Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeClass-Incremental Grouping Network for Continual Audio-Visual Learning
Continual learning is a challenging problem in which models need to be trained on non-stationary data across sequential tasks for class-incremental learning. While previous methods have focused on using either regularization or rehearsal-based frameworks to alleviate catastrophic forgetting in image classification, they are limited to a single modality and cannot learn compact class-aware cross-modal representations for continual audio-visual learning. To address this gap, we propose a novel class-incremental grouping network (CIGN) that can learn category-wise semantic features to achieve continual audio-visual learning. Our CIGN leverages learnable audio-visual class tokens and audio-visual grouping to continually aggregate class-aware features. Additionally, it utilizes class tokens distillation and continual grouping to prevent forgetting parameters learned from previous tasks, thereby improving the model's ability to capture discriminative audio-visual categories. We conduct extensive experiments on VGGSound-Instruments, VGGSound-100, and VGG-Sound Sources benchmarks. Our experimental results demonstrate that the CIGN achieves state-of-the-art audio-visual class-incremental learning performance. Code is available at https://github.com/stoneMo/CIGN.
Learning Representations for New Sound Classes With Continual Self-Supervised Learning
In this paper, we work on a sound recognition system that continually incorporates new sound classes. Our main goal is to develop a framework where the model can be updated without relying on labeled data. For this purpose, we propose adopting representation learning, where an encoder is trained using unlabeled data. This learning framework enables the study and implementation of a practically relevant use case where only a small amount of the labels is available in a continual learning context. We also make the empirical observation that a similarity-based representation learning method within this framework is robust to forgetting even if no explicit mechanism against forgetting is employed. We show that this approach obtains similar performance compared to several distillation-based continual learning methods when employed on self-supervised representation learning methods.
Play It Back: Iterative Attention for Audio Recognition
A key function of auditory cognition is the association of characteristic sounds with their corresponding semantics over time. Humans attempting to discriminate between fine-grained audio categories, often replay the same discriminative sounds to increase their prediction confidence. We propose an end-to-end attention-based architecture that through selective repetition attends over the most discriminative sounds across the audio sequence. Our model initially uses the full audio sequence and iteratively refines the temporal segments replayed based on slot attention. At each playback, the selected segments are replayed using a smaller hop length which represents higher resolution features within these segments. We show that our method can consistently achieve state-of-the-art performance across three audio-classification benchmarks: AudioSet, VGG-Sound, and EPIC-KITCHENS-100.
Natural Language Supervision for General-Purpose Audio Representations
Audio-Language models jointly learn multimodal text and audio representations that enable Zero-Shot inference. Models rely on the encoders to create powerful representations of the input and generalize to multiple tasks ranging from sounds, music, and speech. Although models have achieved remarkable performance, there is still a performance gap with task-specific models. In this paper, we propose a Contrastive Language-Audio Pretraining model that is pretrained with a diverse collection of 4.6M audio-text pairs employing two innovative encoders for Zero-Shot inference. To learn audio representations, we trained an audio encoder on 22 audio tasks, instead of the standard training of sound event classification. To learn language representations, we trained an autoregressive decoder-only model instead of the standard encoder-only models. Then, the audio and language representations are brought into a joint multimodal space using Contrastive Learning. We used our encoders to improve the downstream performance by a margin. We extensively evaluated the generalization of our representations on 26 downstream tasks, the largest in the literature. Our model achieves state of the art results in several tasks leading the way towards general-purpose audio representations.
STELLA: Continual Audio-Video Pre-training with Spatio-Temporal Localized Alignment
Continuously learning a variety of audio-video semantics over time is crucial for audio-related reasoning tasks in our ever-evolving world. However, this is a nontrivial problem and poses two critical challenges: sparse spatio-temporal correlation between audio-video pairs and multimodal correlation overwriting that forgets audio-video relations. To tackle this problem, we propose a new continual audio-video pre-training method with two novel ideas: (1) Localized Patch Importance Scoring: we introduce a multimodal encoder to determine the importance score for each patch, emphasizing semantically intertwined audio-video patches. (2) Replay-guided Correlation Assessment: to reduce the corruption of previously learned audiovisual knowledge due to drift, we propose to assess the correlation of the current patches on the past steps to identify the patches exhibiting high correlations with the past steps. Based on the results from the two ideas, we perform probabilistic patch selection for effective continual audio-video pre-training. Experimental validation on multiple benchmarks shows that our method achieves a 3.69%p of relative performance gain in zero-shot retrieval tasks compared to strong continual learning baselines, while reducing memory consumption by ~45%.
Representation, Exploration and Recommendation of Music Playlists
Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.
Audio Retrieval with Natural Language Queries
We consider the task of retrieving audio using free-form natural language queries. To study this problem, which has received limited attention in the existing literature, we introduce challenging new benchmarks for text-based audio retrieval using text annotations sourced from the Audiocaps and Clotho datasets. We then employ these benchmarks to establish baselines for cross-modal audio retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into cross-modal text-based audio retrieval with free-form text queries.
A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning.
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
In this paper we propose a novel model for unconditional audio generation based on generating one audio sample at a time. We show that our model, which profits from combining memory-less modules, namely autoregressive multilayer perceptrons, and stateful recurrent neural networks in a hierarchical structure is able to capture underlying sources of variations in the temporal sequences over very long time spans, on three datasets of different nature. Human evaluation on the generated samples indicate that our model is preferred over competing models. We also show how each component of the model contributes to the exhibited performance.
AudioLM: a Language Modeling Approach to Audio Generation
We introduce AudioLM, a framework for high-quality audio generation with long-term consistency. AudioLM maps the input audio to a sequence of discrete tokens and casts audio generation as a language modeling task in this representation space. We show how existing audio tokenizers provide different trade-offs between reconstruction quality and long-term structure, and we propose a hybrid tokenization scheme to achieve both objectives. Namely, we leverage the discretized activations of a masked language model pre-trained on audio to capture long-term structure and the discrete codes produced by a neural audio codec to achieve high-quality synthesis. By training on large corpora of raw audio waveforms, AudioLM learns to generate natural and coherent continuations given short prompts. When trained on speech, and without any transcript or annotation, AudioLM generates syntactically and semantically plausible speech continuations while also maintaining speaker identity and prosody for unseen speakers. Furthermore, we demonstrate how our approach extends beyond speech by generating coherent piano music continuations, despite being trained without any symbolic representation of music.
It's Time for Artistic Correspondence in Music and Video
We present an approach for recommending a music track for a given video, and vice versa, based on both their temporal alignment and their correspondence at an artistic level. We propose a self-supervised approach that learns this correspondence directly from data, without any need of human annotations. In order to capture the high-level concepts that are required to solve the task, we propose modeling the long-term temporal context of both the video and the music signals, using Transformer networks for each modality. Experiments show that this approach strongly outperforms alternatives that do not exploit the temporal context. The combination of our contributions improve retrieval accuracy up to 10x over prior state of the art. This strong improvement allows us to introduce a wide range of analyses and applications. For instance, we can condition music retrieval based on visually defined attributes.
EnCodecMAE: Leveraging neural codecs for universal audio representation learning
The goal of universal audio representation learning is to obtain foundational models that can be used for a variety of downstream tasks involving speech, music or environmental sounds. To approach this problem, methods inspired by self-supervised models from NLP, like BERT, are often used and adapted to audio. These models rely on the discrete nature of text, hence adopting this type of approach for audio processing requires either a change in the learning objective or mapping the audio signal to a set of discrete classes. In this work, we explore the use of EnCodec, a neural audio codec, to generate discrete targets for learning an universal audio model based on a masked autoencoder (MAE). We evaluate this approach, which we call EncodecMAE, on a wide range of audio tasks spanning speech, music and environmental sounds, achieving performances comparable or better than leading audio representation models.
In-Context Prompt Editing For Conditional Audio Generation
Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars.
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation
Inspired by the recent progress in self-supervised learning for computer vision that generates supervision using data augmentations, we explore a new general-purpose audio representation learning approach. We propose learning general-purpose audio representation from a single audio segment without expecting relationships between different time segments of audio samples. To implement this principle, we introduce Bootstrap Your Own Latent (BYOL) for Audio (BYOL-A, pronounced "viola"), an audio self-supervised learning method based on BYOL for learning general-purpose audio representation. Unlike most previous audio self-supervised learning methods that rely on agreement of vicinity audio segments or disagreement of remote ones, BYOL-A creates contrasts in an augmented audio segment pair derived from a single audio segment. With a combination of normalization and augmentation techniques, BYOL-A achieves state-of-the-art results in various downstream tasks. Extensive ablation studies also clarified the contribution of each component and their combinations.
Learning General Audio Representations with Large-Scale Training of Patchout Audio Transformers
The success of supervised deep learning methods is largely due to their ability to learn relevant features from raw data. Deep Neural Networks (DNNs) trained on large-scale datasets are capable of capturing a diverse set of features, and learning a representation that can generalize onto unseen tasks and datasets that are from the same domain. Hence, these models can be used as powerful feature extractors, in combination with shallower models as classifiers, for smaller tasks and datasets where the amount of training data is insufficient for learning an end-to-end model from scratch. During the past years, Convolutional Neural Networks (CNNs) have largely been the method of choice for audio processing. However, recently attention-based transformer models have demonstrated great potential in supervised settings, outperforming CNNs. In this work, we investigate the use of audio transformers trained on large-scale datasets to learn general-purpose representations. We study how the different setups in these audio transformers affect the quality of their embeddings. We experiment with the models' time resolution, extracted embedding level, and receptive fields in order to see how they affect performance on a variety of tasks and datasets, following the HEAR 2021 NeurIPS challenge evaluation setup. Our results show that representations extracted by audio transformers outperform CNN representations. Furthermore, we will show that transformers trained on Audioset can be extremely effective representation extractors for a wide range of downstream tasks.
Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation
Contrastive learning has shown remarkable success in the field of multimodal representation learning. In this paper, we propose a pipeline of contrastive language-audio pretraining to develop an audio representation by combining audio data with natural language descriptions. To accomplish this target, we first release LAION-Audio-630K, a large collection of 633,526 audio-text pairs from different data sources. Second, we construct a contrastive language-audio pretraining model by considering different audio encoders and text encoders. We incorporate the feature fusion mechanism and keyword-to-caption augmentation into the model design to further enable the model to process audio inputs of variable lengths and enhance the performance. Third, we perform comprehensive experiments to evaluate our model across three tasks: text-to-audio retrieval, zero-shot audio classification, and supervised audio classification. The results demonstrate that our model achieves superior performance in text-to-audio retrieval task. In audio classification tasks, the model achieves state-of-the-art performance in the zero-shot setting and is able to obtain performance comparable to models' results in the non-zero-shot setting. LAION-Audio-630K and the proposed model are both available to the public.
Music2Latent2: Audio Compression with Summary Embeddings and Autoregressive Decoding
Efficiently compressing high-dimensional audio signals into a compact and informative latent space is crucial for various tasks, including generative modeling and music information retrieval (MIR). Existing audio autoencoders, however, often struggle to achieve high compression ratios while preserving audio fidelity and facilitating efficient downstream applications. We introduce Music2Latent2, a novel audio autoencoder that addresses these limitations by leveraging consistency models and a novel approach to representation learning based on unordered latent embeddings, which we call summary embeddings. Unlike conventional methods that encode local audio features into ordered sequences, Music2Latent2 compresses audio signals into sets of summary embeddings, where each embedding can capture distinct global features of the input sample. This enables to achieve higher reconstruction quality at the same compression ratio. To handle arbitrary audio lengths, Music2Latent2 employs an autoregressive consistency model trained on two consecutive audio chunks with causal masking, ensuring coherent reconstruction across segment boundaries. Additionally, we propose a novel two-step decoding procedure that leverages the denoising capabilities of consistency models to further refine the generated audio at no additional cost. Our experiments demonstrate that Music2Latent2 outperforms existing continuous audio autoencoders regarding audio quality and performance on downstream tasks. Music2Latent2 paves the way for new possibilities in audio compression.
Pengi: An Audio Language Model for Audio Tasks
In the domain of audio processing, Transfer Learning has facilitated the rise of Self-Supervised Learning and Zero-Shot Learning techniques. These approaches have led to the development of versatile models capable of tackling a wide array of tasks, while delivering state-of-the-art performance. However, current models inherently lack the capacity to produce the requisite language for open-ended tasks, such as Audio Captioning or Audio Question & Answering. We introduce Pengi, a novel Audio Language Model that leverages Transfer Learning by framing all audio tasks as text-generation tasks. It takes as input, an audio recording, and text, and generates free-form text as output. The input audio is represented as a sequence of continuous embeddings by an audio encoder. A text encoder does the same for the corresponding text input. Both sequences are combined as a prefix to prompt a pre-trained frozen language model. The unified architecture of Pengi enables open-ended tasks and close-ended tasks without any additional fine-tuning or task-specific extensions. When evaluated on 22 downstream tasks, our approach yields state-of-the-art performance in several of them. Our results show that connecting language models with audio models is a major step towards general-purpose audio understanding
CoLLAP: Contrastive Long-form Language-Audio Pretraining with Musical Temporal Structure Augmentation
Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (CoLLAP) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.
Attention is All You Need? Good Embeddings with Statistics are enough:Large Scale Audio Understanding without Transformers/ Convolutions/ BERTs/ Mixers/ Attention/ RNNs or ....
This paper presents a way of doing large scale audio understanding without traditional state of the art neural architectures. Ever since the introduction of deep learning for understanding audio signals in the past decade, convolutional architectures have been able to achieve state of the art results surpassing traditional hand-crafted features. In the recent past, there has been a similar shift away from traditional convolutional and recurrent neural networks towards purely end-to-end Transformer architectures. We, in this work, explore an approach, based on Bag-of-Words model. Our approach does not have any convolutions, recurrence, attention, transformers or other approaches such as BERT. We utilize micro and macro level clustered vanilla embeddings, and use a MLP head for classification. We only use feed-forward encoder-decoder models to get the bottlenecks of spectral envelops, spectral patches and slices as well as multi-resolution spectra. A classification head (a feed-forward layer), similar to the approach in SimCLR is trained on a learned representation. Using simple codes learned on latent representations, we show how we surpass traditional convolutional neural network architectures, and come strikingly close to outperforming powerful Transformer architectures. This work hopefully would pave way for exciting advancements in the field of representation learning without massive, end-to-end neural architectures.
Codified audio language modeling learns useful representations for music information retrieval
We demonstrate that language models pre-trained on codified (discretely-encoded) music audio learn representations that are useful for downstream MIR tasks. Specifically, we explore representations from Jukebox (Dhariwal et al. 2020): a music generation system containing a language model trained on codified audio from 1M songs. To determine if Jukebox's representations contain useful information for MIR, we use them as input features to train shallow models on several MIR tasks. Relative to representations from conventional MIR models which are pre-trained on tagging, we find that using representations from Jukebox as input features yields 30% stronger performance on average across four MIR tasks: tagging, genre classification, emotion recognition, and key detection. For key detection, we observe that representations from Jukebox are considerably stronger than those from models pre-trained on tagging, suggesting that pre-training via codified audio language modeling may address blind spots in conventional approaches. We interpret the strength of Jukebox's representations as evidence that modeling audio instead of tags provides richer representations for MIR.
Wav2CLIP: Learning Robust Audio Representations From CLIP
We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications.
Retrieval-Augmented Text-to-Audio Generation
Despite recent progress in text-to-audio (TTA) generation, we show that the state-of-the-art models, such as AudioLDM, trained on datasets with an imbalanced class distribution, such as AudioCaps, are biased in their generation performance. Specifically, they excel in generating common audio classes while underperforming in the rare ones, thus degrading the overall generation performance. We refer to this problem as long-tailed text-to-audio generation. To address this issue, we propose a simple retrieval-augmented approach for TTA models. Specifically, given an input text prompt, we first leverage a Contrastive Language Audio Pretraining (CLAP) model to retrieve relevant text-audio pairs. The features of the retrieved audio-text data are then used as additional conditions to guide the learning of TTA models. We enhance AudioLDM with our proposed approach and denote the resulting augmented system as Re-AudioLDM. On the AudioCaps dataset, Re-AudioLDM achieves a state-of-the-art Frechet Audio Distance (FAD) of 1.37, outperforming the existing approaches by a large margin. Furthermore, we show that Re-AudioLDM can generate realistic audio for complex scenes, rare audio classes, and even unseen audio types, indicating its potential in TTA tasks.
Sequence-Level Knowledge Distillation for Class-Incremental End-to-End Spoken Language Understanding
The ability to learn new concepts sequentially is a major weakness for modern neural networks, which hinders their use in non-stationary environments. Their propensity to fit the current data distribution to the detriment of the past acquired knowledge leads to the catastrophic forgetting issue. In this work we tackle the problem of Spoken Language Understanding applied to a continual learning setting. We first define a class-incremental scenario for the SLURP dataset. Then, we propose three knowledge distillation (KD) approaches to mitigate forgetting for a sequence-to-sequence transformer model: the first KD method is applied to the encoder output (audio-KD), and the other two work on the decoder output, either directly on the token-level (tok-KD) or on the sequence-level (seq-KD) distributions. We show that the seq-KD substantially improves all the performance metrics, and its combination with the audio-KD further decreases the average WER and enhances the entity prediction metric.
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.
Prefix tuning for automated audio captioning
Audio captioning aims to generate text descriptions from environmental sounds. One challenge of audio captioning is the difficulty of the generalization due to the lack of audio-text paired training data. In this work, we propose a simple yet effective method of dealing with small-scaled datasets by leveraging a pre-trained language model. We keep the language model frozen to maintain the expressivity for text generation, and we only learn to extract global and temporal features from the input audio. To bridge a modality gap between the audio features and the language model, we employ mapping networks that translate audio features to the continuous vectors the language model can understand, called prefixes. We evaluate our proposed method on the Clotho and AudioCaps dataset and show our method outperforms prior arts in diverse experimental settings.
An Investigation of the Combination of Rehearsal and Knowledge Distillation in Continual Learning for Spoken Language Understanding
Continual learning refers to a dynamical framework in which a model receives a stream of non-stationary data over time and must adapt to new data while preserving previously acquired knowledge. Unluckily, neural networks fail to meet these two desiderata, incurring the so-called catastrophic forgetting phenomenon. Whereas a vast array of strategies have been proposed to attenuate forgetting in the computer vision domain, for speech-related tasks, on the other hand, there is a dearth of works. In this paper, we consider the joint use of rehearsal and knowledge distillation (KD) approaches for spoken language understanding under a class-incremental learning scenario. We report on multiple KD combinations at different levels in the network, showing that combining feature-level and predictions-level KDs leads to the best results. Finally, we provide an ablation study on the effect of the size of the rehearsal memory that corroborates the efficacy of our approach for low-resource devices.
Audio Retrieval with Natural Language Queries: A Benchmark Study
The objectives of this work are cross-modal text-audio and audio-text retrieval, in which the goal is to retrieve the audio content from a pool of candidates that best matches a given written description and vice versa. Text-audio retrieval enables users to search large databases through an intuitive interface: they simply issue free-form natural language descriptions of the sound they would like to hear. To study the tasks of text-audio and audio-text retrieval, which have received limited attention in the existing literature, we introduce three challenging new benchmarks. We first construct text-audio and audio-text retrieval benchmarks from the AudioCaps and Clotho audio captioning datasets. Additionally, we introduce the SoundDescs benchmark, which consists of paired audio and natural language descriptions for a diverse collection of sounds that are complementary to those found in AudioCaps and Clotho. We employ these three benchmarks to establish baselines for cross-modal text-audio and audio-text retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into audio retrieval with free-form text queries. Code, audio features for all datasets used, and the SoundDescs dataset are publicly available at https://github.com/akoepke/audio-retrieval-benchmark.
FLAP: Fast Language-Audio Pre-training
We propose Fast Language-Audio Pre-training (FLAP), a self-supervised approach that efficiently and effectively learns aligned audio and language representations through masking, contrastive learning and reconstruction. For efficiency, FLAP randomly drops audio spectrogram tokens, focusing solely on the remaining ones for self-supervision. Through inter-modal contrastive learning, FLAP learns to align paired audio and text representations in a shared latent space. Notably, FLAP leverages multiple augmented views via masking for inter-modal contrast and learns to reconstruct the masked portion of audio tokens. Moreover, FLAP leverages large language models (LLMs) to augment the text inputs, contributing to improved performance. These approaches lead to more robust and informative audio-text representations, enabling FLAP to achieve state-of-the-art (SoTA) performance on audio-text retrieval tasks on AudioCaps (achieving 53.0% R@1) and Clotho (achieving 25.5% R@1).
Musical Audio Similarity with Self-supervised Convolutional Neural Networks
We have built a music similarity search engine that lets video producers search by listenable music excerpts, as a complement to traditional full-text search. Our system suggests similar sounding track segments in a large music catalog by training a self-supervised convolutional neural network with triplet loss terms and musical transformations. Semi-structured user interviews demonstrate that we can successfully impress professional video producers with the quality of the search experience, and perceived similarities to query tracks averaged 7.8/10 in user testing. We believe this search tool will make for a more natural search experience that is easier to find music to soundtrack videos with.
Enhance audio generation controllability through representation similarity regularization
This paper presents an innovative approach to enhance control over audio generation by emphasizing the alignment between audio and text representations during model training. In the context of language model-based audio generation, the model leverages input from both textual and audio token representations to predict subsequent audio tokens. However, the current configuration lacks explicit regularization to ensure the alignment between the chosen text representation and the language model's predictions. Our proposal involves the incorporation of audio and text representation regularization, particularly during the classifier-free guidance (CFG) phase, where the text condition is excluded from cross attention during language model training. The aim of this proposed representation regularization is to minimize discrepancies in audio and text similarity compared to other samples within the same training batch. Experimental results on both music and audio generation tasks demonstrate that our proposed methods lead to improvements in objective metrics for both audio and music generation, as well as an enhancement in the human perception for audio generation.
Benchmarking Representations for Speech, Music, and Acoustic Events
Limited diversity in standardized benchmarks for evaluating audio representation learning (ARL) methods may hinder systematic comparison of current methods' capabilities. We present ARCH, a comprehensive benchmark for evaluating ARL methods on diverse audio classification domains, covering acoustic events, music, and speech. ARCH comprises 12 datasets, that allow us to thoroughly assess pre-trained SSL models of different sizes. ARCH streamlines benchmarking of ARL techniques through its unified access to a wide range of domains and its ability to readily incorporate new datasets and models. To address the current lack of open-source, pre-trained models for non-speech audio, we also release new pre-trained models that demonstrate strong performance on non-speech datasets. We argue that the presented wide-ranging evaluation provides valuable insights into state-of-the-art ARL methods, and is useful to pinpoint promising research directions.
Leveraging Neural Representations for Audio Manipulation
We investigate applying audio manipulations using pretrained neural network-based autoencoders as an alternative to traditional signal processing methods, since the former may provide greater semantic or perceptual organization. To establish the potential of this approach, we first establish if representations from these models encode information about manipulations. We carry out experiments and produce visualizations using representations from two different pretrained autoencoders. Our findings indicate that, while some information about audio manipulations is encoded, this information is both limited and encoded in a non-trivial way. This is supported by our attempts to visualize these representations, which demonstrated that trajectories of representations for common manipulations are typically nonlinear and content dependent, even for linear signal manipulations. As a result, it is not yet clear how these pretrained autoencoders can be used to manipulate audio signals, however, our results indicate this may be due to the lack of disentanglement with respect to common audio manipulations.
Music2Latent: Consistency Autoencoders for Latent Audio Compression
Efficient audio representations in a compressed continuous latent space are critical for generative audio modeling and Music Information Retrieval (MIR) tasks. However, some existing audio autoencoders have limitations, such as multi-stage training procedures, slow iterative sampling, or low reconstruction quality. We introduce Music2Latent, an audio autoencoder that overcomes these limitations by leveraging consistency models. Music2Latent encodes samples into a compressed continuous latent space in a single end-to-end training process while enabling high-fidelity single-step reconstruction. Key innovations include conditioning the consistency model on upsampled encoder outputs at all levels through cross connections, using frequency-wise self-attention to capture long-range frequency dependencies, and employing frequency-wise learned scaling to handle varying value distributions across frequencies at different noise levels. We demonstrate that Music2Latent outperforms existing continuous audio autoencoders in sound quality and reconstruction accuracy while achieving competitive performance on downstream MIR tasks using its latent representations. To our knowledge, this represents the first successful attempt at training an end-to-end consistency autoencoder model.
Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities
Augmenting large language models (LLMs) to understand audio -- including non-speech sounds and non-verbal speech -- is critically important for diverse real-world applications of LLMs. In this paper, we propose Audio Flamingo, a novel audio language model with 1) strong audio understanding abilities, 2) the ability to quickly adapt to unseen tasks via in-context learning and retrieval, and 3) strong multi-turn dialogue abilities. We introduce a series of training techniques, architecture design, and data strategies to enhance our model with these abilities. Extensive evaluations across various audio understanding tasks confirm the efficacy of our method, setting new state-of-the-art benchmarks.
AudioLDM: Text-to-Audio Generation with Latent Diffusion Models
Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining (CLAP) latents. The pretrained CLAP models enable us to train LDMs with audio embedding while providing text embedding as a condition during sampling. By learning the latent representations of audio signals and their compositions without modeling the cross-modal relationship, AudioLDM is advantageous in both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics (e.g., frechet distance). Moreover, AudioLDM is the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at https://audioldm.github.io.
Continual Contrastive Spoken Language Understanding
Recently, neural networks have shown impressive progress across diverse fields, with speech processing being no exception. However, recent breakthroughs in this area require extensive offline training using large datasets and tremendous computing resources. Unfortunately, these models struggle to retain their previously acquired knowledge when learning new tasks continually, and retraining from scratch is almost always impractical. In this paper, we investigate the problem of learning sequence-to-sequence models for spoken language understanding in a class-incremental learning (CIL) setting and we propose COCONUT, a CIL method that relies on the combination of experience replay and contrastive learning. Through a modified version of the standard supervised contrastive loss applied only to the rehearsal samples, COCONUT preserves the learned representations by pulling closer samples from the same class and pushing away the others. Moreover, we leverage a multimodal contrastive loss that helps the model learn more discriminative representations of the new data by aligning audio and text features. We also investigate different contrastive designs to combine the strengths of the contrastive loss with teacher-student architectures used for distillation. Experiments on two established SLU datasets reveal the effectiveness of our proposed approach and significant improvements over the baselines. We also show that COCONUT can be combined with methods that operate on the decoder side of the model, resulting in further metrics improvements.
AudioBERT: Audio Knowledge Augmented Language Model
Recent studies have identified that language models, pretrained on text-only datasets, often lack elementary visual knowledge, e.g., colors of everyday objects. Motivated by this observation, we ask whether a similar shortcoming exists in terms of the auditory knowledge. To answer this question, we construct a new dataset called AuditoryBench, which consists of two novel tasks for evaluating auditory knowledge. Based on our analysis using the benchmark, we find that language models also suffer from a severe lack of auditory knowledge. To address this limitation, we propose AudioBERT, a novel method to augment the auditory knowledge of BERT through a retrieval-based approach. First, we detect auditory knowledge spans in prompts to query our retrieval model efficiently. Then, we inject audio knowledge into BERT and switch on low-rank adaptation for effective adaptation when audio knowledge is required. Our experiments demonstrate that AudioBERT is quite effective, achieving superior performance on the AuditoryBench. The dataset and code are available at https://github.com/HJ-Ok/AudioBERT.
The Sound of Pixels
We introduce PixelPlayer, a system that, by leveraging large amounts of unlabeled videos, learns to locate image regions which produce sounds and separate the input sounds into a set of components that represents the sound from each pixel. Our approach capitalizes on the natural synchronization of the visual and audio modalities to learn models that jointly parse sounds and images, without requiring additional manual supervision. Experimental results on a newly collected MUSIC dataset show that our proposed Mix-and-Separate framework outperforms several baselines on source separation. Qualitative results suggest our model learns to ground sounds in vision, enabling applications such as independently adjusting the volume of sound sources.
T-CLAP: Temporal-Enhanced Contrastive Language-Audio Pretraining
Contrastive language-audio pretraining~(CLAP) has been developed to align the representations of audio and language, achieving remarkable performance in retrieval and classification tasks. However, current CLAP struggles to capture temporal information within audio and text features, presenting substantial limitations for tasks such as audio retrieval and generation. To address this gap, we introduce T-CLAP, a temporal-enhanced CLAP model. We use Large Language Models~(LLMs) and mixed-up strategies to generate temporal-contrastive captions for audio clips from extensive audio-text datasets. Subsequently, a new temporal-focused contrastive loss is designed to fine-tune the CLAP model by incorporating these synthetic data. We conduct comprehensive experiments and analysis in multiple downstream tasks. T-CLAP shows improved capability in capturing the temporal relationship of sound events and outperforms state-of-the-art models by a significant margin.
Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion Models
Large-scale multimodal generative modeling has created milestones in text-to-image and text-to-video generation. Its application to audio still lags behind for two main reasons: the lack of large-scale datasets with high-quality text-audio pairs, and the complexity of modeling long continuous audio data. In this work, we propose Make-An-Audio with a prompt-enhanced diffusion model that addresses these gaps by 1) introducing pseudo prompt enhancement with a distill-then-reprogram approach, it alleviates data scarcity with orders of magnitude concept compositions by using language-free audios; 2) leveraging spectrogram autoencoder to predict the self-supervised audio representation instead of waveforms. Together with robust contrastive language-audio pretraining (CLAP) representations, Make-An-Audio achieves state-of-the-art results in both objective and subjective benchmark evaluation. Moreover, we present its controllability and generalization for X-to-Audio with "No Modality Left Behind", for the first time unlocking the ability to generate high-definition, high-fidelity audios given a user-defined modality input. Audio samples are available at https://Text-to-Audio.github.io
Do You Remember? Overcoming Catastrophic Forgetting for Fake Audio Detection
Current fake audio detection algorithms have achieved promising performances on most datasets. However, their performance may be significantly degraded when dealing with audio of a different dataset. The orthogonal weight modification to overcome catastrophic forgetting does not consider the similarity of genuine audio across different datasets. To overcome this limitation, we propose a continual learning algorithm for fake audio detection to overcome catastrophic forgetting, called Regularized Adaptive Weight Modification (RAWM). When fine-tuning a detection network, our approach adaptively computes the direction of weight modification according to the ratio of genuine utterances and fake utterances. The adaptive modification direction ensures the network can effectively detect fake audio on the new dataset while preserving its knowledge of old model, thus mitigating catastrophic forgetting. In addition, genuine audio collected from quite different acoustic conditions may skew their feature distribution, so we introduce a regularization constraint to force the network to remember the old distribution in this regard. Our method can easily be generalized to related fields, like speech emotion recognition. We also evaluate our approach across multiple datasets and obtain a significant performance improvement on cross-dataset experiments.
BrainBERT: Self-supervised representation learning for intracranial recordings
We create a reusable Transformer, BrainBERT, for intracranial recordings bringing modern representation learning approaches to neuroscience. Much like in NLP and speech recognition, this Transformer enables classifying complex concepts, i.e., decoding neural data, with higher accuracy and with much less data by being pretrained in an unsupervised manner on a large corpus of unannotated neural recordings. Our approach generalizes to new subjects with electrodes in new positions and to unrelated tasks showing that the representations robustly disentangle the neural signal. Just like in NLP where one can study language by investigating what a language model learns, this approach opens the door to investigating the brain by what a model of the brain learns. As a first step along this path, we demonstrate a new analysis of the intrinsic dimensionality of the computations in different areas of the brain. To construct these representations, we combine a technique for producing super-resolution spectrograms of neural data with an approach designed for generating contextual representations of audio by masking. In the future, far more concepts will be decodable from neural recordings by using representation learning, potentially unlocking the brain like language models unlocked language.
What Do Language Models Hear? Probing for Auditory Representations in Language Models
This work explores whether language models encode meaningfully grounded representations of sounds of objects. We learn a linear probe that retrieves the correct text representation of an object given a snippet of audio related to that object, where the sound representation is given by a pretrained audio model. This probe is trained via a contrastive loss that pushes the language representations and sound representations of an object to be close to one another. After training, the probe is tested on its ability to generalize to objects that were not seen during training. Across different language models and audio models, we find that the probe generalization is above chance in many cases, indicating that despite being trained only on raw text, language models encode grounded knowledge of sounds for some objects.
Neural Audio Fingerprint for High-specific Audio Retrieval based on Contrastive Learning
Most of existing audio fingerprinting systems have limitations to be used for high-specific audio retrieval at scale. In this work, we generate a low-dimensional representation from a short unit segment of audio, and couple this fingerprint with a fast maximum inner-product search. To this end, we present a contrastive learning framework that derives from the segment-level search objective. Each update in training uses a batch consisting of a set of pseudo labels, randomly selected original samples, and their augmented replicas. These replicas can simulate the degrading effects on original audio signals by applying small time offsets and various types of distortions, such as background noise and room/microphone impulse responses. In the segment-level search task, where the conventional audio fingerprinting systems used to fail, our system using 10x smaller storage has shown promising results. Our code and dataset are available at https://mimbres.github.io/neural-audio-fp/.
Audio Flamingo 2: An Audio-Language Model with Long-Audio Understanding and Expert Reasoning Abilities
Understanding and reasoning over non-speech sounds and music are crucial for both humans and AI agents to interact effectively with their environments. In this paper, we introduce Audio Flamingo 2 (AF2), an Audio-Language Model (ALM) with advanced audio understanding and reasoning capabilities. AF2 leverages (i) a custom CLAP model, (ii) synthetic Audio QA data for fine-grained audio reasoning, and (iii) a multi-stage curriculum learning strategy. AF2 achieves state-of-the-art performance with only a 3B parameter small language model, surpassing large open-source and proprietary models across over 20 benchmarks. Next, for the first time, we extend audio understanding to long audio segments (30 secs to 5 mins) and propose LongAudio, a large and novel dataset for training ALMs on long audio captioning and question-answering tasks. Fine-tuning AF2 on LongAudio leads to exceptional performance on our proposed LongAudioBench, an expert annotated benchmark for evaluating ALMs on long audio understanding capabilities. We conduct extensive ablation studies to confirm the efficacy of our approach. Project Website: https://research.nvidia.com/labs/adlr/AF2/.
Whisper-GPT: A Hybrid Representation Audio Large Language Model
We propose WHISPER-GPT: A generative large language model (LLM) for speech and music that allows us to work with continuous audio representations and discrete tokens simultaneously as part of a single architecture. There has been a huge surge in generative audio, speech, and music models that utilize discrete audio tokens derived from neural compression algorithms, e.g. ENCODEC. However, one of the major drawbacks of this approach is handling the context length. It blows up for high-fidelity generative architecture if one has to account for all the audio contents at various frequencies for the next token prediction. By combining continuous audio representation like the spectrogram and discrete acoustic tokens, we retain the best of both worlds: Have all the information needed from the audio at a specific time instance in a single token, yet allow LLM to predict the future token to allow for sampling and other benefits discrete space provides. We show how our architecture improves the perplexity and negative log-likelihood scores for the next token prediction compared to a token-based LLM for speech and music.
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
Generative models in vision have seen rapid progress due to algorithmic improvements and the availability of high-quality image datasets. In this paper, we offer contributions in both these areas to enable similar progress in audio modeling. First, we detail a powerful new WaveNet-style autoencoder model that conditions an autoregressive decoder on temporal codes learned from the raw audio waveform. Second, we introduce NSynth, a large-scale and high-quality dataset of musical notes that is an order of magnitude larger than comparable public datasets. Using NSynth, we demonstrate improved qualitative and quantitative performance of the WaveNet autoencoder over a well-tuned spectral autoencoder baseline. Finally, we show that the model learns a manifold of embeddings that allows for morphing between instruments, meaningfully interpolating in timbre to create new types of sounds that are realistic and expressive.
Audio-Language Models for Audio-Centric Tasks: A survey
Audio-Language Models (ALMs), which are trained on audio-text data, focus on the processing, understanding, and reasoning of sounds. Unlike traditional supervised learning approaches learning from predefined labels, ALMs utilize natural language as a supervision signal, which is more suitable for describing complex real-world audio recordings. ALMs demonstrate strong zero-shot capabilities and can be flexibly adapted to diverse downstream tasks. These strengths not only enhance the accuracy and generalization of audio processing tasks but also promote the development of models that more closely resemble human auditory perception and comprehension. Recent advances in ALMs have positioned them at the forefront of computer audition research, inspiring a surge of efforts to advance ALM technologies. Despite rapid progress in the field of ALMs, there is still a notable lack of systematic surveys that comprehensively organize and analyze developments. In this paper, we present a comprehensive review of ALMs with a focus on general audio tasks, aiming to fill this gap by providing a structured and holistic overview of ALMs. Specifically, we cover: (1) the background of computer audition and audio-language models; (2) the foundational aspects of ALMs, including prevalent network architectures, training objectives, and evaluation methods; (3) foundational pre-training and audio-language pre-training approaches; (4) task-specific fine-tuning, multi-task tuning and agent systems for downstream applications; (5) datasets and benchmarks; and (6) current challenges and future directions. Our review provides a clear technical roadmap for researchers to understand the development and future trends of existing technologies, offering valuable references for implementation in real-world scenarios.
On the Audio Hallucinations in Large Audio-Video Language Models
Large audio-video language models can generate descriptions for both video and audio. However, they sometimes ignore audio content, producing audio descriptions solely reliant on visual information. This paper refers to this as audio hallucinations and analyzes them in large audio-video language models. We gather 1,000 sentences by inquiring about audio information and annotate them whether they contain hallucinations. If a sentence is hallucinated, we also categorize the type of hallucination. The results reveal that 332 sentences are hallucinated with distinct trends observed in nouns and verbs for each hallucination type. Based on this, we tackle a task of audio hallucination classification using pre-trained audio-text models in the zero-shot and fine-tuning settings. Our experimental results reveal that the zero-shot models achieve higher performance (52.2% in F1) than the random (40.3%) and the fine-tuning models achieve 87.9%, outperforming the zero-shot models.
A Dataset and Baselines for Measuring and Predicting the Music Piece Memorability
Nowadays, humans are constantly exposed to music, whether through voluntary streaming services or incidental encounters during commercial breaks. Despite the abundance of music, certain pieces remain more memorable and often gain greater popularity. Inspired by this phenomenon, we focus on measuring and predicting music memorability. To achieve this, we collect a new music piece dataset with reliable memorability labels using a novel interactive experimental procedure. We then train baselines to predict and analyze music memorability, leveraging both interpretable features and audio mel-spectrograms as inputs. To the best of our knowledge, we are the first to explore music memorability using data-driven deep learning-based methods. Through a series of experiments and ablation studies, we demonstrate that while there is room for improvement, predicting music memorability with limited data is possible. Certain intrinsic elements, such as higher valence, arousal, and faster tempo, contribute to memorable music. As prediction techniques continue to evolve, real-life applications like music recommendation systems and music style transfer will undoubtedly benefit from this new area of research.
Noise2Music: Text-conditioned Music Generation with Diffusion Models
We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music
Music Transformer
Music relies heavily on repetition to build structure and meaning. Self-reference occurs on multiple timescales, from motifs to phrases to reusing of entire sections of music, such as in pieces with ABA structure. The Transformer (Vaswani et al., 2017), a sequence model based on self-attention, has achieved compelling results in many generation tasks that require maintaining long-range coherence. This suggests that self-attention might also be well-suited to modeling music. In musical composition and performance, however, relative timing is critically important. Existing approaches for representing relative positional information in the Transformer modulate attention based on pairwise distance (Shaw et al., 2018). This is impractical for long sequences such as musical compositions since their memory complexity for intermediate relative information is quadratic in the sequence length. We propose an algorithm that reduces their intermediate memory requirement to linear in the sequence length. This enables us to demonstrate that a Transformer with our modified relative attention mechanism can generate minute-long compositions (thousands of steps, four times the length modeled in Oore et al., 2018) with compelling structure, generate continuations that coherently elaborate on a given motif, and in a seq2seq setup generate accompaniments conditioned on melodies. We evaluate the Transformer with our relative attention mechanism on two datasets, JSB Chorales and Piano-e-Competition, and obtain state-of-the-art results on the latter.
vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations
We propose vq-wav2vec to learn discrete representations of audio segments through a wav2vec-style self-supervised context prediction task. The algorithm uses either a gumbel softmax or online k-means clustering to quantize the dense representations. Discretization enables the direct application of algorithms from the NLP community which require discrete inputs. Experiments show that BERT pre-training achieves a new state of the art on TIMIT phoneme classification and WSJ speech recognition.
Audio-FLAN: A Preliminary Release
Recent advancements in audio tokenization have significantly enhanced the integration of audio capabilities into large language models (LLMs). However, audio understanding and generation are often treated as distinct tasks, hindering the development of truly unified audio-language models. While instruction tuning has demonstrated remarkable success in improving generalization and zero-shot learning across text and vision, its application to audio remains largely unexplored. A major obstacle is the lack of comprehensive datasets that unify audio understanding and generation. To address this, we introduce Audio-FLAN, a large-scale instruction-tuning dataset covering 80 diverse tasks across speech, music, and sound domains, with over 100 million instances. Audio-FLAN lays the foundation for unified audio-language models that can seamlessly handle both understanding (e.g., transcription, comprehension) and generation (e.g., speech, music, sound) tasks across a wide range of audio domains in a zero-shot manner. The Audio-FLAN dataset is available on HuggingFace and GitHub and will be continuously updated.
StemGen: A music generation model that listens
End-to-end generation of musical audio using deep learning techniques has seen an explosion of activity recently. However, most models concentrate on generating fully mixed music in response to abstract conditioning information. In this work, we present an alternative paradigm for producing music generation models that can listen and respond to musical context. We describe how such a model can be constructed using a non-autoregressive, transformer-based model architecture and present a number of novel architectural and sampling improvements. We train the described architecture on both an open-source and a proprietary dataset. We evaluate the produced models using standard quality metrics and a new approach based on music information retrieval descriptors. The resulting model reaches the audio quality of state-of-the-art text-conditioned models, as well as exhibiting strong musical coherence with its context.
Enhancing Audio-Language Models through Self-Supervised Post-Training with Text-Audio Pairs
Research on multi-modal contrastive learning strategies for audio and text has rapidly gained interest. Contrastively trained Audio-Language Models (ALMs), such as CLAP, which establish a unified representation across audio and language modalities, have enhanced the efficacy in various subsequent tasks by providing good text aligned audio encoders and vice versa. These improvements are evident in areas like zero-shot audio classification and audio retrieval, among others. However, the ability of these models to understand natural language and temporal relations is still a largely unexplored and open field for research. In this paper, we propose to equip the multi-modal ALMs with temporal understanding without loosing their inherent prior capabilities of audio-language tasks with a temporal instillation method TeminAL. We implement a two-stage training scheme TeminAL A & B, where the model first learns to differentiate between multiple sounds in TeminAL A, followed by a phase that instills a sense of time, thereby enhancing its temporal understanding in TeminAL B. This approach results in an average performance gain of 5.28% in temporal understanding on the ESC-50 dataset, while the model remains competitive in zero-shot retrieval and classification tasks on the AudioCap/Clotho datasets. We also note the lack of proper evaluation techniques for contrastive ALMs and propose a strategy for evaluating ALMs in zero-shot settings. The general-purpose zero-shot model evaluation strategy ZSTE, is used to evaluate various prior models. ZSTE demonstrates a general strategy to evaluate all ZS contrastive models. The model trained with TeminAL successfully outperforms current models on most downstream tasks.
Can CLIP Help Sound Source Localization?
Large-scale pre-trained image-text models demonstrate remarkable versatility across diverse tasks, benefiting from their robust representational capabilities and effective multimodal alignment. We extend the application of these models, specifically CLIP, to the domain of sound source localization. Unlike conventional approaches, we employ the pre-trained CLIP model without explicit text input, relying solely on the audio-visual correspondence. To this end, we introduce a framework that translates audio signals into tokens compatible with CLIP's text encoder, yielding audio-driven embeddings. By directly using these embeddings, our method generates audio-grounded masks for the provided audio, extracts audio-grounded image features from the highlighted regions, and aligns them with the audio-driven embeddings using the audio-visual correspondence objective. Our findings suggest that utilizing pre-trained image-text models enable our model to generate more complete and compact localization maps for the sounding objects. Extensive experiments show that our method outperforms state-of-the-art approaches by a significant margin.
Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss
In this paper we present an end-to-end speech recognition model with Transformer encoders that can be used in a streaming speech recognition system. Transformer computation blocks based on self-attention are used to encode both audio and label sequences independently. The activations from both audio and label encoders are combined with a feed-forward layer to compute a probability distribution over the label space for every combination of acoustic frame position and label history. This is similar to the Recurrent Neural Network Transducer (RNN-T) model, which uses RNNs for information encoding instead of Transformer encoders. The model is trained with the RNN-T loss well-suited to streaming decoding. We present results on the LibriSpeech dataset showing that limiting the left context for self-attention in the Transformer layers makes decoding computationally tractable for streaming, with only a slight degradation in accuracy. We also show that the full attention version of our model beats the-state-of-the art accuracy on the LibriSpeech benchmarks. Our results also show that we can bridge the gap between full attention and limited attention versions of our model by attending to a limited number of future frames.
Learning Neural Acoustic Fields
Our environment is filled with rich and dynamic acoustic information. When we walk into a cathedral, the reverberations as much as appearance inform us of the sanctuary's wide open space. Similarly, as an object moves around us, we expect the sound emitted to also exhibit this movement. While recent advances in learned implicit functions have led to increasingly higher quality representations of the visual world, there have not been commensurate advances in learning spatial auditory representations. To address this gap, we introduce Neural Acoustic Fields (NAFs), an implicit representation that captures how sounds propagate in a physical scene. By modeling acoustic propagation in a scene as a linear time-invariant system, NAFs learn to continuously map all emitter and listener location pairs to a neural impulse response function that can then be applied to arbitrary sounds. We demonstrate that the continuous nature of NAFs enables us to render spatial acoustics for a listener at an arbitrary location, and can predict sound propagation at novel locations. We further show that the representation learned by NAFs can help improve visual learning with sparse views. Finally, we show that a representation informative of scene structure emerges during the learning of NAFs.
Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales
The amount of content on online music streaming platforms is immense, and most users only access a tiny fraction of this content. Recommender systems are the application of choice to open up the collection to these users. Collaborative filtering has the disadvantage that it relies on explicit ratings, which are often unavailable, and generally disregards the temporal nature of music consumption. On the other hand, item co-occurrence algorithms, such as the recently introduced word2vec-based recommenders, are typically left without an effective user representation. In this paper, we present a new approach to model users through recurrent neural networks by sequentially processing consumed items, represented by any type of embeddings and other context features. This way we obtain semantically rich user representations, which capture a user's musical taste over time. Our experimental analysis on large-scale user data shows that our model can be used to predict future songs a user will likely listen to, both in the short and long term.
Sparks of Large Audio Models: A Survey and Outlook
This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, Large Audio Models, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding Foundational Large Audio Models, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of Large Audio Models with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.
SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond
Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high-quality TTA systems remain inefficient due to hundreds of iterations required in the inference phase and large amount of model parameters. To address the challenges, we propose SpecMaskGIT, a light-weighted, efficient yet effective TTA model based on the masked generative modeling of spectrograms. First, SpecMaskGIT synthesizes a realistic 10s audio clip by less than 16 iterations, an order-of-magnitude less than previous iterative TTA methods.As a discrete model, SpecMaskGIT outperforms larger VQ-Diffusion and auto-regressive models in the TTA benchmark, while being real-time with only 4 CPU cores or even 30x faster with a GPU. Next, built upon a latent space of Mel-spectrogram, SpecMaskGIT has a wider range of applications (e.g., the zero-shot bandwidth extension) than similar methods built on the latent wave domain. Moreover, we interpret SpecMaskGIT as a generative extension to previous discriminative audio masked Transformers, and shed light on its audio representation learning potential. We hope our work inspires the exploration of masked audio modeling toward further diverse scenarios.
Audiobox TTA-RAG: Improving Zero-Shot and Few-Shot Text-To-Audio with Retrieval-Augmented Generation
Current leading Text-To-Audio (TTA) generation models suffer from degraded performance on zero-shot and few-shot settings. It is often challenging to generate high-quality audio for audio events that are unseen or uncommon in the training set. Inspired by the success of Retrieval-Augmented Generation (RAG) in Large Language Model (LLM)-based knowledge-intensive tasks, we extend the TTA process with additional conditioning contexts. We propose Audiobox TTA-RAG, a novel retrieval-augmented TTA approach based on Audiobox, a conditional flow-matching audio generation model. Unlike the vanilla Audiobox TTA solution which generates audio conditioned on text, we augmented the conditioning input with retrieved audio samples that provide additional acoustic information to generate the target audio. Our retrieval method does not require the external database to have labeled audio, offering more practical use cases. To evaluate our proposed method, we curated test sets in zero-shot and few-shot settings. Our empirical results show that the proposed model can effectively leverage the retrieved audio samples and significantly improve zero-shot and few-shot TTA performance, with large margins on multiple evaluation metrics, while maintaining the ability to generate semantically aligned audio for the in-domain setting. In addition, we investigate the effect of different retrieval methods and data sources.
Prototype-Sample Relation Distillation: Towards Replay-Free Continual Learning
In Continual learning (CL) balancing effective adaptation while combating catastrophic forgetting is a central challenge. Many of the recent best-performing methods utilize various forms of prior task data, e.g. a replay buffer, to tackle the catastrophic forgetting problem. Having access to previous task data can be restrictive in many real-world scenarios, for example when task data is sensitive or proprietary. To overcome the necessity of using previous tasks' data, in this work, we start with strong representation learning methods that have been shown to be less prone to forgetting. We propose a holistic approach to jointly learn the representation and class prototypes while maintaining the relevance of old class prototypes and their embedded similarities. Specifically, samples are mapped to an embedding space where the representations are learned using a supervised contrastive loss. Class prototypes are evolved continually in the same latent space, enabling learning and prediction at any point. To continually adapt the prototypes without keeping any prior task data, we propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data. This method yields state-of-the-art performance in the task-incremental setting, outperforming methods relying on large amounts of data, and provides strong performance in the class-incremental setting without using any stored data points.
BEATs: Audio Pre-Training with Acoustic Tokenizers
The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
Continual Learning for Monolingual End-to-End Automatic Speech Recognition
Adapting Automatic Speech Recognition (ASR) models to new domains results in a deterioration of performance on the original domain(s), a phenomenon called Catastrophic Forgetting (CF). Even monolingual ASR models cannot be extended to new accents, dialects, topics, etc. without suffering from CF, making them unable to be continually enhanced without storing all past data. Fortunately, Continual Learning (CL) methods, which aim to enable continual adaptation while overcoming CF, can be used. In this paper, we implement an extensive number of CL methods for End-to-End ASR and test and compare their ability to extend a monolingual Hybrid CTC-Transformer model across four new tasks. We find that the best performing CL method closes the gap between the fine-tuned model (lower bound) and the model trained jointly on all tasks (upper bound) by more than 40%, while requiring access to only 0.6% of the original data.
Long-form music generation with latent diffusion
Audio-based generative models for music have seen great strides recently, but so far have not managed to produce full-length music tracks with coherent musical structure. We show that by training a generative model on long temporal contexts it is possible to produce long-form music of up to 4m45s. Our model consists of a diffusion-transformer operating on a highly downsampled continuous latent representation (latent rate of 21.5Hz). It obtains state-of-the-art generations according to metrics on audio quality and prompt alignment, and subjective tests reveal that it produces full-length music with coherent structure.
SSAMBA: Self-Supervised Audio Representation Learning with Mamba State Space Model
Transformers have revolutionized deep learning across various tasks, including audio representation learning, due to their powerful modeling capabilities. However, they often suffer from quadratic complexity in both GPU memory usage and computational inference time, affecting their efficiency. Recently, state space models (SSMs) like Mamba have emerged as a promising alternative, offering a more efficient approach by avoiding these complexities. Given these advantages, we explore the potential of SSM-based models in audio tasks. In this paper, we introduce Self-Supervised Audio Mamba (SSAMBA), the first self-supervised, attention-free, and SSM-based model for audio representation learning. SSAMBA leverages the bidirectional Mamba to capture complex audio patterns effectively. We incorporate a self-supervised pretraining framework that optimizes both discriminative and generative objectives, enabling the model to learn robust audio representations from large-scale, unlabeled datasets. We evaluated SSAMBA on various tasks such as audio classification, keyword spotting, and speaker identification. Our results demonstrate that SSAMBA outperforms the Self-Supervised Audio Spectrogram Transformer (SSAST) in most tasks. Notably, SSAMBA is approximately 92.7% faster in batch inference speed and 95.4% more memory-efficient than SSAST for the tiny model size with an input token size of 22k. These efficiency gains, combined with superior performance, underscore the effectiveness of SSAMBA's architectural innovation, making it a compelling choice for a wide range of audio processing applications.
Video-to-Audio Generation with Hidden Alignment
Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model VTA-LDM built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
Attentive Temporal Pooling for Conformer-based Streaming Language Identification in Long-form Speech
In this paper, we introduce a novel language identification system based on conformer layers. We propose an attentive temporal pooling mechanism to allow the model to carry information in long-form audio via a recurrent form, such that the inference can be performed in a streaming fashion. Additionally, we investigate two domain adaptation approaches to allow adapting an existing language identification model without retraining the model parameters for a new domain. We perform a comparative study of different model topologies under different constraints of model size, and find that conformer-based models significantly outperform LSTM and transformer based models. Our experiments also show that attentive temporal pooling and domain adaptation improve model accuracy.
NatureLM-audio: an Audio-Language Foundation Model for Bioacoustics
Large language models (LLMs) prompted with text and audio represent the state of the art in various auditory tasks, including speech, music, and general audio, showing emergent abilities on unseen tasks. However, these capabilities have yet to be fully demonstrated in bioacoustics tasks, such as detecting animal vocalizations in large recordings, classifying rare and endangered species, and labeling context and behavior - tasks that are crucial for conservation, biodiversity monitoring, and the study of animal behavior. In this work, we present NatureLM-audio, the first audio-language foundation model specifically designed for bioacoustics. Our carefully curated training dataset comprises text-audio pairs spanning a diverse range of bioacoustics, speech, and music data, designed to address the challenges posed by limited annotated datasets in the field. We demonstrate successful transfer of learned representations from music and speech to bioacoustics, and our model shows promising generalization to unseen taxa and tasks. Importantly, we test NatureLM-audio on a novel benchmark (BEANS-Zero) and it sets the new state of the art (SotA) on several bioacoustics tasks, including zero-shot classification of unseen species. To advance bioacoustics research, we also open-source the code for generating training and benchmark data, as well as for training the model.
SoundStorm: Efficient Parallel Audio Generation
We present SoundStorm, a model for efficient, non-autoregressive audio generation. SoundStorm receives as input the semantic tokens of AudioLM, and relies on bidirectional attention and confidence-based parallel decoding to generate the tokens of a neural audio codec. Compared to the autoregressive generation approach of AudioLM, our model produces audio of the same quality and with higher consistency in voice and acoustic conditions, while being two orders of magnitude faster. SoundStorm generates 30 seconds of audio in 0.5 seconds on a TPU-v4. We demonstrate the ability of our model to scale audio generation to longer sequences by synthesizing high-quality, natural dialogue segments, given a transcript annotated with speaker turns and a short prompt with the speakers' voices.
End-to-end learning for music audio tagging at scale
The lack of data tends to limit the outcomes of deep learning research, particularly when dealing with end-to-end learning stacks processing raw data such as waveforms. In this study, 1.2M tracks annotated with musical labels are available to train our end-to-end models. This large amount of data allows us to unrestrictedly explore two different design paradigms for music auto-tagging: assumption-free models - using waveforms as input with very small convolutional filters; and models that rely on domain knowledge - log-mel spectrograms with a convolutional neural network designed to learn timbral and temporal features. Our work focuses on studying how these two types of deep architectures perform when datasets of variable size are available for training: the MagnaTagATune (25k songs), the Million Song Dataset (240k songs), and a private dataset of 1.2M songs. Our experiments suggest that music domain assumptions are relevant when not enough training data are available, thus showing how waveform-based models outperform spectrogram-based ones in large-scale data scenarios.
AudioSlots: A slot-centric generative model for audio separation
In a range of recent works, object-centric architectures have been shown to be suitable for unsupervised scene decomposition in the vision domain. Inspired by these methods we present AudioSlots, a slot-centric generative model for blind source separation in the audio domain. AudioSlots is built using permutation-equivariant encoder and decoder networks. The encoder network based on the Transformer architecture learns to map a mixed audio spectrogram to an unordered set of independent source embeddings. The spatial broadcast decoder network learns to generate the source spectrograms from the source embeddings. We train the model in an end-to-end manner using a permutation invariant loss function. Our results on Libri2Mix speech separation constitute a proof of concept that this approach shows promise. We discuss the results and limitations of our approach in detail, and further outline potential ways to overcome the limitations and directions for future work.
Audio Time-Scale Modification with Temporal Compressing Networks
We propose a novel approach for time-scale modification of audio signals. Unlike traditional methods that rely on the framing technique or the short-time Fourier transform to preserve the frequency during temporal stretching, our neural network model encodes the raw audio into a high-level latent representation, dubbed Neuralgram, where each vector represents 1024 audio sample points. Due to a sufficient compression ratio, we are able to apply arbitrary spatial interpolation of the Neuralgram to perform temporal stretching. Finally, a learned neural decoder synthesizes the time-scaled audio samples based on the stretched Neuralgram representation. Both the encoder and decoder are trained with latent regression losses and adversarial losses in order to obtain high-fidelity audio samples. Despite its simplicity, our method has comparable performance compared to the existing baselines and opens a new possibility in research into modern time-scale modification. Audio samples can be found at https://tsmnet-mmasia23.github.io
AudioGen: Textually Guided Audio Generation
We tackle the problem of generating audio samples conditioned on descriptive text captions. In this work, we propose AaudioGen, an auto-regressive generative model that generates audio samples conditioned on text inputs. AudioGen operates on a learnt discrete audio representation. The task of text-to-audio generation poses multiple challenges. Due to the way audio travels through a medium, differentiating ``objects'' can be a difficult task (e.g., separating multiple people simultaneously speaking). This is further complicated by real-world recording conditions (e.g., background noise, reverberation, etc.). Scarce text annotations impose another constraint, limiting the ability to scale models. Finally, modeling high-fidelity audio requires encoding audio at high sampling rate, leading to extremely long sequences. To alleviate the aforementioned challenges we propose an augmentation technique that mixes different audio samples, driving the model to internally learn to separate multiple sources. We curated 10 datasets containing different types of audio and text annotations to handle the scarcity of text-audio data points. For faster inference, we explore the use of multi-stream modeling, allowing the use of shorter sequences while maintaining a similar bitrate and perceptual quality. We apply classifier-free guidance to improve adherence to text. Comparing to the evaluated baselines, AudioGen outperforms over both objective and subjective metrics. Finally, we explore the ability of the proposed method to generate audio continuation conditionally and unconditionally. Samples: https://felixkreuk.github.io/audiogen
Efficient Supervised Training of Audio Transformers for Music Representation Learning
In this work, we address music representation learning using convolution-free transformers. We build on top of existing spectrogram-based audio transformers such as AST and train our models on a supervised task using patchout training similar to PaSST. In contrast to previous works, we study how specific design decisions affect downstream music tagging tasks instead of focusing on the training task. We assess the impact of initializing the models with different pre-trained weights, using various input audio segment lengths, using learned representations from different blocks and tokens of the transformer for downstream tasks, and applying patchout at inference to speed up feature extraction. We find that 1) initializing the model from ImageNet or AudioSet weights and using longer input segments are beneficial both for the training and downstream tasks, 2) the best representations for the considered downstream tasks are located in the middle blocks of the transformer, and 3) using patchout at inference allows faster processing than our convolutional baselines while maintaining superior performance. The resulting models, MAEST, are publicly available and obtain the best performance among open models in music tagging tasks.
Masked Autoencoders that Listen
This paper studies a simple extension of image-based Masked Autoencoders (MAE) to self-supervised representation learning from audio spectrograms. Following the Transformer encoder-decoder design in MAE, our Audio-MAE first encodes audio spectrogram patches with a high masking ratio, feeding only the non-masked tokens through encoder layers. The decoder then re-orders and decodes the encoded context padded with mask tokens, in order to reconstruct the input spectrogram. We find it beneficial to incorporate local window attention in the decoder, as audio spectrograms are highly correlated in local time and frequency bands. We then fine-tune the encoder with a lower masking ratio on target datasets. Empirically, Audio-MAE sets new state-of-the-art performance on six audio and speech classification tasks, outperforming other recent models that use external supervised pre-training. The code and models will be at https://github.com/facebookresearch/AudioMAE.
Generating Realistic Images from In-the-wild Sounds
Representing wild sounds as images is an important but challenging task due to the lack of paired datasets between sound and images and the significant differences in the characteristics of these two modalities. Previous studies have focused on generating images from sound in limited categories or music. In this paper, we propose a novel approach to generate images from in-the-wild sounds. First, we convert sound into text using audio captioning. Second, we propose audio attention and sentence attention to represent the rich characteristics of sound and visualize the sound. Lastly, we propose a direct sound optimization with CLIPscore and AudioCLIP and generate images with a diffusion-based model. In experiments, it shows that our model is able to generate high quality images from wild sounds and outperforms baselines in both quantitative and qualitative evaluations on wild audio datasets.
Effectiveness of self-supervised pre-training for speech recognition
We compare self-supervised representation learning algorithms which either explicitly quantize the audio data or learn representations without quantization. We find the former to be more accurate since it builds a good vocabulary of the data through vq-wav2vec [1] to enable learning of effective representations in subsequent BERT training. Different to previous work, we directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model. We also propose a BERT-style model learning directly from the continuous audio data and compare pre-training on raw audio to spectral features. Fine-tuning a BERT model on 10 hour of labeled Librispeech data with a vq-wav2vec vocabulary is almost as good as the best known reported system trained on 100 hours of labeled data on testclean, while achieving a 25% WER reduction on test-other. When using only 10 minutes of labeled data, WER is 25.2 on test-other and 16.3 on test-clean. This demonstrates that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data.
Acoustic Prompt Tuning: Empowering Large Language Models with Audition Capabilities
The auditory system plays a substantial role in shaping the overall human perceptual experience. While prevailing large language models (LLMs) and visual language models (VLMs) have shown their promise in solving a wide variety of vision and language understanding tasks, only a few of them can be generalised to the audio domain without compromising their domain-specific capacity. In this work, we introduce Acoustic Prompt Turning (APT), a new adapter extending LLMs and VLMs to the audio domain by soft prompting only. Specifically, APT applies an instruction-aware audio aligner to generate soft prompts, conditioned on both input text and sounds, as language model inputs. To mitigate the data scarcity in the audio domain, a multi-task learning strategy is proposed by formulating diverse audio tasks in a sequence-to-sequence manner. Moreover, we improve the framework of audio language model by using interleaved audio-text embeddings as the input sequence. This improved framework imposes zero constraints on the input format and thus is capable of tackling more understanding tasks, such as few-shot audio classification and audio reasoning. To further evaluate the reasoning ability of audio networks, we propose natural language audio reasoning (NLAR), a new task that analyses across two audio clips by comparison and summarization. Experiments show that APT-enhanced LLMs (namely APT-LLMs) achieve competitive results compared to the expert models (i.e., the networks trained on the targeted datasets) across various tasks. We finally demonstrate the APT's ability in extending frozen VLMs to the audio domain without finetuning, achieving promising results in the audio-visual question and answering task. Our code and model weights are released at https://github.com/JinhuaLiang/APT.
Modelling black-box audio effects with time-varying feature modulation
Deep learning approaches for black-box modelling of audio effects have shown promise, however, the majority of existing work focuses on nonlinear effects with behaviour on relatively short time-scales, such as guitar amplifiers and distortion. While recurrent and convolutional architectures can theoretically be extended to capture behaviour at longer time scales, we show that simply scaling the width, depth, or dilation factor of existing architectures does not result in satisfactory performance when modelling audio effects such as fuzz and dynamic range compression. To address this, we propose the integration of time-varying feature-wise linear modulation into existing temporal convolutional backbones, an approach that enables learnable adaptation of the intermediate activations. We demonstrate that our approach more accurately captures long-range dependencies for a range of fuzz and compressor implementations across both time and frequency domain metrics. We provide sound examples, source code, and pretrained models to faciliate reproducibility.
Passage Summarization with Recurrent Models for Audio-Sheet Music Retrieval
Many applications of cross-modal music retrieval are related to connecting sheet music images to audio recordings. A typical and recent approach to this is to learn, via deep neural networks, a joint embedding space that correlates short fixed-size snippets of audio and sheet music by means of an appropriate similarity structure. However, two challenges that arise out of this strategy are the requirement of strongly aligned data to train the networks, and the inherent discrepancies of musical content between audio and sheet music snippets caused by local and global tempo differences. In this paper, we address these two shortcomings by designing a cross-modal recurrent network that learns joint embeddings that can summarize longer passages of corresponding audio and sheet music. The benefits of our method are that it only requires weakly aligned audio-sheet music pairs, as well as that the recurrent network handles the non-linearities caused by tempo variations between audio and sheet music. We conduct a number of experiments on synthetic and real piano data and scores, showing that our proposed recurrent method leads to more accurate retrieval in all possible configurations.
Continual Learning for On-Device Speech Recognition using Disentangled Conformers
Automatic speech recognition research focuses on training and evaluating on static datasets. Yet, as speech models are increasingly deployed on personal devices, such models encounter user-specific distributional shifts. To simulate this real-world scenario, we introduce LibriContinual, a continual learning benchmark for speaker-specific domain adaptation derived from LibriVox audiobooks, with data corresponding to 118 individual speakers and 6 train splits per speaker of different sizes. Additionally, current speech recognition models and continual learning algorithms are not optimized to be compute-efficient. We adapt a general-purpose training algorithm NetAug for ASR and create a novel Conformer variant called the DisConformer (Disentangled Conformer). This algorithm produces ASR models consisting of a frozen 'core' network for general-purpose use and several tunable 'augment' networks for speaker-specific tuning. Using such models, we propose a novel compute-efficient continual learning algorithm called DisentangledCL. Our experiments show that the DisConformer models significantly outperform baselines on general ASR i.e. LibriSpeech (15.58% rel. WER on test-other). On speaker-specific LibriContinual they significantly outperform trainable-parameter-matched baselines (by 20.65% rel. WER on test) and even match fully finetuned baselines in some settings.
Generating Sample-Based Musical Instruments Using Neural Audio Codec Language Models
In this paper, we propose and investigate the use of neural audio codec language models for the automatic generation of sample-based musical instruments based on text or reference audio prompts. Our approach extends a generative audio framework to condition on pitch across an 88-key spectrum, velocity, and a combined text/audio embedding. We identify maintaining timbral consistency within the generated instruments as a major challenge. To tackle this issue, we introduce three distinct conditioning schemes. We analyze our methods through objective metrics and human listening tests, demonstrating that our approach can produce compelling musical instruments. Specifically, we introduce a new objective metric to evaluate the timbral consistency of the generated instruments and adapt the average Contrastive Language-Audio Pretraining (CLAP) score for the text-to-instrument case, noting that its naive application is unsuitable for assessing this task. Our findings reveal a complex interplay between timbral consistency, the quality of generated samples, and their correspondence to the input prompt.
LLark: A Multimodal Foundation Model for Music
Music has a unique and complex structure which is challenging for both expert humans and existing AI systems to understand, and presents unique challenges relative to other forms of audio. We present LLark, an instruction-tuned multimodal model for music understanding. We detail our process for dataset creation, which involves augmenting the annotations of diverse open-source music datasets and converting them to a unified instruction-tuning format. We propose a multimodal architecture for LLark, integrating a pretrained generative model for music with a pretrained language model. In evaluations on three types of tasks (music understanding, captioning, and reasoning), we show that our model matches or outperforms existing baselines in zero-shot generalization for music understanding, and that humans show a high degree of agreement with the model's responses in captioning and reasoning tasks. LLark is trained entirely from open-source music data and models, and we make our training code available along with the release of this paper. Additional results and audio examples are at https://bit.ly/llark, and our source code is available at https://github.com/spotify-research/llark .
Coincidence, Categorization, and Consolidation: Learning to Recognize Sounds with Minimal Supervision
Humans do not acquire perceptual abilities in the way we train machines. While machine learning algorithms typically operate on large collections of randomly-chosen, explicitly-labeled examples, human acquisition relies more heavily on multimodal unsupervised learning (as infants) and active learning (as children). With this motivation, we present a learning framework for sound representation and recognition that combines (i) a self-supervised objective based on a general notion of unimodal and cross-modal coincidence, (ii) a clustering objective that reflects our need to impose categorical structure on our experiences, and (iii) a cluster-based active learning procedure that solicits targeted weak supervision to consolidate categories into relevant semantic classes. By training a combined sound embedding/clustering/classification network according to these criteria, we achieve a new state-of-the-art unsupervised audio representation and demonstrate up to a 20-fold reduction in the number of labels required to reach a desired classification performance.
PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning
Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks --a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatial-based distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively. Code is available at https://github.com/arthurdouillard/incremental_learning.pytorch
Multitask learning in Audio Captioning: a sentence embedding regression loss acts as a regularizer
In this work, we propose to study the performance of a model trained with a sentence embedding regression loss component for the Automated Audio Captioning task. This task aims to build systems that can describe audio content with a single sentence written in natural language. Most systems are trained with the standard Cross-Entropy loss, which does not take into account the semantic closeness of the sentence. We found that adding a sentence embedding loss term reduces overfitting, but also increased SPIDEr from 0.397 to 0.418 in our first setting on the AudioCaps corpus. When we increased the weight decay value, we found our model to be much closer to the current state-of-the-art methods, with a SPIDEr score up to 0.444 compared to a 0.475 score. Moreover, this model uses eight times less trainable parameters. In this training setting, the sentence embedding loss has no more impact on the model performance.
Generating Long Sequences with Sparse Transformers
Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to O(n n). We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more.
CompA: Addressing the Gap in Compositional Reasoning in Audio-Language Models
A fundamental characteristic of audio is its compositional nature. Audio-language models (ALMs) trained using a contrastive approach (e.g., CLAP) that learns a shared representation between audio and language modalities have improved performance in many downstream applications, including zero-shot audio classification, audio retrieval, etc. However, the ability of these models to effectively perform compositional reasoning remains largely unexplored and necessitates additional research. In this paper, we propose CompA, a collection of two expert-annotated benchmarks with a majority of real-world audio samples, to evaluate compositional reasoning in ALMs. Our proposed CompA-order evaluates how well an ALM understands the order or occurrence of acoustic events in audio, and CompA-attribute evaluates attribute binding of acoustic events. An instance from either benchmark consists of two audio-caption pairs, where both audios have the same acoustic events but with different compositions. An ALM is evaluated on how well it matches the right audio to the right caption. Using this benchmark, we first show that current ALMs perform only marginally better than random chance, thereby struggling with compositional reasoning. Next, we propose CompA-CLAP, where we fine-tune CLAP using a novel learning method to improve its compositional reasoning abilities. To train CompA-CLAP, we first propose improvements to contrastive training with composition-aware hard negatives, allowing for more focused training. Next, we propose a novel modular contrastive loss that helps the model learn fine-grained compositional understanding and overcomes the acute scarcity of openly available compositional audios. CompA-CLAP significantly improves over all our baseline models on the CompA benchmark, indicating its superior compositional reasoning capabilities.
Controllable Music Production with Diffusion Models and Guidance Gradients
We demonstrate how conditional generation from diffusion models can be used to tackle a variety of realistic tasks in the production of music in 44.1kHz stereo audio with sampling-time guidance. The scenarios we consider include continuation, inpainting and regeneration of musical audio, the creation of smooth transitions between two different music tracks, and the transfer of desired stylistic characteristics to existing audio clips. We achieve this by applying guidance at sampling time in a simple framework that supports both reconstruction and classification losses, or any combination of the two. This approach ensures that generated audio can match its surrounding context, or conform to a class distribution or latent representation specified relative to any suitable pre-trained classifier or embedding model.
FMA: A Dataset For Music Analysis
We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma
On The Open Prompt Challenge In Conditional Audio Generation
Text-to-audio generation (TTA) produces audio from a text description, learning from pairs of audio samples and hand-annotated text. However, commercializing audio generation is challenging as user-input prompts are often under-specified when compared to text descriptions used to train TTA models. In this work, we treat TTA models as a ``blackbox'' and address the user prompt challenge with two key insights: (1) User prompts are generally under-specified, leading to a large alignment gap between user prompts and training prompts. (2) There is a distribution of audio descriptions for which TTA models are better at generating higher quality audio, which we refer to as ``audionese''. To this end, we rewrite prompts with instruction-tuned models and propose utilizing text-audio alignment as feedback signals via margin ranking learning for audio improvements. On both objective and subjective human evaluations, we observed marked improvements in both text-audio alignment and music audio quality.
Towards Unsupervised Speech Recognition and Synthesis with Quantized Speech Representation Learning
In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by proper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model.
Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM
We present a novel approach to adapting pre-trained large language models (LLMs) to perform question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained end-to-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a `cross-modal' chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. Audio samples can be found at https://michelleramanovich.github.io/spectron/spectron
Fine-tuned Language Models are Continual Learners
Recent work on large language models relies on the intuition that most natural language processing tasks can be described via natural language instructions. Language models trained on these instructions show strong zero-shot performance on several standard datasets. However, these models even though impressive still perform poorly on a wide range of tasks outside of their respective training and evaluation sets. To address this limitation, we argue that a model should be able to keep extending its knowledge and abilities, without forgetting previous skills. In spite of the limited success of Continual Learning we show that Language Models can be continual learners. We empirically investigate the reason for this success and conclude that Continual Learning emerges from self-supervision pre-training. Our resulting model Continual-T0 (CT0) is able to learn diverse new tasks, while still maintaining good performance on previous tasks, spanning remarkably through 70 datasets in total. Finally, we show that CT0 is able to combine instructions in ways it was never trained for, demonstrating some compositionality.
Continual Learning with Low Rank Adaptation
Recent work using pretrained transformers has shown impressive performance when fine-tuned with data from the downstream problem of interest. However, they struggle to retain that performance when the data characteristics changes. In this paper, we focus on continual learning, where a pre-trained transformer is updated to perform well on new data, while retaining its performance on data it was previously trained on. Earlier works have tackled this primarily through methods inspired from prompt tuning. We question this choice, and investigate the applicability of Low Rank Adaptation (LoRA) to continual learning. On a range of domain-incremental learning benchmarks, our LoRA-based solution, CoLoR, yields state-of-the-art performance, while still being as parameter efficient as the prompt tuning based methods.
An Evolved Universal Transformer Memory
Prior methods propose to offset the escalating costs of modern foundation models by dropping specific parts of their contexts with hand-designed rules, while attempting to preserve their original performance. We overcome this trade-off with Neural Attention Memory Models (NAMMs), introducing a learned network for memory management that improves both the performance and efficiency of transformers. We evolve NAMMs atop pre-trained transformers to provide different latent contexts focusing on the most relevant information for individual layers and attention heads.NAMMs are universally applicable to any model using self-attention as they condition exclusively on the values in the produced attention matrices. Learning NAMMs on a small set of problems, we achieve substantial performance improvements across multiple long-context benchmarks while cutting the model's input contexts up to a fraction of the original sizes. We show the generality of our conditioning enables zero-shot transfer of NAMMs trained only on language to entirely new transformer architectures even across input modalities, with their benefits carrying over to vision and reinforcement learning.
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models
Music generation has attracted growing interest with the advancement of deep generative models. However, generating music conditioned on textual descriptions, known as text-to-music, remains challenging due to the complexity of musical structures and high sampling rate requirements. Despite the task's significance, prevailing generative models exhibit limitations in music quality, computational efficiency, and generalization. This paper introduces JEN-1, a universal high-fidelity model for text-to-music generation. JEN-1 is a diffusion model incorporating both autoregressive and non-autoregressive training. Through in-context learning, JEN-1 performs various generation tasks including text-guided music generation, music inpainting, and continuation. Evaluations demonstrate JEN-1's superior performance over state-of-the-art methods in text-music alignment and music quality while maintaining computational efficiency. Our demos are available at http://futureverse.com/research/jen/demos/jen1
Language-Guided Music Recommendation for Video via Prompt Analogies
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Audio Dialogues: Dialogues dataset for audio and music understanding
Existing datasets for audio understanding primarily focus on single-turn interactions (i.e. audio captioning, audio question answering) for describing audio in natural language, thus limiting understanding audio via interactive dialogue. To address this gap, we introduce Audio Dialogues: a multi-turn dialogue dataset containing 163.8k samples for general audio sounds and music. In addition to dialogues, Audio Dialogues also has question-answer pairs to understand and compare multiple input audios together. Audio Dialogues leverages a prompting-based approach and caption annotations from existing datasets to generate multi-turn dialogues using a Large Language Model (LLM). We evaluate existing audio-augmented large language models on our proposed dataset to demonstrate the complexity and applicability of Audio Dialogues. Our code for generating the dataset will be made publicly available. Detailed prompts and generated dialogues can be found on the demo website https://audiodialogues.github.io/.
Content Adaptive Front End For Audio Classification
We propose a learnable content adaptive front end for audio signal processing. Before the modern advent of deep learning, we used fixed representation non-learnable front-ends like spectrogram or mel-spectrogram with/without neural architectures. With convolutional architectures supporting various applications such as ASR and acoustic scene understanding, a shift to a learnable front ends occurred in which both the type of basis functions and the weight were learned from scratch and optimized for the particular task of interest. With the shift to transformer-based architectures with no convolutional blocks present, a linear layer projects small waveform patches onto a small latent dimension before feeding them to a transformer architecture. In this work, we propose a way of computing a content-adaptive learnable time-frequency representation. We pass each audio signal through a bank of convolutional filters, each giving a fixed-dimensional vector. It is akin to learning a bank of finite impulse-response filterbanks and passing the input signal through the optimum filter bank depending on the content of the input signal. A content-adaptive learnable time-frequency representation may be more broadly applicable, beyond the experiments in this paper.
Understanding Catastrophic Forgetting and Remembering in Continual Learning with Optimal Relevance Mapping
Catastrophic forgetting in neural networks is a significant problem for continual learning. A majority of the current methods replay previous data during training, which violates the constraints of an ideal continual learning system. Additionally, current approaches that deal with forgetting ignore the problem of catastrophic remembering, i.e. the worsening ability to discriminate between data from different tasks. In our work, we introduce Relevance Mapping Networks (RMNs) which are inspired by the Optimal Overlap Hypothesis. The mappings reflects the relevance of the weights for the task at hand by assigning large weights to essential parameters. We show that RMNs learn an optimized representational overlap that overcomes the twin problem of catastrophic forgetting and remembering. Our approach achieves state-of-the-art performance across all common continual learning datasets, even significantly outperforming data replay methods while not violating the constraints for an ideal continual learning system. Moreover, RMNs retain the ability to detect data from new tasks in an unsupervised manner, thus proving their resilience against catastrophic remembering.
WaveNet: A Generative Model for Raw Audio
This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition.
Exploring Domain-Specific Enhancements for a Neural Foley Synthesizer
Foley sound synthesis refers to the creation of authentic, diegetic sound effects for media, such as film or radio. In this study, we construct a neural Foley synthesizer capable of generating mono-audio clips across seven predefined categories. Our approach introduces multiple enhancements to existing models in the text-to-audio domain, with the goal of enriching the diversity and acoustic characteristics of the generated foleys. Notably, we utilize a pre-trained encoder that retains acoustical and musical attributes in intermediate embeddings, implement class-conditioning to enhance differentiability among foley classes in their intermediate representations, and devise an innovative transformer-based architecture for optimizing self-attention computations on very large inputs without compromising valuable information. Subsequent to implementation, we present intermediate outcomes that surpass the baseline, discuss practical challenges encountered in achieving optimal results, and outline potential pathways for further research.
Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization
Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.
EgoSonics: Generating Synchronized Audio for Silent Egocentric Videos
We introduce EgoSonics, a method to generate semantically meaningful and synchronized audio tracks conditioned on silent egocentric videos. Generating audio for silent egocentric videos could open new applications in virtual reality, assistive technologies, or for augmenting existing datasets. Existing work has been limited to domains like speech, music, or impact sounds and cannot easily capture the broad range of audio frequencies found in egocentric videos. EgoSonics addresses these limitations by building on the strength of latent diffusion models for conditioned audio synthesis. We first encode and process audio and video data into a form that is suitable for generation. The encoded data is used to train our model to generate audio tracks that capture the semantics of the input video. Our proposed SyncroNet builds on top of ControlNet to provide control signals that enables temporal synchronization to the synthesized audio. Extensive evaluations show that our model outperforms existing work in audio quality, and in our newly proposed synchronization evaluation method. Furthermore, we demonstrate downstream applications of our model in improving video summarization.
Toward Interpretable Music Tagging with Self-Attention
Self-attention is an attention mechanism that learns a representation by relating different positions in the sequence. The transformer, which is a sequence model solely based on self-attention, and its variants achieved state-of-the-art results in many natural language processing tasks. Since music composes its semantics based on the relations between components in sparse positions, adopting the self-attention mechanism to solve music information retrieval (MIR) problems can be beneficial. Hence, we propose a self-attention based deep sequence model for music tagging. The proposed architecture consists of shallow convolutional layers followed by stacked Transformer encoders. Compared to conventional approaches using fully convolutional or recurrent neural networks, our model is more interpretable while reporting competitive results. We validate the performance of our model with the MagnaTagATune and the Million Song Dataset. In addition, we demonstrate the interpretability of the proposed architecture with a heat map visualization.
AST: Audio Spectrogram Transformer
In the past decade, convolutional neural networks (CNNs) have been widely adopted as the main building block for end-to-end audio classification models, which aim to learn a direct mapping from audio spectrograms to corresponding labels. To better capture long-range global context, a recent trend is to add a self-attention mechanism on top of the CNN, forming a CNN-attention hybrid model. However, it is unclear whether the reliance on a CNN is necessary, and if neural networks purely based on attention are sufficient to obtain good performance in audio classification. In this paper, we answer the question by introducing the Audio Spectrogram Transformer (AST), the first convolution-free, purely attention-based model for audio classification. We evaluate AST on various audio classification benchmarks, where it achieves new state-of-the-art results of 0.485 mAP on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on Speech Commands V2.
MMAU: A Massive Multi-Task Audio Understanding and Reasoning Benchmark
The ability to comprehend audio--which includes speech, non-speech sounds, and music--is crucial for AI agents to interact effectively with the world. We present MMAU, a novel benchmark designed to evaluate multimodal audio understanding models on tasks requiring expert-level knowledge and complex reasoning. MMAU comprises 10k carefully curated audio clips paired with human-annotated natural language questions and answers spanning speech, environmental sounds, and music. It includes information extraction and reasoning questions, requiring models to demonstrate 27 distinct skills across unique and challenging tasks. Unlike existing benchmarks, MMAU emphasizes advanced perception and reasoning with domain-specific knowledge, challenging models to tackle tasks akin to those faced by experts. We assess 18 open-source and proprietary (Large) Audio-Language Models, demonstrating the significant challenges posed by MMAU. Notably, even the most advanced Gemini Pro v1.5 achieves only 52.97% accuracy, and the state-of-the-art open-source Qwen2-Audio achieves only 52.50%, highlighting considerable room for improvement. We believe MMAU will drive the audio and multimodal research community to develop more advanced audio understanding models capable of solving complex audio tasks.
A Large-scale Dataset for Audio-Language Representation Learning
The AI community has made significant strides in developing powerful foundation models, driven by large-scale multimodal datasets. However, in the audio representation learning community, the present audio-language datasets suffer from limitations such as insufficient volume, simplistic content, and arduous collection procedures. To tackle these challenges, we present an innovative and automatic audio caption generation pipeline based on a series of public tools or APIs, and construct a large-scale, high-quality, audio-language dataset, named as Auto-ACD, comprising over 1.9M audio-text pairs. To demonstrate the effectiveness of the proposed dataset, we train popular models on our dataset and show performance improvement on various downstream tasks, namely, audio-language retrieval, audio captioning, environment classification. In addition, we establish a novel test set and provide a benchmark for audio-text tasks. The proposed dataset will be released at https://auto-acd.github.io/.
High Fidelity Neural Audio Compression
We introduce a state-of-the-art real-time, high-fidelity, audio codec leveraging neural networks. It consists in a streaming encoder-decoder architecture with quantized latent space trained in an end-to-end fashion. We simplify and speed-up the training by using a single multiscale spectrogram adversary that efficiently reduces artifacts and produce high-quality samples. We introduce a novel loss balancer mechanism to stabilize training: the weight of a loss now defines the fraction of the overall gradient it should represent, thus decoupling the choice of this hyper-parameter from the typical scale of the loss. Finally, we study how lightweight Transformer models can be used to further compress the obtained representation by up to 40%, while staying faster than real time. We provide a detailed description of the key design choices of the proposed model including: training objective, architectural changes and a study of various perceptual loss functions. We present an extensive subjective evaluation (MUSHRA tests) together with an ablation study for a range of bandwidths and audio domains, including speech, noisy-reverberant speech, and music. Our approach is superior to the baselines methods across all evaluated settings, considering both 24 kHz monophonic and 48 kHz stereophonic audio. Code and models are available at github.com/facebookresearch/encodec.
Musical Word Embedding for Music Tagging and Retrieval
Word embedding has become an essential means for text-based information retrieval. Typically, word embeddings are learned from large quantities of general and unstructured text data. However, in the domain of music, the word embedding may have difficulty understanding musical contexts or recognizing music-related entities like artists and tracks. To address this issue, we propose a new approach called Musical Word Embedding (MWE), which involves learning from various types of texts, including both everyday and music-related vocabulary. We integrate MWE into an audio-word joint representation framework for tagging and retrieving music, using words like tag, artist, and track that have different levels of musical specificity. Our experiments show that using a more specific musical word like track results in better retrieval performance, while using a less specific term like tag leads to better tagging performance. To balance this compromise, we suggest multi-prototype training that uses words with different levels of musical specificity jointly. We evaluate both word embedding and audio-word joint embedding on four tasks (tag rank prediction, music tagging, query-by-tag, and query-by-track) across two datasets (Million Song Dataset and MTG-Jamendo). Our findings show that the suggested MWE is more efficient and robust than the conventional word embedding.
Twin Networks: Matching the Future for Sequence Generation
We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "backward" recurrent network to generate a given sequence in reverse order, and we encourage states of the forward model to predict cotemporal states of the backward model. The backward network is used only during training, and plays no role during sampling or inference. We hypothesize that our approach eases modeling of long-term dependencies by implicitly forcing the forward states to hold information about the longer-term future (as contained in the backward states). We show empirically that our approach achieves 9% relative improvement for a speech recognition task, and achieves significant improvement on a COCO caption generation task.
End-to-End Audio Strikes Back: Boosting Augmentations Towards An Efficient Audio Classification Network
While efficient architectures and a plethora of augmentations for end-to-end image classification tasks have been suggested and heavily investigated, state-of-the-art techniques for audio classifications still rely on numerous representations of the audio signal together with large architectures, fine-tuned from large datasets. By utilizing the inherited lightweight nature of audio and novel audio augmentations, we were able to present an efficient end-to-end network with strong generalization ability. Experiments on a variety of sound classification sets demonstrate the effectiveness and robustness of our approach, by achieving state-of-the-art results in various settings. Public code is available at: https://github.com/Alibaba-MIIL/AudioClassfication{this http url}
Do Audio-Language Models Understand Linguistic Variations?
Open-vocabulary audio language models (ALMs), like Contrastive Language Audio Pretraining (CLAP), represent a promising new paradigm for audio-text retrieval using natural language queries. In this paper, for the first time, we perform controlled experiments on various benchmarks to show that existing ALMs struggle to generalize to linguistic variations in textual queries. To address this issue, we propose RobustCLAP, a novel and compute-efficient technique to learn audio-language representations agnostic to linguistic variations. Specifically, we reformulate the contrastive loss used in CLAP architectures by introducing a multi-view contrastive learning objective, where paraphrases are treated as different views of the same audio scene and use this for training. Our proposed approach improves the text-to-audio retrieval performance of CLAP by 0.8%-13% across benchmarks and enhances robustness to linguistic variation.
Exploring Self-Supervised Contrastive Learning of Spatial Sound Event Representation
In this study, we present a simple multi-channel framework for contrastive learning (MC-SimCLR) to encode 'what' and 'where' of spatial audios. MC-SimCLR learns joint spectral and spatial representations from unlabeled spatial audios, thereby enhancing both event classification and sound localization in downstream tasks. At its core, we propose a multi-level data augmentation pipeline that augments different levels of audio features, including waveforms, Mel spectrograms, and generalized cross-correlation (GCC) features. In addition, we introduce simple yet effective channel-wise augmentation methods to randomly swap the order of the microphones and mask Mel and GCC channels. By using these augmentations, we find that linear layers on top of the learned representation significantly outperform supervised models in terms of both event classification accuracy and localization error. We also perform a comprehensive analysis of the effect of each augmentation method and a comparison of the fine-tuning performance using different amounts of labeled data.
VGGSound: A Large-scale Audio-Visual Dataset
Our goal is to collect a large-scale audio-visual dataset with low label noise from videos in the wild using computer vision techniques. The resulting dataset can be used for training and evaluating audio recognition models. We make three contributions. First, we propose a scalable pipeline based on computer vision techniques to create an audio dataset from open-source media. Our pipeline involves obtaining videos from YouTube; using image classification algorithms to localize audio-visual correspondence; and filtering out ambient noise using audio verification. Second, we use this pipeline to curate the VGGSound dataset consisting of more than 210k videos for 310 audio classes. Third, we investigate various Convolutional Neural Network~(CNN) architectures and aggregation approaches to establish audio recognition baselines for our new dataset. Compared to existing audio datasets, VGGSound ensures audio-visual correspondence and is collected under unconstrained conditions. Code and the dataset are available at http://www.robots.ox.ac.uk/~vgg/data/vggsound/
MusicLM: Generating Music From Text
We introduce MusicLM, a model generating high-fidelity music from text descriptions such as "a calming violin melody backed by a distorted guitar riff". MusicLM casts the process of conditional music generation as a hierarchical sequence-to-sequence modeling task, and it generates music at 24 kHz that remains consistent over several minutes. Our experiments show that MusicLM outperforms previous systems both in audio quality and adherence to the text description. Moreover, we demonstrate that MusicLM can be conditioned on both text and a melody in that it can transform whistled and hummed melodies according to the style described in a text caption. To support future research, we publicly release MusicCaps, a dataset composed of 5.5k music-text pairs, with rich text descriptions provided by human experts.
Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms
Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as well but has been not fully explored yet. To this end, we propose sample-level deep convolutional neural networks which learn representations from very small grains of waveforms (e.g. 2 or 3 samples) beyond typical frame-level input representations. Our experiments show how deep architectures with sample-level filters improve the accuracy in music auto-tagging and they provide results comparable to previous state-of-the-art performances for the Magnatagatune dataset and Million Song Dataset. In addition, we visualize filters learned in a sample-level DCNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency along layer, such as mel-frequency spectrogram that is widely used in music classification systems.
Layer-wise Analysis of a Self-supervised Speech Representation Model
Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. We use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting.
Listen, Think, and Understand
The ability of artificial intelligence (AI) systems to perceive and comprehend audio signals is crucial for many applications. Although significant progress has been made in this area since the development of AudioSet, most existing models are designed to map audio inputs to pre-defined, discrete sound label sets. In contrast, humans possess the ability to not only classify sounds into coarse-grained categories, but also to listen to the details of the sounds, explain the reason for the predictions, think what the sound infers, and understand the scene and what action needs to be taken. Such capabilities beyond perception are not yet present in existing audio models. On the other hand, modern large language models (LLMs) exhibit emerging reasoning ability but they lack audio perception capabilities. Therefore, we ask the question: can we build an AI model that has both audio perception and a reasoning ability? In this paper, we propose a novel audio foundation model, called LTU (Listen, Think, and Understand). To train LTU, we created a new OpenAQA-5M dataset consisting of 1.9 million closed-ended and 3.7 million open-ended, diverse (audio, question, answer) tuples, and used an autoregressive training framework and a perception-to-understanding curriculum. LTU demonstrates strong performance and generalization ability on conventional audio tasks such as classification and captioning. Moreover, it exhibits remarkable reasoning and comprehension abilities in the audio domain. To the best of our knowledge, LTU is the first audio-enabled large language model that bridges audio perception with advanced reasoning.
Masked Autoencoders with Multi-Window Local-Global Attention Are Better Audio Learners
In this work, we propose a Multi-Window Masked Autoencoder (MW-MAE) fitted with a novel Multi-Window Multi-Head Attention (MW-MHA) module that facilitates the modelling of local-global interactions in every decoder transformer block through attention heads of several distinct local and global windows. Empirical results on ten downstream audio tasks show that MW-MAEs consistently outperform standard MAEs in overall performance and learn better general-purpose audio representations, along with demonstrating considerably better scaling characteristics. Investigating attention distances and entropies reveals that MW-MAE encoders learn heads with broader local and global attention. Analyzing attention head feature representations through Projection Weighted Canonical Correlation Analysis (PWCCA) shows that attention heads with the same window sizes across the decoder layers of the MW-MAE learn correlated feature representations which enables each block to independently capture local and global information, leading to a decoupled decoder feature hierarchy. Code for feature extraction and downstream experiments along with pre-trained models will be released publically.
ReCLAP: Improving Zero Shot Audio Classification by Describing Sounds
Open-vocabulary audio-language models, like CLAP, offer a promising approach for zero-shot audio classification (ZSAC) by enabling classification with any arbitrary set of categories specified with natural language prompts. In this paper, we propose a simple but effective method to improve ZSAC with CLAP. Specifically, we shift from the conventional method of using prompts with abstract category labels (e.g., Sound of an organ) to prompts that describe sounds using their inherent descriptive features in a diverse context (e.g.,The organ's deep and resonant tones filled the cathedral.). To achieve this, we first propose ReCLAP, a CLAP model trained with rewritten audio captions for improved understanding of sounds in the wild. These rewritten captions describe each sound event in the original caption using their unique discriminative characteristics. ReCLAP outperforms all baselines on both multi-modal audio-text retrieval and ZSAC. Next, to improve zero-shot audio classification with ReCLAP, we propose prompt augmentation. In contrast to the traditional method of employing hand-written template prompts, we generate custom prompts for each unique label in the dataset. These custom prompts first describe the sound event in the label and then employ them in diverse scenes. Our proposed method improves ReCLAP's performance on ZSAC by 1%-18% and outperforms all baselines by 1% - 55%.
YuE: Scaling Open Foundation Models for Long-Form Music Generation
We tackle the task of long-form music generation--particularly the challenging lyrics-to-song problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
VoiceLDM: Text-to-Speech with Environmental Context
This paper presents VoiceLDM, a model designed to produce audio that accurately follows two distinct natural language text prompts: the description prompt and the content prompt. The former provides information about the overall environmental context of the audio, while the latter conveys the linguistic content. To achieve this, we adopt a text-to-audio (TTA) model based on latent diffusion models and extend its functionality to incorporate an additional content prompt as a conditional input. By utilizing pretrained contrastive language-audio pretraining (CLAP) and Whisper, VoiceLDM is trained on large amounts of real-world audio without manual annotations or transcriptions. Additionally, we employ dual classifier-free guidance to further enhance the controllability of VoiceLDM. Experimental results demonstrate that VoiceLDM is capable of generating plausible audio that aligns well with both input conditions, even surpassing the speech intelligibility of the ground truth audio on the AudioCaps test set. Furthermore, we explore the text-to-speech (TTS) and zero-shot text-to-audio capabilities of VoiceLDM and show that it achieves competitive results. Demos and code are available at https://voiceldm.github.io.
SONAR: Sentence-Level Multimodal and Language-Agnostic Representations
We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper.
Visual Features for Context-Aware Speech Recognition
Automatic transcriptions of consumer-generated multi-media content such as "Youtube" videos still exhibit high word error rates. Such data typically occupies a very broad domain, has been recorded in challenging conditions, with cheap hardware and a focus on the visual modality, and may have been post-processed or edited. In this paper, we extend our earlier work on adapting the acoustic model of a DNN-based speech recognition system to an RNN language model and show how both can be adapted to the objects and scenes that can be automatically detected in the video. We are working on a corpus of "how-to" videos from the web, and the idea is that an object that can be seen ("car"), or a scene that is being detected ("kitchen") can be used to condition both models on the "context" of the recording, thereby reducing perplexity and improving transcription. We achieve good improvements in both cases and compare and analyze the respective reductions in word error rate. We expect that our results can be used for any type of speech processing in which "context" information is available, for example in robotics, man-machine interaction, or when indexing large audio-visual archives, and should ultimately help to bring together the "video-to-text" and "speech-to-text" communities.
REMIND Your Neural Network to Prevent Catastrophic Forgetting
People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND's robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND's generality by pioneering online learning for Visual Question Answering (VQA).
Multitrack Music Transformer
Existing approaches for generating multitrack music with transformer models have been limited in terms of the number of instruments, the length of the music segments and slow inference. This is partly due to the memory requirements of the lengthy input sequences necessitated by existing representations. In this work, we propose a new multitrack music representation that allows a diverse set of instruments while keeping a short sequence length. Our proposed Multitrack Music Transformer (MMT) achieves comparable performance with state-of-the-art systems, landing in between two recently proposed models in a subjective listening test, while achieving substantial speedups and memory reductions over both, making the method attractive for real time improvisation or near real time creative applications. Further, we propose a new measure for analyzing musical self-attention and show that the trained model attends more to notes that form a consonant interval with the current note and to notes that are 4N beats away from the current step.
AF Adapter: Continual Pretraining for Building Chinese Biomedical Language Model
Continual pretraining is a popular way of building a domain-specific pretrained language model from a general-domain language model. In spite of its high efficiency, continual pretraining suffers from catastrophic forgetting, which may harm the model's performance in downstream tasks. To alleviate the issue, in this paper, we propose a continual pretraining method for the BERT-based model, named Attention-FFN Adapter. Its main idea is to introduce a small number of attention heads and hidden units inside each self-attention layer and feed-forward network. Furthermore, we train a domain-specific language model named AF Adapter based RoBERTa for the Chinese biomedical domain. In experiments, models are applied to downstream tasks for evaluation. The results demonstrate that with only about 17% of model parameters trained, AF Adapter achieves 0.6%, 2% gain in performance on average, compared to strong baselines. Further experimental results show that our method alleviates the catastrophic forgetting problem by 11% compared to the fine-tuning method.
Efficient Neural Audio Synthesis
Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to both estimating the data distribution and generating high-quality samples. Efficient sampling for this class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we describe a set of general techniques for reducing sampling time while maintaining high output quality. We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of parameters, large sparse networks perform better than small dense networks and this relationship holds for sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an orthogonal method for increasing sampling efficiency.
A Critical Review of Recurrent Neural Networks for Sequence Learning
Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translating natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window. Although recurrent neural networks have traditionally been difficult to train, and often contain millions of parameters, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful large-scale learning with them. In recent years, systems based on long short-term memory (LSTM) and bidirectional (BRNN) architectures have demonstrated ground-breaking performance on tasks as varied as image captioning, language translation, and handwriting recognition. In this survey, we review and synthesize the research that over the past three decades first yielded and then made practical these powerful learning models. When appropriate, we reconcile conflicting notation and nomenclature. Our goal is to provide a self-contained explication of the state of the art together with a historical perspective and references to primary research.
Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation
Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks, but they often suffer from common issues such as semantic misalignment and poor temporal consistency due to limited natural language understanding and data scarcity. Additionally, 2D spatial structures widely used in T2A works lead to unsatisfactory audio quality when generating variable-length audio samples since they do not adequately prioritize temporal information. To address these challenges, we propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio. Our approach includes several techniques to improve semantic alignment and temporal consistency: Firstly, we use pre-trained large language models (LLMs) to parse the text into structured <event & order> pairs for better temporal information capture. We also introduce another structured-text encoder to aid in learning semantic alignment during the diffusion denoising process. To improve the performance of variable length generation and enhance the temporal information extraction, we design a feed-forward Transformer-based diffusion denoiser. Finally, we use LLMs to augment and transform a large amount of audio-label data into audio-text datasets to alleviate the problem of scarcity of temporal data. Extensive experiments show that our method outperforms baseline models in both objective and subjective metrics, and achieves significant gains in temporal information understanding, semantic consistency, and sound quality.
Steerable discovery of neural audio effects
Applications of deep learning for audio effects often focus on modeling analog effects or learning to control effects to emulate a trained audio engineer. However, deep learning approaches also have the potential to expand creativity through neural audio effects that enable new sound transformations. While recent work demonstrated that neural networks with random weights produce compelling audio effects, control of these effects is limited and unintuitive. To address this, we introduce a method for the steerable discovery of neural audio effects. This method enables the design of effects using example recordings provided by the user. We demonstrate how this method produces an effect similar to the target effect, along with interesting inaccuracies, while also providing perceptually relevant controls.
SPDER: Semiperiodic Damping-Enabled Object Representation
We present a neural network architecture designed to naturally learn a positional embedding and overcome the spectral bias towards lower frequencies faced by conventional implicit neural representation networks. Our proposed architecture, SPDER, is a simple MLP that uses an activation function composed of a sinusoidal multiplied by a sublinear function, called the damping function. The sinusoidal enables the network to automatically learn the positional embedding of an input coordinate while the damping passes on the actual coordinate value by preventing it from being projected down to within a finite range of values. Our results indicate that SPDERs speed up training by 10x and converge to losses 1,500-50,000x lower than that of the state-of-the-art for image representation. SPDER is also state-of-the-art in audio representation. The superior representation capability allows SPDER to also excel on multiple downstream tasks such as image super-resolution and video frame interpolation. We provide intuition as to why SPDER significantly improves fitting compared to that of other INR methods while requiring no hyperparameter tuning or preprocessing.
AudioCLIP: Extending CLIP to Image, Text and Audio
In the past, the rapidly evolving field of sound classification greatly benefited from the application of methods from other domains. Today, we observe the trend to fuse domain-specific tasks and approaches together, which provides the community with new outstanding models. In this work, we present an extension of the CLIP model that handles audio in addition to text and images. Our proposed model incorporates the ESResNeXt audio-model into the CLIP framework using the AudioSet dataset. Such a combination enables the proposed model to perform bimodal and unimodal classification and querying, while keeping CLIP's ability to generalize to unseen datasets in a zero-shot inference fashion. AudioCLIP achieves new state-of-the-art results in the Environmental Sound Classification (ESC) task, out-performing other approaches by reaching accuracies of 90.07% on the UrbanSound8K and 97.15% on the ESC-50 datasets. Further it sets new baselines in the zero-shot ESC-task on the same datasets (68.78% and 69.40%, respectively). Finally, we also assess the cross-modal querying performance of the proposed model as well as the influence of full and partial training on the results. For the sake of reproducibility, our code is published.
Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems
Linking sheet music images to audio recordings remains a key problem for the development of efficient cross-modal music retrieval systems. One of the fundamental approaches toward this task is to learn a cross-modal embedding space via deep neural networks that is able to connect short snippets of audio and sheet music. However, the scarcity of annotated data from real musical content affects the capability of such methods to generalize to real retrieval scenarios. In this work, we investigate whether we can mitigate this limitation with self-supervised contrastive learning, by exposing a network to a large amount of real music data as a pre-training step, by contrasting randomly augmented views of snippets of both modalities, namely audio and sheet images. Through a number of experiments on synthetic and real piano data, we show that pre-trained models are able to retrieve snippets with better precision in all scenarios and pre-training configurations. Encouraged by these results, we employ the snippet embeddings in the higher-level task of cross-modal piece identification and conduct more experiments on several retrieval configurations. In this task, we observe that the retrieval quality improves from 30% up to 100% when real music data is present. We then conclude by arguing for the potential of self-supervised contrastive learning for alleviating the annotated data scarcity in multi-modal music retrieval models.
MMM : Exploring Conditional Multi-Track Music Generation with the Transformer
We propose the Multi-Track Music Machine (MMM), a generative system based on the Transformer architecture that is capable of generating multi-track music. In contrast to previous work, which represents musical material as a single time-ordered sequence, where the musical events corresponding to different tracks are interleaved, we create a time-ordered sequence of musical events for each track and concatenate several tracks into a single sequence. This takes advantage of the Transformer's attention-mechanism, which can adeptly handle long-term dependencies. We explore how various representations can offer the user a high degree of control at generation time, providing an interactive demo that accommodates track-level and bar-level inpainting, and offers control over track instrumentation and note density.
Integrating Text-to-Music Models with Language Models: Composing Long Structured Music Pieces
Recent music generation methods based on transformers have a context window of up to a minute. The music generated by these methods is largely unstructured beyond the context window. With a longer context window, learning long-scale structures from musical data is a prohibitively challenging problem. This paper proposes integrating a text-to-music model with a large language model to generate music with form. The papers discusses the solutions to the challenges of such integration. The experimental results show that the proposed method can generate 2.5-minute-long music that is highly structured, strongly organized, and cohesive.
AudioSetCaps: An Enriched Audio-Caption Dataset using Automated Generation Pipeline with Large Audio and Language Models
With the emergence of audio-language models, constructing large-scale paired audio-language datasets has become essential yet challenging for model development, primarily due to the time-intensive and labour-heavy demands involved. While large language models (LLMs) have improved the efficiency of synthetic audio caption generation, current approaches struggle to effectively extract and incorporate detailed audio information. In this paper, we propose an automated pipeline that integrates audio-language models for fine-grained content extraction, LLMs for synthetic caption generation, and a contrastive language-audio pretraining (CLAP) model-based refinement process to improve the quality of captions. Specifically, we employ prompt chaining techniques in the content extraction stage to obtain accurate and fine-grained audio information, while we use the refinement process to mitigate potential hallucinations in the generated captions. Leveraging the AudioSet dataset and the proposed approach, we create AudioSetCaps, a dataset comprising 1.9 million audio-caption pairs, the largest audio-caption dataset at the time of writing. The models trained with AudioSetCaps achieve state-of-the-art performance on audio-text retrieval with R@1 scores of 46.3% for text-to-audio and 59.7% for audio-to-text retrieval and automated audio captioning with the CIDEr score of 84.8. As our approach has shown promising results with AudioSetCaps, we create another dataset containing 4.1 million synthetic audio-language pairs based on the Youtube-8M and VGGSound datasets. To facilitate research in audio-language learning, we have made our pipeline, datasets with 6 million audio-language pairs, and pre-trained models publicly available at https://github.com/JishengBai/AudioSetCaps.
Learning to Prompt for Continual Learning
The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge. Typical methods rely on a rehearsal buffer or known task identity at test time to retrieve learned knowledge and address forgetting, while this work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time. Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions. In our proposed framework, prompts are small learnable parameters, which are maintained in a memory space. The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity. We conduct comprehensive experiments under popular image classification benchmarks with different challenging continual learning settings, where L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer and is directly applicable to challenging task-agnostic continual learning. Source code is available at https://github.com/google-research/l2p.
HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
Few-Shot Spoken Language Understanding via Joint Speech-Text Models
Recent work on speech representation models jointly pre-trained with text has demonstrated the potential of improving speech representations by encoding speech and text in a shared space. In this paper, we leverage such shared representations to address the persistent challenge of limited data availability in spoken language understanding tasks. By employing a pre-trained speech-text model, we find that models fine-tuned on text can be effectively transferred to speech testing data. With as little as 1 hour of labeled speech data, our proposed approach achieves comparable performance on spoken language understanding tasks (specifically, sentiment analysis and named entity recognition) when compared to previous methods using speech-only pre-trained models fine-tuned on 10 times more data. Beyond the proof-of-concept study, we also analyze the latent representations. We find that the bottom layers of speech-text models are largely task-agnostic and align speech and text representations into a shared space, while the top layers are more task-specific.
Continuous Autoregressive Models with Noise Augmentation Avoid Error Accumulation
Autoregressive models are typically applied to sequences of discrete tokens, but recent research indicates that generating sequences of continuous embeddings in an autoregressive manner is also feasible. However, such Continuous Autoregressive Models (CAMs) can suffer from a decline in generation quality over extended sequences due to error accumulation during inference. We introduce a novel method to address this issue by injecting random noise into the input embeddings during training. This procedure makes the model robust against varying error levels at inference. We further reduce error accumulation through an inference procedure that introduces low-level noise. Experiments on musical audio generation show that CAM substantially outperforms existing autoregressive and non-autoregressive approaches while preserving audio quality over extended sequences. This work paves the way for generating continuous embeddings in a purely autoregressive setting, opening new possibilities for real-time and interactive generative applications.
AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called language of audio (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate new state-of-the-art or competitive performance to previous approaches. Our demo and code are available at https://audioldm.github.io/audioldm2.
Whisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers
In this paper, we focus on Whisper, a recent automatic speech recognition model trained with a massive 680k hour labeled speech corpus recorded in diverse conditions. We first show an interesting finding that while Whisper is very robust against real-world background sounds (e.g., music), its audio representation is actually not noise-invariant, but is instead highly correlated to non-speech sounds, indicating that Whisper recognizes speech conditioned on the noise type. With this finding, we build a unified audio tagging and speech recognition model Whisper-AT by freezing the backbone of Whisper, and training a lightweight audio tagging model on top of it. With <1% extra computational cost, Whisper-AT can recognize audio events, in addition to spoken text, in a single forward pass.
Bass Accompaniment Generation via Latent Diffusion
The ability to automatically generate music that appropriately matches an arbitrary input track is a challenging task. We present a novel controllable system for generating single stems to accompany musical mixes of arbitrary length. At the core of our method are audio autoencoders that efficiently compress audio waveform samples into invertible latent representations, and a conditional latent diffusion model that takes as input the latent encoding of a mix and generates the latent encoding of a corresponding stem. To provide control over the timbre of generated samples, we introduce a technique to ground the latent space to a user-provided reference style during diffusion sampling. For further improving audio quality, we adapt classifier-free guidance to avoid distortions at high guidance strengths when generating an unbounded latent space. We train our model on a dataset of pairs of mixes and matching bass stems. Quantitative experiments demonstrate that, given an input mix, the proposed system can generate basslines with user-specified timbres. Our controllable conditional audio generation framework represents a significant step forward in creating generative AI tools to assist musicians in music production.
Autoregressive Diffusion Transformer for Text-to-Speech Synthesis
Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ .
SoloAudio: Target Sound Extraction with Language-oriented Audio Diffusion Transformer
In this paper, we introduce SoloAudio, a novel diffusion-based generative model for target sound extraction (TSE). Our approach trains latent diffusion models on audio, replacing the previous U-Net backbone with a skip-connected Transformer that operates on latent features. SoloAudio supports both audio-oriented and language-oriented TSE by utilizing a CLAP model as the feature extractor for target sounds. Furthermore, SoloAudio leverages synthetic audio generated by state-of-the-art text-to-audio models for training, demonstrating strong generalization to out-of-domain data and unseen sound events. We evaluate this approach on the FSD Kaggle 2018 mixture dataset and real data from AudioSet, where SoloAudio achieves the state-of-the-art results on both in-domain and out-of-domain data, and exhibits impressive zero-shot and few-shot capabilities. Source code and demos are released.
AudioTime: A Temporally-aligned Audio-text Benchmark Dataset
Recent advancements in audio generation have enabled the creation of high-fidelity audio clips from free-form textual descriptions. However, temporal relationships, a critical feature for audio content, are currently underrepresented in mainstream models, resulting in an imprecise temporal controllability. Specifically, users cannot accurately control the timestamps of sound events using free-form text. We acknowledge that a significant factor is the absence of high-quality, temporally-aligned audio-text datasets, which are essential for training models with temporal control. The more temporally-aligned the annotations, the better the models can understand the precise relationship between audio outputs and temporal textual prompts. Therefore, we present a strongly aligned audio-text dataset, AudioTime. It provides text annotations rich in temporal information such as timestamps, duration, frequency, and ordering, covering almost all aspects of temporal control. Additionally, we offer a comprehensive test set and evaluation metric to assess the temporal control performance of various models. Examples are available on the https://zeyuxie29.github.io/AudioTime/
Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation
Diffusion models power a vast majority of text-to-audio (TTA) generation methods. Unfortunately, these models suffer from slow inference speed due to iterative queries to the underlying denoising network, thus unsuitable for scenarios with inference time or computational constraints. This work modifies the recently proposed consistency distillation framework to train TTA models that require only a single neural network query. In addition to incorporating classifier-free guidance into the distillation process, we leverage the availability of generated audio during distillation training to fine-tune the consistency TTA model with novel loss functions in the audio space, such as the CLAP score. Our objective and subjective evaluation results on the AudioCaps dataset show that consistency models retain diffusion models' high generation quality and diversity while reducing the number of queries by a factor of 400.
Audio-Visual Class-Incremental Learning
In this paper, we introduce audio-visual class-incremental learning, a class-incremental learning scenario for audio-visual video recognition. We demonstrate that joint audio-visual modeling can improve class-incremental learning, but current methods fail to preserve semantic similarity between audio and visual features as incremental step grows. Furthermore, we observe that audio-visual correlations learned in previous tasks can be forgotten as incremental steps progress, leading to poor performance. To overcome these challenges, we propose AV-CIL, which incorporates Dual-Audio-Visual Similarity Constraint (D-AVSC) to maintain both instance-aware and class-aware semantic similarity between audio-visual modalities and Visual Attention Distillation (VAD) to retain previously learned audio-guided visual attentive ability. We create three audio-visual class-incremental datasets, AVE-Class-Incremental (AVE-CI), Kinetics-Sounds-Class-Incremental (K-S-CI), and VGGSound100-Class-Incremental (VS100-CI) based on the AVE, Kinetics-Sounds, and VGGSound datasets, respectively. Our experiments on AVE-CI, K-S-CI, and VS100-CI demonstrate that AV-CIL significantly outperforms existing class-incremental learning methods in audio-visual class-incremental learning. Code and data are available at: https://github.com/weiguoPian/AV-CIL_ICCV2023.
Neural Synthesis of Footsteps Sound Effects with Generative Adversarial Networks
Footsteps are among the most ubiquitous sound effects in multimedia applications. There is substantial research into understanding the acoustic features and developing synthesis models for footstep sound effects. In this paper, we present a first attempt at adopting neural synthesis for this task. We implemented two GAN-based architectures and compared the results with real recordings as well as six traditional sound synthesis methods. Our architectures reached realism scores as high as recorded samples, showing encouraging results for the task at hand.
Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models
Recently, instruction-following audio-language models have received broad attention for audio interaction with humans. However, the absence of pre-trained audio models capable of handling diverse audio types and tasks has hindered progress in this field. Consequently, most existing works have only been able to support a limited range of interaction capabilities. In this paper, we develop the Qwen-Audio model and address this limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types, such as human speech, natural sounds, music, and songs, to facilitate universal audio understanding abilities. However, directly co-training all tasks and datasets can lead to interference issues, as the textual labels associated with different datasets exhibit considerable variations due to differences in task focus, language, granularity of annotation, and text structure. To overcome the one-to-many interference, we carefully design a multi-task training framework by conditioning on a sequence of hierarchical tags to the decoder for encouraging knowledge sharing and avoiding interference through shared and specified tags respectively. Remarkably, Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Building upon the capabilities of Qwen-Audio, we further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.
Diff4Steer: Steerable Diffusion Prior for Generative Music Retrieval with Semantic Guidance
Modern music retrieval systems often rely on fixed representations of user preferences, limiting their ability to capture users' diverse and uncertain retrieval needs. To address this limitation, we introduce Diff4Steer, a novel generative retrieval framework that employs lightweight diffusion models to synthesize diverse seed embeddings from user queries that represent potential directions for music exploration. Unlike deterministic methods that map user query to a single point in embedding space, Diff4Steer provides a statistical prior on the target modality (audio) for retrieval, effectively capturing the uncertainty and multi-faceted nature of user preferences. Furthermore, Diff4Steer can be steered by image or text inputs, enabling more flexible and controllable music discovery combined with nearest neighbor search. Our framework outperforms deterministic regression methods and LLM-based generative retrieval baseline in terms of retrieval and ranking metrics, demonstrating its effectiveness in capturing user preferences, leading to more diverse and relevant recommendations. Listening examples are available at tinyurl.com/diff4steer.
LiveSpeech: Low-Latency Zero-shot Text-to-Speech via Autoregressive Modeling of Audio Discrete Codes
Prior works have demonstrated zero-shot text-to-speech by using a generative language model on audio tokens obtained via a neural audio codec. It is still challenging, however, to adapt them to low-latency scenarios. In this paper, we present LiveSpeech - a fully autoregressive language model-based approach for zero-shot text-to-speech, enabling low-latency streaming of the output audio. To allow multiple token prediction within a single decoding step, we propose (1) using adaptive codebook loss weights that consider codebook contribution in each frame and focus on hard instances, and (2) grouping codebooks and processing groups in parallel. Experiments show our proposed models achieve competitive results to state-of-the-art baselines in terms of content accuracy, speaker similarity, audio quality, and inference speed while being suitable for low-latency streaming applications.
Masked Mixers for Language Generation and Retrieval
Attention mechanisms that confer selective focus on a strict subset of input elements are nearly ubiquitous in language models today. We posit there to be downside to the use of attention: most information present in the input is necessarily lost. In support of this idea we observe poor input representation accuracy in transformers, but find more accurate representation in what we term masked mixers which replace self-attention with masked convolutions. Applied to TinyStories the masked mixer learns causal language tasks more efficiently than early transformer implementations and somewhat less efficiently than optimized, current implementations. The most efficient learning algorithm observed for this dataset is a transformer-masked mixer hybrid, suggesting that these models learn in an orthogonal manner. We hypothesized that the information loss exhibited by transformers would be much more detrimental to retrieval than generation, and to test this we introduce an efficient training approach for retrieval models based on existing generative model embeddings. With this method, embeddings from masked mixers are found to result in far better summary-to-story retrieval compared to embeddings from transformers.