advancements in TSE have primarily employed discriminative models that offer high perceptual quality, these models often introduce unwanted artifacts, reduce naturalness, and are sensitive to discrepancies between training and testing environments. On the other hand, generative models for TSE lag in perceptual quality and intelligibility. To address these challenges, we present SoloSpeech, a novel cascaded generative pipeline that integrates compression, extraction, reconstruction, and correction processes. SoloSpeech features a speaker-embedding-free target extractor that utilizes conditional information from the cue audio's latent space, aligning it with the mixture audio's latent space to prevent mismatches. Evaluated on the widely-used Libri2Mix dataset, SoloSpeech achieves the new state-of-the-art intelligibility and quality in target speech extraction and speech separation tasks while demonstrating exceptional generalization on out-of-domain data and real-world scenarios.

Community

Paper author Paper submitter

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2505.19314 in a dataset README.md to link it from this page.

Spaces citing this paper 2

Collections including this paper 1