Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications
This work proposes FireRedTTS, a foundation text-to-speech framework, to meet the growing demands for personalized and diverse generative speech applications. The framework comprises three parts: data processing, foundation system, and downstream applications. First, we comprehensively present our data processing pipeline, which transforms massive raw audio into a large-scale high-quality TTS dataset with rich annotations and a wide coverage of content, speaking style, and timbre. Then, we propose a language-model-based foundation TTS system. The speech signal is compressed into discrete semantic tokens via a semantic-aware speech tokenizer, and can be generated by a language model from the prompt text and audio. Then, a two-stage waveform generator is proposed to decode them to the high-fidelity waveform. We present two applications of this system: voice cloning for dubbing and human-like speech generation for chatbots. The experimental results demonstrate the solid in-context learning capability of FireRedTTS, which can stably synthesize high-quality speech consistent with the prompt text and audio. For dubbing, FireRedTTS can clone target voices in a zero-shot way for the UGC scenario and adapt to studio-level expressive voice characters in the PUGC scenario via few-shot fine-tuning with 1-hour recording. Moreover, FireRedTTS achieves controllable human-like speech generation in a casual style with paralinguistic behaviors and emotions via instruction tuning, to better serve spoken chatbots.
How Should We Extract Discrete Audio Tokens from Self-Supervised Models?
Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications.
DASB - Discrete Audio and Speech Benchmark
Discrete audio tokens have recently gained considerable attention for their potential to connect audio and language processing, enabling the creation of modern multimodal large language models. Ideal audio tokens must effectively preserve phonetic and semantic content along with paralinguistic information, speaker identity, and other details. While several types of audio tokens have been recently proposed, identifying the optimal tokenizer for various tasks is challenging due to the inconsistent evaluation settings in existing studies. To address this gap, we release the Discrete Audio and Speech Benchmark (DASB), a comprehensive leaderboard for benchmarking discrete audio tokens across a wide range of discriminative tasks, including speech recognition, speaker identification and verification, emotion recognition, keyword spotting, and intent classification, as well as generative tasks such as speech enhancement, separation, and text-to-speech. Our results show that, on average, semantic tokens outperform compression tokens across most discriminative and generative tasks. However, the performance gap between semantic tokens and standard continuous representations remains substantial, highlighting the need for further research in this field.
Make-A-Voice: Unified Voice Synthesis With Discrete Representation
Various applications of voice synthesis have been developed independently despite the fact that they generate "voice" as output in common. In addition, the majority of voice synthesis models currently rely on annotated audio data, but it is crucial to scale them to self-supervised datasets in order to effectively capture the wide range of acoustic variations present in human voice, including speaker identity, emotion, and prosody. In this work, we propose Make-A-Voice, a unified framework for synthesizing and manipulating voice signals from discrete representations. Make-A-Voice leverages a "coarse-to-fine" approach to model the human voice, which involves three stages: 1) semantic stage: model high-level transformation between linguistic content and self-supervised semantic tokens, 2) acoustic stage: introduce varying control signals as acoustic conditions for semantic-to-acoustic modeling, and 3) generation stage: synthesize high-fidelity waveforms from acoustic tokens. Make-A-Voice offers notable benefits as a unified voice synthesis framework: 1) Data scalability: the major backbone (i.e., acoustic and generation stage) does not require any annotations, and thus the training data could be scaled up. 2) Controllability and conditioning flexibility: we investigate different conditioning mechanisms and effectively handle three voice synthesis applications, including text-to-speech (TTS), voice conversion (VC), and singing voice synthesis (SVS) by re-synthesizing the discrete voice representations with prompt guidance. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models. Audio samples are available at https://Make-A-Voice.github.io
SpeechTokenizer: Unified Speech Tokenizer for Speech Large Language Models
Current speech large language models build upon discrete speech representations, which can be categorized into semantic tokens and acoustic tokens. However, existing speech tokens are not specifically designed for speech language modeling. To assess the suitability of speech tokens for building speech language models, we established the first benchmark, SLMTokBench. Our results indicate that neither semantic nor acoustic tokens are ideal for this purpose. Therefore, we propose SpeechTokenizer, a unified speech tokenizer for speech large language models. SpeechTokenizer adopts the Encoder-Decoder architecture with residual vector quantization (RVQ). Unifying semantic and acoustic tokens, SpeechTokenizer disentangles different aspects of speech information hierarchically across different RVQ layers. Furthermore, We construct a Unified Speech Language Model (USLM) leveraging SpeechTokenizer. Experiments show that SpeechTokenizer performs comparably to EnCodec in speech reconstruction and demonstrates strong performance on the SLMTokBench benchmark. Also, USLM outperforms VALL-E in zero-shot Text-to-Speech tasks. Code and models are available at https://github.com/ZhangXInFD/SpeechTokenizer/.
The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a sim14,000times compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Keling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision
We introduce SPEAR-TTS, a multi-speaker text-to-speech (TTS) system that can be trained with minimal supervision. By combining two types of discrete speech representations, we cast TTS as a composition of two sequence-to-sequence tasks: from text to high-level semantic tokens (akin to "reading") and from semantic tokens to low-level acoustic tokens ("speaking"). Decoupling these two tasks enables training of the "speaking" module using abundant audio-only data, and unlocks the highly efficient combination of pretraining and backtranslation to reduce the need for parallel data when training the "reading" component. To control the speaker identity, we adopt example prompting, which allows SPEAR-TTS to generalize to unseen speakers using only a short sample of 3 seconds, without any explicit speaker representation or speaker-id labels. Our experiments demonstrate that SPEAR-TTS achieves a character error rate that is competitive with state-of-the-art methods using only 15 minutes of parallel data, while matching ground-truth speech in terms of naturalness and acoustic quality, as measured in subjective tests.
MUSE-VL: Modeling Unified VLM through Semantic Discrete Encoding
We introduce MUSE-VL, a Unified Vision-Language Model through Semantic discrete Encoding for multimodal understanding and generation. Recently, the research community has begun exploring unified models for visual generation and understanding. However, existing vision tokenizers (e.g., VQGAN) only consider low-level information, which makes it difficult to align with texture semantic features. This results in high training complexity and necessitates a large amount of training data to achieve optimal performance. Additionally, their performance is still far from dedicated understanding models. This paper proposes Semantic Discrete Encoding (SDE), which effectively aligns the information of visual tokens and language tokens by adding semantic constraints to the visual tokenizer. This greatly reduces training difficulty and improves the performance of the unified model. The proposed model significantly surpasses the previous state-of-the-art in various vision-language benchmarks and achieves better performance than dedicated understanding models.
Revisiting Multimodal Representation in Contrastive Learning: From Patch and Token Embeddings to Finite Discrete Tokens
Contrastive learning-based vision-language pre-training approaches, such as CLIP, have demonstrated great success in many vision-language tasks. These methods achieve cross-modal alignment by encoding a matched image-text pair with similar feature embeddings, which are generated by aggregating information from visual patches and language tokens. However, direct aligning cross-modal information using such representations is challenging, as visual patches and text tokens differ in semantic levels and granularities. To alleviate this issue, we propose a Finite Discrete Tokens (FDT) based multimodal representation. FDT is a set of learnable tokens representing certain visual-semantic concepts. Both images and texts are embedded using shared FDT by first grounding multimodal inputs to FDT space and then aggregating the activated FDT representations. The matched visual and semantic concepts are enforced to be represented by the same set of discrete tokens by a sparse activation constraint. As a result, the granularity gap between the two modalities is reduced. Through both quantitative and qualitative analyses, we demonstrate that using FDT representations in CLIP-style models improves cross-modal alignment and performance in visual recognition and vision-language downstream tasks. Furthermore, we show that our method can learn more comprehensive representations, and the learned FDT capture meaningful cross-modal correspondence, ranging from objects to actions and attributes.
WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling
Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.
SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound
Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.
Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology Report Generation
Automatic radiology report generation has attracted enormous research interest due to its practical value in reducing the workload of radiologists. However, simultaneously establishing global correspondences between the image (e.g., Chest X-ray) and its related report and local alignments between image patches and keywords remains challenging. To this end, we propose an Unify, Align and then Refine (UAR) approach to learn multi-level cross-modal alignments and introduce three novel modules: Latent Space Unifier (LSU), Cross-modal Representation Aligner (CRA) and Text-to-Image Refiner (TIR). Specifically, LSU unifies multimodal data into discrete tokens, making it flexible to learn common knowledge among modalities with a shared network. The modality-agnostic CRA learns discriminative features via a set of orthonormal basis and a dual-gate mechanism first and then globally aligns visual and textual representations under a triplet contrastive loss. TIR boosts token-level local alignment via calibrating text-to-image attention with a learnable mask. Additionally, we design a two-stage training procedure to make UAR gradually grasp cross-modal alignments at different levels, which imitates radiologists' workflow: writing sentence by sentence first and then checking word by word. Extensive experiments and analyses on IU-Xray and MIMIC-CXR benchmark datasets demonstrate the superiority of our UAR against varied state-of-the-art methods.
Scaling Speech-Text Pre-training with Synthetic Interleaved Data
Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction compared to text-based large language models (LLMs). Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data, which are significantly less abundant than text pre-training data, thereby limiting their scalability as LLMs. We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora, eliminating the need for parallel speech-text datasets. Our method efficiently constructs speech-text interleaved data by sampling text spans from existing text corpora and synthesizing corresponding speech spans using a text-to-token model, bypassing the need to generate actual speech. We also employ a supervised speech tokenizer derived from an automatic speech recognition (ASR) model by incorporating a vector-quantized bottleneck into the encoder. This supervised training approach results in discrete speech tokens with strong semantic preservation even at lower sampling rates (e.g. 12.5Hz), while still maintaining speech reconstruction quality. Starting from a pre-trained language model and scaling our pre-training to 1 trillion tokens (with 600B synthetic interleaved speech-text data), we achieve state-of-the-art performance in speech language modeling and spoken question answering, improving performance on spoken questions tasks from the previous SOTA of 13% (Moshi) to 31%. We further demonstrate that by fine-tuning the pre-trained model with speech dialogue data, we can develop an end-to-end spoken chatbot that achieves competitive performance comparable to existing baselines in both conversational abilities and speech quality, even operating exclusively in the speech domain.
StrokeNUWA: Tokenizing Strokes for Vector Graphic Synthesis
To leverage LLMs for visual synthesis, traditional methods convert raster image information into discrete grid tokens through specialized visual modules, while disrupting the model's ability to capture the true semantic representation of visual scenes. This paper posits that an alternative representation of images, vector graphics, can effectively surmount this limitation by enabling a more natural and semantically coherent segmentation of the image information. Thus, we introduce StrokeNUWA, a pioneering work exploring a better visual representation ''stroke tokens'' on vector graphics, which is inherently visual semantics rich, naturally compatible with LLMs, and highly compressed. Equipped with stroke tokens, StrokeNUWA can significantly surpass traditional LLM-based and optimization-based methods across various metrics in the vector graphic generation task. Besides, StrokeNUWA achieves up to a 94x speedup in inference over the speed of prior methods with an exceptional SVG code compression ratio of 6.9%.
Self-supervised Quantized Representation for Seamlessly Integrating Knowledge Graphs with Large Language Models
Due to the presence of the natural gap between Knowledge Graph (KG) structures and the natural language, the effective integration of holistic structural information of KGs with Large Language Models (LLMs) has emerged as a significant question. To this end, we propose a two-stage framework to learn and apply quantized codes for each entity, aiming for the seamless integration of KGs with LLMs. Firstly, a self-supervised quantized representation (SSQR) method is proposed to compress both KG structural and semantic knowledge into discrete codes (\ie, tokens) that align the format of language sentences. We further design KG instruction-following data by viewing these learned codes as features to directly input to LLMs, thereby achieving seamless integration. The experiment results demonstrate that SSQR outperforms existing unsupervised quantized methods, producing more distinguishable codes. Further, the fine-tuned LLaMA2 and LLaMA3.1 also have superior performance on KG link prediction and triple classification tasks, utilizing only 16 tokens per entity instead of thousands in conventional prompting methods.
ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation
Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.
Multi-Word Tokenization for Sequence Compression
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models
Retrieval augmentation addresses many critical problems in large language models such as hallucination, staleness, and privacy leaks. However, running retrieval-augmented language models (LMs) is slow and difficult to scale due to processing large amounts of retrieved text. We introduce binary token representations (BTR), which use 1-bit vectors to precompute every token in passages, significantly reducing computation during inference. Despite the potential loss of accuracy, our new calibration techniques and training objectives restore performance. Combined with offline and runtime compression, this only requires 127GB of disk space for encoding 3 billion tokens in Wikipedia. Our experiments show that on five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art inference by up to 4x and reduces storage by over 100x while maintaining over 95% task performance.
Deep contextualized word representations
We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.
Pixel Sentence Representation Learning
Pretrained language models are long known to be subpar in capturing sentence and document-level semantics. Though heavily investigated, transferring perturbation-based methods from unsupervised visual representation learning to NLP remains an unsolved problem. This is largely due to the discreteness of subword units brought by tokenization of language models, limiting small perturbations of inputs to form semantics-preserved positive pairs. In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process. Drawing from cognitive and linguistic sciences, we introduce an unsupervised visual sentence representation learning framework, employing visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to texts to be perceived as continuous. Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision, achieving comparable performance in semantic textual similarity (STS) to existing state-of-the-art NLP methods. Additionally, we unveil our method's inherent zero-shot cross-lingual transferability and a unique leapfrogging pattern across languages during iterative training. To our knowledge, this is the first representation learning method devoid of traditional language models for understanding sentence and document semantics, marking a stride closer to human-like textual comprehension. Our code is available at https://github.com/gowitheflow-1998/Pixel-Linguist
STAB: Speech Tokenizer Assessment Benchmark
Representing speech as discrete tokens provides a framework for transforming speech into a format that closely resembles text, thus enabling the use of speech as an input to the widely successful large language models (LLMs). Currently, while several speech tokenizers have been proposed, there is ambiguity regarding the properties that are desired from a tokenizer for specific downstream tasks and its overall generalizability. Evaluating the performance of tokenizers across different downstream tasks is a computationally intensive effort that poses challenges for scalability. To circumvent this requirement, we present STAB (Speech Tokenizer Assessment Benchmark), a systematic evaluation framework designed to assess speech tokenizers comprehensively and shed light on their inherent characteristics. This framework provides a deeper understanding of the underlying mechanisms of speech tokenization, thereby offering a valuable resource for expediting the advancement of future tokenizer models and enabling comparative analysis using a standardized benchmark. We evaluate the STAB metrics and correlate this with downstream task performance across a range of speech tasks and tokenizer choices.
RetroMAE v2: Duplex Masked Auto-Encoder For Pre-Training Retrieval-Oriented Language Models
To better support retrieval applications such as web search and question answering, growing effort is made to develop retrieval-oriented language models. Most of the existing works focus on improving the semantic representation capability for the contextualized embedding of [CLS] token. However, recent study shows that the ordinary tokens besides [CLS] may provide extra information, which helps to produce a better representation effect. As such, it's necessary to extend the current methods where all contextualized embeddings can be jointly pre-trained for the retrieval tasks. With this motivation, we propose a new pre-training method: duplex masked auto-encoder, a.k.a. DupMAE, which targets on improving the semantic representation capacity for the contextualized embeddings of both [CLS] and ordinary tokens. It introduces two decoding tasks: one is to reconstruct the original input sentence based on the [CLS] embedding, the other one is to minimize the bag-of-words loss (BoW) about the input sentence based on the entire ordinary tokens' embeddings. The two decoding losses are added up to train a unified encoding model. The embeddings from [CLS] and ordinary tokens, after dimension reduction and aggregation, are concatenated as one unified semantic representation for the input. DupMAE is simple but empirically competitive: with a small decoding cost, it substantially contributes to the model's representation capability and transferability, where remarkable improvements are achieved on MS MARCO and BEIR benchmarks.
From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model's robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift.
Distributed Representations of Words and Phrases and their Compositionality
The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.
ExLM: Rethinking the Impact of [MASK] Tokens in Masked Language Models
Masked Language Models (MLMs) have achieved remarkable success in many self-supervised representation learning tasks. MLMs are trained by randomly masking portions of the input sequences with [MASK] tokens and learning to reconstruct the original content based on the remaining context. This paper explores the impact of [MASK] tokens on MLMs. Analytical studies show that masking tokens can introduce the corrupted semantics problem, wherein the corrupted context may convey multiple, ambiguous meanings. This problem is also a key factor affecting the performance of MLMs on downstream tasks. Based on these findings, we propose a novel enhanced-context MLM, ExLM. Our approach expands [MASK] tokens in the input context and models the dependencies between these expanded states. This enhancement increases context capacity and enables the model to capture richer semantic information, effectively mitigating the corrupted semantics problem during pre-training. Experimental results demonstrate that ExLM achieves significant performance improvements in both text modeling and SMILES modeling tasks. Further analysis confirms that ExLM enriches semantic representations through context enhancement, and effectively reduces the semantic multimodality commonly observed in MLMs.
DReSD: Dense Retrieval for Speculative Decoding
Speculative decoding (SD) accelerates Large Language Model (LLM) generation by using an efficient draft model to propose the next few tokens, which are verified by the LLM in a single forward call, reducing latency while preserving its outputs. We focus on retrieval-based SD where the draft model retrieves the next tokens from a non-parametric datastore. Sparse retrieval (REST), which operates on the surface form of strings, is currently the dominant paradigm due to its simplicity and scalability. However, its effectiveness is limited due to the usage of short contexts and exact string matching. Instead, we introduce Dense Retrieval for Speculative Decoding (DReSD), a novel framework that uses approximate nearest neighbour search with contextualised token embeddings to retrieve the most semantically relevant token sequences for SD. Extensive experiments show that DReSD achieves (on average) 87% higher acceptance rates, 65% longer accepted tokens and 19% faster generation speeds compared to sparse retrieval (REST).
Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis
We propose using automatically generated natural language definitions of contextualised word usages as interpretable word and word sense representations. Given a collection of usage examples for a target word, and the corresponding data-driven usage clusters (i.e., word senses), a definition is generated for each usage with a specialised Flan-T5 language model, and the most prototypical definition in a usage cluster is chosen as the sense label. We demonstrate how the resulting sense labels can make existing approaches to semantic change analysis more interpretable, and how they can allow users -- historical linguists, lexicographers, or social scientists -- to explore and intuitively explain diachronic trajectories of word meaning. Semantic change analysis is only one of many possible applications of the `definitions as representations' paradigm. Beyond being human-readable, contextualised definitions also outperform token or usage sentence embeddings in word-in-context semantic similarity judgements, making them a new promising type of lexical representation for NLP.
Nugget: Neural Agglomerative Embeddings of Text
Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content.
Learn Your Tokens: Word-Pooled Tokenization for Language Modeling
Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.
Lexinvariant Language Models
Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.
On the Origins of Linear Representations in Large Language Models
Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To that end, we introduce a simple latent variable model to abstract and formalize the concept dynamics of the next token prediction. We use this formalism to show that the next token prediction objective (softmax with cross-entropy) and the implicit bias of gradient descent together promote the linear representation of concepts. Experiments show that linear representations emerge when learning from data matching the latent variable model, confirming that this simple structure already suffices to yield linear representations. We additionally confirm some predictions of the theory using the LLaMA-2 large language model, giving evidence that the simplified model yields generalizable insights.
The Hidden Language of Diffusion Models
Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual concept (e.g., "a doctor", "love"). However, the internal process of mapping text to a rich visual representation remains an enigma. In this work, we tackle the challenge of understanding concept representations in text-to-image models by decomposing an input text prompt into a small set of interpretable elements. This is achieved by learning a pseudo-token that is a sparse weighted combination of tokens from the model's vocabulary, with the objective of reconstructing the images generated for the given concept. Applied over the state-of-the-art Stable Diffusion model, this decomposition reveals non-trivial and surprising structures in the representations of concepts. For example, we find that some concepts such as "a president" or "a composer" are dominated by specific instances (e.g., "Obama", "Biden") and their interpolations. Other concepts, such as "happiness" combine associated terms that can be concrete ("family", "laughter") or abstract ("friendship", "emotion"). In addition to peering into the inner workings of Stable Diffusion, our method also enables applications such as single-image decomposition to tokens, bias detection and mitigation, and semantic image manipulation. Our code will be available at: https://hila-chefer.github.io/Conceptor/
Frame Representation Hypothesis: Multi-Token LLM Interpretability and Concept-Guided Text Generation
Interpretability is a key challenge in fostering trust for Large Language Models (LLMs), which stems from the complexity of extracting reasoning from model's parameters. We present the Frame Representation Hypothesis, a theoretically robust framework grounded in the Linear Representation Hypothesis (LRH) to interpret and control LLMs by modeling multi-token words. Prior research explored LRH to connect LLM representations with linguistic concepts, but was limited to single token analysis. As most words are composed of several tokens, we extend LRH to multi-token words, thereby enabling usage on any textual data with thousands of concepts. To this end, we propose words can be interpreted as frames, ordered sequences of vectors that better capture token-word relationships. Then, concepts can be represented as the average of word frames sharing a common concept. We showcase these tools through Top-k Concept-Guided Decoding, which can intuitively steer text generation using concepts of choice. We verify said ideas on Llama 3.1, Gemma 2, and Phi 3 families, demonstrating gender and language biases, exposing harmful content, but also potential to remediate them, leading to safer and more transparent LLMs. Code is available at https://github.com/phvv-me/frame-representation-hypothesis.git
Byte Pair Encoding for Symbolic Music
When used with deep learning, the symbolic music modality is often coupled with language model architectures. To do so, the music needs to be tokenized, i.e. converted into a sequence of discrete tokens. This can be achieved by different approaches, as music can be composed of simultaneous tracks, of simultaneous notes with several attributes. Until now, the proposed tokenizations rely on small vocabularies of tokens describing the note attributes and time events, resulting in fairly long token sequences, and a sub-optimal use of the embedding space of language models. Recent research has put efforts on reducing the overall sequence length by merging embeddings or combining tokens. In this paper, we show that Byte Pair Encoding, a compression technique widely used for natural language, significantly decreases the sequence length while increasing the vocabulary size. By doing so, we leverage the embedding capabilities of such models with more expressive tokens, resulting in both better results and faster inference in generation and classification tasks. The source code is shared on Github, along with a companion website. Finally, BPE is directly implemented in MidiTok, allowing the reader to easily benefit from this method.
WiC: the Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Representations
By design, word embeddings are unable to model the dynamic nature of words' semantics, i.e., the property of words to correspond to potentially different meanings. To address this limitation, dozens of specialized meaning representation techniques such as sense or contextualized embeddings have been proposed. However, despite the popularity of research on this topic, very few evaluation benchmarks exist that specifically focus on the dynamic semantics of words. In this paper we show that existing models have surpassed the performance ceiling of the standard evaluation dataset for the purpose, i.e., Stanford Contextual Word Similarity, and highlight its shortcomings. To address the lack of a suitable benchmark, we put forward a large-scale Word in Context dataset, called WiC, based on annotations curated by experts, for generic evaluation of context-sensitive representations. WiC is released in https://pilehvar.github.io/wic/.
Semantic Representation and Inference for NLP
Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).
Ultra-High Dimensional Sparse Representations with Binarization for Efficient Text Retrieval
The semantic matching capabilities of neural information retrieval can ameliorate synonymy and polysemy problems of symbolic approaches. However, neural models' dense representations are more suitable for re-ranking, due to their inefficiency. Sparse representations, either in symbolic or latent form, are more efficient with an inverted index. Taking the merits of the sparse and dense representations, we propose an ultra-high dimensional (UHD) representation scheme equipped with directly controllable sparsity. UHD's large capacity and minimal noise and interference among the dimensions allow for binarized representations, which are highly efficient for storage and search. Also proposed is a bucketing method, where the embeddings from multiple layers of BERT are selected/merged to represent diverse linguistic aspects. We test our models with MS MARCO and TREC CAR, showing that our models outperforms other sparse models
Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP
What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications.
Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
Recent advances in image tokenizers, such as VQ-VAE, have enabled text-to-image generation using auto-regressive methods, similar to language modeling. However, these methods have yet to leverage pre-trained language models, despite their adaptability to various downstream tasks. In this work, we explore this gap by adapting a pre-trained language model for auto-regressive text-to-image generation, and find that pre-trained language models offer limited help. We provide a two-fold explanation by analyzing tokens from each modality. First, we demonstrate that image tokens possess significantly different semantics compared to text tokens, rendering pre-trained language models no more effective in modeling them than randomly initialized ones. Second, the text tokens in the image-text datasets are too simple compared to normal language model pre-training data, which causes the catastrophic degradation of language models' capability.
Mapping distributional to model-theoretic semantic spaces: a baseline
Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset.
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
Bad Form: Comparing Context-Based and Form-Based Few-Shot Learning in Distributional Semantic Models
Word embeddings are an essential component in a wide range of natural language processing applications. However, distributional semantic models are known to struggle when only a small number of context sentences are available. Several methods have been proposed to obtain higher-quality vectors for these words, leveraging both this context information and sometimes the word forms themselves through a hybrid approach. We show that the current tasks do not suffice to evaluate models that use word-form information, as such models can easily leverage word forms in the training data that are related to word forms in the test data. We introduce 3 new tasks, allowing for a more balanced comparison between models. Furthermore, we show that hyperparameters that have largely been ignored in previous work can consistently improve the performance of both baseline and advanced models, achieving a new state of the art on 4 out of 6 tasks.
sense2vec - A Fast and Accurate Method for Word Sense Disambiguation In Neural Word Embeddings
Neural word representations have proven useful in Natural Language Processing (NLP) tasks due to their ability to efficiently model complex semantic and syntactic word relationships. However, most techniques model only one representation per word, despite the fact that a single word can have multiple meanings or "senses". Some techniques model words by using multiple vectors that are clustered based on context. However, recent neural approaches rarely focus on the application to a consuming NLP algorithm. Furthermore, the training process of recent word-sense models is expensive relative to single-sense embedding processes. This paper presents a novel approach which addresses these concerns by modeling multiple embeddings for each word based on supervised disambiguation, which provides a fast and accurate way for a consuming NLP model to select a sense-disambiguated embedding. We demonstrate that these embeddings can disambiguate both contrastive senses such as nominal and verbal senses as well as nuanced senses such as sarcasm. We further evaluate Part-of-Speech disambiguated embeddings on neural dependency parsing, yielding a greater than 8% average error reduction in unlabeled attachment scores across 6 languages.
Token Erasure as a Footprint of Implicit Vocabulary Items in LLMs
LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b's tokenizer splits the word "northeastern" into the tokens ['_n', 'ort', 'he', 'astern'], none of which correspond to semantically meaningful units like "north" or "east." Similarly, the overall meanings of named entities like "Neil Young" and multi-word expressions like "break a leg" cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced "erasure" effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to "read out" the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM.
MINERS: Multilingual Language Models as Semantic Retrievers
Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
Multi hash embeddings in spaCy
The distributed representation of symbols is one of the key technologies in machine learning systems today, playing a pivotal role in modern natural language processing. Traditional word embeddings associate a separate vector with each word. While this approach is simple and leads to good performance, it requires a lot of memory for representing a large vocabulary. To reduce the memory footprint, the default embedding layer in spaCy is a hash embeddings layer. It is a stochastic approximation of traditional embeddings that provides unique vectors for a large number of words without explicitly storing a separate vector for each of them. To be able to compute meaningful representations for both known and unknown words, hash embeddings represent each word as a summary of the normalized word form, subword information and word shape. Together, these features produce a multi-embedding of a word. In this technical report we lay out a bit of history and introduce the embedding methods in spaCy in detail. Second, we critically evaluate the hash embedding architecture with multi-embeddings on Named Entity Recognition datasets from a variety of domains and languages. The experiments validate most key design choices behind spaCy's embedders, but we also uncover a few surprising results.
Greed is All You Need: An Evaluation of Tokenizer Inference Methods
While subword tokenizers such as BPE and WordPiece are typically used to build vocabularies for NLP models, the method of decoding text into a sequence of tokens from these vocabularies is often left unspecified, or ill-suited to the method in which they were constructed. We provide a controlled analysis of seven tokenizer inference methods across four different algorithms and three vocabulary sizes, performed on a novel intrinsic evaluation suite we curated for English, combining measures rooted in morphology, cognition, and information theory. We show that for the most commonly used tokenizers, greedy inference performs surprisingly well; and that SaGe, a recently-introduced contextually-informed tokenizer, outperforms all others on morphological alignment.
Chunk-Distilled Language Modeling
We introduce Chunk-Distilled Language Modeling (CD-LM), an approach to text generation that addresses two challenges in current large language models (LLMs): the inefficiency of token-level generation, and the difficulty of adapting to new data and knowledge. Our method combines deep network-based LLMs with a straightforward retrieval module, which allows the generation of multi-token text chunks at a single decoding step. Our retrieval framework enables flexible construction of model- or domain-specific datastores, either leveraging the internal knowledge of existing models, or incorporating expert insights from human-annotated corpora. This adaptability allows for enhanced control over the language model's distribution without necessitating additional training. We present the CD-LM formulation along with performance metrics demonstrating its ability to improve language model performance and efficiency across a diverse set of downstream tasks. Code and data will be made publicly available.
The Geometry of Categorical and Hierarchical Concepts in Large Language Models
Understanding how semantic meaning is encoded in the representation spaces of large language models is a fundamental problem in interpretability. In this paper, we study the two foundational questions in this area. First, how are categorical concepts, such as {'mammal', 'bird', 'reptile', 'fish'}, represented? Second, how are hierarchical relations between concepts encoded? For example, how is the fact that 'dog' is a kind of 'mammal' encoded? We show how to extend the linear representation hypothesis to answer these questions. We find a remarkably simple structure: simple categorical concepts are represented as simplices, hierarchically related concepts are orthogonal in a sense we make precise, and (in consequence) complex concepts are represented as polytopes constructed from direct sums of simplices, reflecting the hierarchical structure. We validate these theoretical results on the Gemma large language model, estimating representations for 957 hierarchically related concepts using data from WordNet.
Tokenization Is More Than Compression
Tokenization is a foundational step in Natural Language Processing (NLP) tasks, bridging raw text and language models. Existing tokenization approaches like Byte-Pair Encoding (BPE) originate from the field of data compression, and it has been suggested that the effectiveness of BPE stems from its ability to condense text into a relatively small number of tokens. We test the hypothesis that fewer tokens lead to better downstream performance by introducing PathPiece, a new tokenizer that segments a document's text into the minimum number of tokens for a given vocabulary. Through extensive experimentation we find this hypothesis not to be the case, casting doubt on the understanding of the reasons for effective tokenization. To examine which other factors play a role, we evaluate design decisions across all three phases of tokenization: pre-tokenization, vocabulary construction, and segmentation, offering new insights into the design of effective tokenizers. Specifically, we illustrate the importance of pre-tokenization and the benefits of using BPE to initialize vocabulary construction. We train 64 language models with varying tokenization, ranging in size from 350M to 2.4B parameters, all of which are made publicly available.
Towards Unsupervised Recognition of Semantic Differences in Related Documents
Automatically highlighting words that cause semantic differences between two documents could be useful for a wide range of applications. We formulate recognizing semantic differences (RSD) as a token-level regression task and study three unsupervised approaches that rely on a masked language model. To assess the approaches, we begin with basic English sentences and gradually move to more complex, cross-lingual document pairs. Our results show that an approach based on word alignment and sentence-level contrastive learning has a robust correlation to gold labels. However, all unsupervised approaches still leave a large margin of improvement. Code to reproduce our experiments is available at https://github.com/ZurichNLP/recognizing-semantic-differences
SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment
Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SEMAXIS, a simple yet powerful framework to characterize word semantics using many semantic axes in word- vector spaces beyond sentiment. We demonstrate that SEMAXIS can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SEMAXIS outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons.
Revisiting a Pain in the Neck: Semantic Phrase Processing Benchmark for Language Models
We introduce LexBench, a comprehensive evaluation suite enabled to test language models (LMs) on ten semantic phrase processing tasks. Unlike prior studies, it is the first work to propose a framework from the comparative perspective to model the general semantic phrase (i.e., lexical collocation) and three fine-grained semantic phrases, including idiomatic expression, noun compound, and verbal construction. Thanks to \ourbenchmark, we assess the performance of 15 LMs across model architectures and parameter scales in classification, extraction, and interpretation tasks. Through the experiments, we first validate the scaling law and find that, as expected, large models excel better than the smaller ones in most tasks. Second, we investigate further through the scaling semantic relation categorization and find that few-shot LMs still lag behind vanilla fine-tuned models in the task. Third, through human evaluation, we find that the performance of strong models is comparable to the human level regarding semantic phrase processing. Our benchmarking findings can serve future research aiming to improve the generic capability of LMs on semantic phrase comprehension. Our source code and data are available at https://github.com/jacklanda/LexBench
Incorporating Context into Subword Vocabularies
Most current popular subword tokenizers are trained based on word frequency statistics over a corpus, without considering information about co-occurrence or context. Nevertheless, the resulting vocabularies are used in language models' highly contextualized settings. We present SaGe, a tokenizer that tailors subwords for their downstream use by baking in the contextualized signal at the vocabulary creation phase. We show that SaGe does a better job than current widespread tokenizers in keeping token contexts cohesive, while not incurring a large price in terms of encoding efficiency or domain robustness. SaGe improves performance on English GLUE classification tasks as well as on NER, and on Inference and NER in Turkish, demonstrating its robustness to language properties such as morphological exponence and agglutination.
Retrofitting Word Vectors to Semantic Lexicons
Vector space word representations are learned from distributional information of words in large corpora. Although such statistics are semantically informative, they disregard the valuable information that is contained in semantic lexicons such as WordNet, FrameNet, and the Paraphrase Database. This paper proposes a method for refining vector space representations using relational information from semantic lexicons by encouraging linked words to have similar vector representations, and it makes no assumptions about how the input vectors were constructed. Evaluated on a battery of standard lexical semantic evaluation tasks in several languages, we obtain substantial improvements starting with a variety of word vector models. Our refinement method outperforms prior techniques for incorporating semantic lexicons into the word vector training algorithms.
Constrained Language Models Yield Few-Shot Semantic Parsers
We explore the use of large pretrained language models as few-shot semantic parsers. The goal in semantic parsing is to generate a structured meaning representation given a natural language input. However, language models are trained to generate natural language. To bridge the gap, we use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation. Our results demonstrate that with only a small amount of data and very little code to convert into English-like representations, our blueprint for rapidly bootstrapping semantic parsers leads to surprisingly effective performance on multiple community tasks, greatly exceeding baseline methods also trained on the same limited data.
Acquiring Bidirectionality via Large and Small Language Models
Using token representation from bidirectional language models (LMs) such as BERT is still a widely used approach for token-classification tasks. Even though there exist much larger unidirectional LMs such as Llama-2, they are rarely used to replace the token representation of bidirectional LMs. In this work, we hypothesize that their lack of bidirectionality is keeping them behind. To that end, we propose to newly train a small backward LM and concatenate its representations to those of existing LM for downstream tasks. Through experiments in named entity recognition, we demonstrate that introducing backward model improves the benchmark performance more than 10 points. Furthermore, we show that the proposed method is especially effective for rare domains and in few-shot learning settings.
DefSent: Sentence Embeddings using Definition Sentences
Sentence embedding methods using natural language inference (NLI) datasets have been successfully applied to various tasks. However, these methods are only available for limited languages due to relying heavily on the large NLI datasets. In this paper, we propose DefSent, a sentence embedding method that uses definition sentences from a word dictionary, which performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks than conventional methods. Since dictionaries are available for many languages, DefSent is more broadly applicable than methods using NLI datasets without constructing additional datasets. We demonstrate that DefSent performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks to the methods using large NLI datasets. Our code is publicly available at https://github.com/hpprc/defsent .
Evidence of Meaning in Language Models Trained on Programs
We present evidence that language models can learn meaning despite being trained only to perform next token prediction on text, specifically a corpus of programs. Each program is preceded by a specification in the form of (textual) input-output examples. Working with programs enables us to precisely define concepts relevant to meaning in language (e.g., correctness and semantics), making program synthesis well-suited as an intermediate testbed for characterizing the presence (or absence) of meaning in language models. We first train a Transformer model on the corpus of programs, then probe the trained model's hidden states as it completes a program given a specification. Despite providing no inductive bias toward learning the semantics of the language, we find that a linear probe is able to extract abstractions of both current and future program states from the model states. Moreover, there is a strong, statistically significant correlation between the accuracy of the probe and the model's ability to generate a program that implements the specification. To evaluate whether the semantics are represented in the model states rather than learned by the probe, we design a novel experimental procedure that intervenes on the semantics of the language while preserving the lexicon and syntax. We also demonstrate that the model learns to generate correct programs that are, on average, shorter than those in the training set, which is evidence that language model outputs may differ from the training distribution in semantically meaningful ways. In summary, this paper does not propose any new techniques for training language models, but develops an experimental framework for and provides insights into the acquisition and representation of (formal) meaning in language models.
Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy
This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study.
Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles
Tokenization is associated with many poorly understood shortcomings in language models (LMs), yet remains an important component for long sequence scaling purposes. This work studies how tokenization impacts model performance by analyzing and comparing the stochastic behavior of tokenized models with their byte-level, or token-free, counterparts. We discover that, even when the two models are statistically equivalent, their predictive distributions over the next byte can be substantially different, a phenomenon we term as "tokenization bias''. To fully characterize this phenomenon, we introduce the Byte-Token Representation Lemma, a framework that establishes a mapping between the learned token distribution and its equivalent byte-level distribution. From this result, we develop a next-byte sampling algorithm that eliminates tokenization bias without requiring further training or optimization. In other words, this enables zero-shot conversion of tokenized LMs into statistically equivalent token-free ones. We demonstrate its broad applicability with two use cases: fill-in-the-middle (FIM) tasks and model ensembles. In FIM tasks where input prompts may terminate mid-token, leading to out-of-distribution tokenization, our method mitigates performance degradation and achieves an approximately 18% improvement in FIM coding benchmarks, consistently outperforming the standard token healing fix. For model ensembles where each model employs a distinct vocabulary, our approach enables seamless integration, resulting in improved performance (up to 3.7%) over individual models across various standard baselines in reasoning, knowledge, and coding.
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data
Most available semantic parsing datasets, comprising of pairs of natural utterances and logical forms, were collected solely for the purpose of training and evaluation of natural language understanding systems. As a result, they do not contain any of the richness and variety of natural-occurring utterances, where humans ask about data they need or are curious about. In this work, we release SEDE, a dataset with 12,023 pairs of utterances and SQL queries collected from real usage on the Stack Exchange website. We show that these pairs contain a variety of real-world challenges which were rarely reflected so far in any other semantic parsing dataset, propose an evaluation metric based on comparison of partial query clauses that is more suitable for real-world queries, and conduct experiments with strong baselines, showing a large gap between the performance on SEDE compared to other common datasets.
Learning Word Vectors for 157 Languages
Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models.
EPIE Dataset: A Corpus For Possible Idiomatic Expressions
Idiomatic expressions have always been a bottleneck for language comprehension and natural language understanding, specifically for tasks like Machine Translation(MT). MT systems predominantly produce literal translations of idiomatic expressions as they do not exhibit generic and linguistically deterministic patterns which can be exploited for comprehension of the non-compositional meaning of the expressions. These expressions occur in parallel corpora used for training, but due to the comparatively high occurrences of the constituent words of idiomatic expressions in literal context, the idiomatic meaning gets overpowered by the compositional meaning of the expression. State of the art Metaphor Detection Systems are able to detect non-compositional usage at word level but miss out on idiosyncratic phrasal idiomatic expressions. This creates a dire need for a dataset with a wider coverage and higher occurrence of commonly occurring idiomatic expressions, the spans of which can be used for Metaphor Detection. With this in mind, we present our English Possible Idiomatic Expressions(EPIE) corpus containing 25206 sentences labelled with lexical instances of 717 idiomatic expressions. These spans also cover literal usages for the given set of idiomatic expressions. We also present the utility of our dataset by using it to train a sequence labelling module and testing on three independent datasets with high accuracy, precision and recall scores.
Planting a SEED of Vision in Large Language Model
We present SEED, an elaborate image tokenizer that empowers Large Language Models (LLMs) with the emergent ability to SEE and Draw at the same time. Research on image tokenizers has previously reached an impasse, as frameworks employing quantized visual tokens have lost prominence due to subpar performance and convergence in multimodal comprehension (compared to BLIP-2, etc.) or generation (compared to Stable Diffusion, etc.). Despite the limitations, we remain confident in its natural capacity to unify visual and textual representations, facilitating scalable multimodal training with LLM's original recipe. In this study, we identify two crucial principles for the architecture and training of SEED that effectively ease subsequent alignment with LLMs. (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. As a result, the off-the-shelf LLM is able to perform both image-to-text and text-to-image generation by incorporating our SEED through efficient LoRA tuning. Comprehensive multimodal pretraining and instruction tuning, which may yield improved results, are reserved for future investigation. This version of SEED was trained in 5.7 days using only 64 V100 GPUs and 5M publicly available image-text pairs. Our preliminary study emphasizes the great potential of discrete visual tokens in versatile multimodal LLMs and the importance of proper image tokenizers in broader research.
Copy Is All You Need
The dominant text generation models compose the output by sequentially selecting words from a fixed vocabulary. In this paper, we formulate text generation as progressively copying text segments (e.g., words or phrases) from an existing text collection. We compute the contextualized representations of meaningful text segments and index them using efficient vector search toolkits. The task of text generation is then decomposed into a series of copy-and-paste operations: at each time step, we seek suitable text spans from the text collection rather than selecting from a standalone vocabulary. Experiments on the standard language modeling benchmark (WikiText-103) show that our approach achieves better generation quality according to both automatic and human evaluations. Besides, its inference efficiency is comparable to token-level autoregressive models thanks to the reduction of decoding steps. We also show that our approach allows for effective domain adaptation by simply switching to domain-specific text collection without extra training. Finally, we observe that our approach attains additional performance gains by simply scaling up to larger text collections, again without further training.Our source codes are publicly available at \url{https://github.com/gmftbyGMFTBY/Copyisallyouneed.}
The Geometry of Tokens in Internal Representations of Large Language Models
We investigate the relationship between the geometry of token embeddings and their role in the next token prediction within transformer models. An important aspect of this connection uses the notion of empirical measure, which encodes the distribution of token point clouds across transformer layers and drives the evolution of token representations in the mean-field interacting picture. We use metrics such as intrinsic dimension, neighborhood overlap, and cosine similarity to observationally probe these empirical measures across layers. To validate our approach, we compare these metrics to a dataset where the tokens are shuffled, which disrupts the syntactic and semantic structure. Our findings reveal a correlation between the geometric properties of token embeddings and the cross-entropy loss of next token predictions, implying that prompts with higher loss values have tokens represented in higher-dimensional spaces.
Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings
Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods.
Better & Faster Large Language Models via Multi-token Prediction
Large language models such as GPT and Llama are trained with a next-token prediction loss. In this work, we suggest that training language models to predict multiple future tokens at once results in higher sample efficiency. More specifically, at each position in the training corpus, we ask the model to predict the following n tokens using n independent output heads, operating on top of a shared model trunk. Considering multi-token prediction as an auxiliary training task, we measure improved downstream capabilities with no overhead in training time for both code and natural language models. The method is increasingly useful for larger model sizes, and keeps its appeal when training for multiple epochs. Gains are especially pronounced on generative benchmarks like coding, where our models consistently outperform strong baselines by several percentage points. Our 13B parameter models solves 12 % more problems on HumanEval and 17 % more on MBPP than comparable next-token models. Experiments on small algorithmic tasks demonstrate that multi-token prediction is favorable for the development of induction heads and algorithmic reasoning capabilities. As an additional benefit, models trained with 4-token prediction are up to 3 times faster at inference, even with large batch sizes.
A Latent Variable Model Approach to PMI-based Word Embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.
NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector. Such a shallow lookup results in a linear growth of memory consumption for storing the embedding matrix and incurs high computational costs when working with real-world KGs. Drawing parallels with subword tokenization commonly used in NLP, we explore the landscape of more parameter-efficient node embedding strategies with possibly sublinear memory requirements. To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece, a vocabulary of subword/sub-entity units is constructed from anchor nodes in a graph with known relation types. Given such a fixed-size vocabulary, it is possible to bootstrap an encoding and embedding for any entity, including those unseen during training. Experiments show that NodePiece performs competitively in node classification, link prediction, and relation prediction tasks while retaining less than 10% of explicit nodes in a graph as anchors and often having 10x fewer parameters. To this end, we show that a NodePiece-enabled model outperforms existing shallow models on a large OGB WikiKG 2 graph having 70x fewer parameters.
Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features
The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings.
Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages
Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training
Analyzing Cognitive Plausibility of Subword Tokenization
Subword tokenization has become the de-facto standard for tokenization, although comparative evaluations of subword vocabulary quality across languages are scarce. Existing evaluation studies focus on the effect of a tokenization algorithm on the performance in downstream tasks, or on engineering criteria such as the compression rate. We present a new evaluation paradigm that focuses on the cognitive plausibility of subword tokenization. We analyze the correlation of the tokenizer output with the response time and accuracy of human performance on a lexical decision task. We compare three tokenization algorithms across several languages and vocabulary sizes. Our results indicate that the UnigramLM algorithm yields less cognitively plausible tokenization behavior and a worse coverage of derivational morphemes, in contrast with prior work.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
Semantic Specialization for Knowledge-based Word Sense Disambiguation
A promising approach for knowledge-based Word Sense Disambiguation (WSD) is to select the sense whose contextualized embeddings computed for its definition sentence are closest to those computed for a target word in a given sentence. This approach relies on the similarity of the sense and context embeddings computed by a pre-trained language model. We propose a semantic specialization for WSD where contextualized embeddings are adapted to the WSD task using solely lexical knowledge. The key idea is, for a given sense, to bring semantically related senses and contexts closer and send different/unrelated senses farther away. We realize this idea as the joint optimization of the Attract-Repel objective for sense pairs and the self-training objective for context-sense pairs while controlling deviations from the original embeddings. The proposed method outperformed previous studies that adapt contextualized embeddings. It achieved state-of-the-art performance on knowledge-based WSD when combined with the reranking heuristic that uses the sense inventory. We found that the similarity characteristics of specialized embeddings conform to the key idea. We also found that the (dis)similarity of embeddings between the related/different/unrelated senses correlates well with the performance of WSD.
Retrieval-Augmented Semantic Parsing: Using Large Language Models to Improve Generalization
Open-domain semantic parsing remains a challenging task, as models often rely on heuristics and struggle to handle unseen concepts. In this paper, we investigate the potential of large language models (LLMs) for this task and introduce Retrieval-Augmented Semantic Parsing (RASP), a simple yet effective approach that integrates external lexical knowledge into the parsing process. Our experiments not only show that LLMs outperform previous encoder-decoder baselines for semantic parsing, but that RASP further enhances their ability to predict unseen concepts, nearly doubling the performance of previous models on out-of-distribution concepts. These findings highlight the promise of leveraging large language models and retrieval mechanisms for robust and open-domain semantic parsing.
Assessing Word Importance Using Models Trained for Semantic Tasks
Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model's weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.
Understanding In-Context Learning from Repetitions
This paper explores the elusive mechanism underpinning in-context learning in Large Language Models (LLMs). Our work provides a novel perspective by examining in-context learning via the lens of surface repetitions. We quantitatively investigate the role of surface features in text generation, and empirically establish the existence of token co-occurrence reinforcement, a principle that strengthens the relationship between two tokens based on their contextual co-occurrences. By investigating the dual impacts of these features, our research illuminates the internal workings of in-context learning and expounds on the reasons for its failures. This paper provides an essential contribution to the understanding of in-context learning and its potential limitations, providing a fresh perspective on this exciting capability.
An Attribution Method for Siamese Encoders
Despite the success of Siamese encoder models such as sentence transformers (ST), little is known about the aspects of inputs they pay attention to. A barrier is that their predictions cannot be attributed to individual features, as they compare two inputs rather than processing a single one. This paper derives a local attribution method for Siamese encoders by generalizing the principle of integrated gradients to models with multiple inputs. The solution takes the form of feature-pair attributions, and can be reduced to a token-token matrix for STs. Our method involves the introduction of integrated Jacobians and inherits the advantageous formal properties of integrated gradients: it accounts for the model's full computation graph and is guaranteed to converge to the actual prediction. A pilot study shows that in an ST few token-pairs can often explain large fractions of predictions, and it focuses on nouns and verbs. For accurate predictions, it however needs to attend to the majority of tokens and parts of speech.
LearningWord Embeddings for Low-resource Languages by PU Learning
Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages.
Assessing the Importance of Frequency versus Compositionality for Subword-based Tokenization in NMT
Subword tokenization is the de facto standard for tokenization in neural language models and machine translation systems. Three advantages are frequently cited in favor of subwords: shorter encoding of frequent tokens, compositionality of subwords, and ability to deal with unknown words. As their relative importance is not entirely clear yet, we propose a tokenization approach that enables us to separate frequency (the first advantage) from compositionality. The approach uses Huffman coding to tokenize words, by order of frequency, using a fixed amount of symbols. Experiments with CS-DE, EN-FR and EN-DE NMT show that frequency alone accounts for 90%-95% of the scores reached by BPE, hence compositionality has less importance than previously thought.
Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence
We propose a novel approach for learning interchangeable tokens in language models to obtain an extendable vocabulary that can generalize to new tokens. Our method is designed to address alpha-equivalence, the principle that renaming bound variables in a syntactic expression preserves semantics. This property arises in many formal languages such as temporal logics, in which all proposition symbols represent the same concept but are distinguishable from each other. To handle such tokens, we develop a dual-part embedding approach. The first part is shared across all interchangeable tokens, thereby enforcing that they represent the same core concept. The second part is randomly generated for each token, which enables distinguishability. We evaluate our method in a Transformer encoder-decoder model on two tasks: solving linear temporal logic formulae and copying with extendable vocabulary. Our method demonstrates promising generalization capabilities in addition to introducing a favorable inductive bias for alpha-equivalence.
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
Comparing Performance of Different Linguistically-Backed Word Embeddings for Cyberbullying Detection
In most cases, word embeddings are learned only from raw tokens or in some cases, lemmas. This includes pre-trained language models like BERT. To investigate on the potential of capturing deeper relations between lexical items and structures and to filter out redundant information, we propose to preserve the morphological, syntactic and other types of linguistic information by combining them with the raw tokens or lemmas. This means, for example, including parts-of-speech or dependency information within the used lexical features. The word embeddings can then be trained on the combinations instead of just raw tokens. It is also possible to later apply this method to the pre-training of huge language models and possibly enhance their performance. This would aid in tackling problems which are more sophisticated from the point of view of linguistic representation, such as detection of cyberbullying.
Biomedical Language Models are Robust to Sub-optimal Tokenization
As opposed to general English, many concepts in biomedical terminology have been designed in recent history by biomedical professionals with the goal of being precise and concise. This is often achieved by concatenating meaningful biomedical morphemes to create new semantic units. Nevertheless, most modern biomedical language models (LMs) are pre-trained using standard domain-specific tokenizers derived from large scale biomedical corpus statistics without explicitly leveraging the agglutinating nature of biomedical language. In this work, we first find that standard open-domain and biomedical tokenizers are largely unable to segment biomedical terms into meaningful components. Therefore, we hypothesize that using a tokenizer which segments biomedical terminology more accurately would enable biomedical LMs to improve their performance on downstream biomedical NLP tasks, especially ones which involve biomedical terms directly such as named entity recognition (NER) and entity linking. Surprisingly, we find that pre-training a biomedical LM using a more accurate biomedical tokenizer does not improve the entity representation quality of a language model as measured by several intrinsic and extrinsic measures such as masked language modeling prediction (MLM) accuracy as well as NER and entity linking performance. These quantitative findings, along with a case study which explores entity representation quality more directly, suggest that the biomedical pre-training process is quite robust to instances of sub-optimal tokenization.
MEXMA: Token-level objectives improve sentence representations
Current pre-trained cross-lingual sentence encoders approaches use sentence-level objectives only. This can lead to loss of information, especially for tokens, which then degrades the sentence representation. We propose MEXMA, a novel approach that integrates both sentence-level and token-level objectives. The sentence representation in one language is used to predict masked tokens in another language, with both the sentence representation and all tokens directly updating the encoder. We show that adding token-level objectives greatly improves the sentence representation quality across several tasks. Our approach outperforms current pre-trained cross-lingual sentence encoders on bi-text mining as well as several downstream tasks. We also analyse the information encoded in our tokens, and how the sentence representation is built from them.
Interpreting Embedding Spaces by Conceptualization
One of the main methods for computational interpretation of a text is mapping it into a vector in some embedding space. Such vectors can then be used for a variety of textual processing tasks. Recently, most embedding spaces are a product of training large language models (LLMs). One major drawback of this type of representation is their incomprehensibility to humans. Understanding the embedding space is crucial for several important needs, including the need to debug the embedding method and compare it to alternatives, and the need to detect biases hidden in the model. In this paper, we present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space. We present an algorithm for deriving a conceptual space with dynamic on-demand granularity. We devise a new evaluation method, using either human rater or LLM-based raters, to show that the conceptualized vectors indeed represent the semantics of the original latent ones. We show the use of our method for various tasks, including comparing the semantics of alternative models and tracing the layers of the LLM. The code is available online https://github.com/adiSimhi/Interpreting-Embedding-Spaces-by-Conceptualization.
Compositional Semantic Parsing with Large Language Models
Humans can reason compositionally when presented with new tasks. Previous research shows that appropriate prompting techniques enable large language models (LLMs) to solve artificial compositional generalization tasks such as SCAN. In this work, we identify additional challenges in more realistic semantic parsing tasks with larger vocabulary and refine these prompting techniques to address them. Our best method is based on least-to-most prompting: it decomposes the problem using prompting-based syntactic parsing, then uses this decomposition to select appropriate exemplars and to sequentially generate the semantic parse. This method allows us to set a new state of the art for CFQ while requiring only 1% of the training data used by traditional approaches. Due to the general nature of our approach, we expect similar efforts will lead to new results in other tasks and domains, especially for knowledge-intensive applications.
Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling
The rapid growth in the parameters of large language models (LLMs) has made inference latency a fundamental bottleneck, limiting broader application of LLMs. Speculative decoding represents a lossless approach to accelerate inference through a guess-and-verify paradigm, leveraging the parallel capabilities of modern hardware. Some speculative decoding methods rely on additional structures to guess draft tokens, such as small models or parameter-efficient architectures, which need extra training before use. Alternatively, retrieval-based train-free techniques build libraries from pre-existing corpora or by n-gram generation. However, they face challenges like large storage requirements, time-consuming retrieval, and limited adaptability. Observing that candidate tokens generated during the decoding process are likely to reoccur in future sequences, we propose Token Recycling. This approach stores candidate tokens in an adjacency matrix and employs a breadth-first search (BFS)-like algorithm on the matrix to construct a draft tree. The tree is then validated through tree attention. New candidate tokens from the decoding process are then used to update the matrix. Token Recycling requires \textless2MB of additional storage and achieves approximately 2x speedup across all sizes of LLMs. It significantly outperforms existing train-free methods by 30\% and even a training method by 25\%. It can be directly applied to any existing LLMs and tasks without the need for adaptation.
Word Sense Linking: Disambiguating Outside the Sandbox
Word Sense Disambiguation (WSD) is the task of associating a word in a given context with its most suitable meaning among a set of possible candidates. While the task has recently witnessed renewed interest, with systems achieving performances above the estimated inter-annotator agreement, at the time of writing it still struggles to find downstream applications. We argue that one of the reasons behind this is the difficulty of applying WSD to plain text. Indeed, in the standard formulation, models work under the assumptions that a) all the spans to disambiguate have already been identified, and b) all the possible candidate senses of each span are provided, both of which are requirements that are far from trivial. In this work, we present a new task called Word Sense Linking (WSL) where, given an input text and a reference sense inventory, systems have to both identify which spans to disambiguate and then link them to their most suitable meaning.We put forward a transformer-based architecture for the task and thoroughly evaluate both its performance and those of state-of-the-art WSD systems scaled to WSL, iteratively relaxing the assumptions of WSD. We hope that our work will foster easier integration of lexical semantics into downstream applications.
Retrofitting (Large) Language Models with Dynamic Tokenization
Current language models (LMs) use a fixed, static subword tokenizer. This choice, often taken for granted, typically results in degraded efficiency and capabilities in languages other than English, and makes it challenging to apply LMs to new domains or languages. To address these issues, we propose retrofitting LMs with dynamic tokenization: a way to dynamically decide on token boundaries based on the input text. For encoder-style models, we introduce a subword-merging algorithm inspired by byte-pair encoding (BPE), but at a batch level. We merge frequent subword sequences in a batch, then apply a pretrained embedding-prediction hypernetwork to compute the token embeddings on-the-fly. When applied with word-level boundaries, this on average reduces token sequence lengths by >20% across 14 languages on XNLI with XLM-R while degrading its task performance by less than 2%. For decoder-style models, we apply dynamic tokenization in two ways: 1) for prefilling, maintaining performance of Mistral-7B almost completely with up to 40% sequence reduction - relative to the word-level; and 2) via an approximate nearest neighbor index, achieving fast generation with a one million token vocabulary, demonstrating scalability to even larger, dynamic vocabularies. Overall, our findings show that dynamic tokenization substantially improves inference speed and promotes fairness across languages, making a leap towards overcoming the limitations of static tokenization and enabling more equitable and adaptable LMs.
Retrieval-based Disentangled Representation Learning with Natural Language Supervision
Disentangled representation learning remains challenging as the underlying factors of variation in the data do not naturally exist. The inherent complexity of real-world data makes it unfeasible to exhaustively enumerate and encapsulate all its variations within a finite set of factors. However, it is worth noting that most real-world data have linguistic equivalents, typically in the form of textual descriptions. These linguistic counterparts can represent the data and effortlessly decomposed into distinct tokens. In light of this, we present Vocabulary Disentangled Retrieval (VDR), a retrieval-based framework that harnesses natural language as proxies of the underlying data variation to drive disentangled representation learning. Our approach employ a bi-encoder model to represent both data and natural language in a vocabulary space, enabling the model to distinguish dimensions that capture intrinsic characteristics within data through its natural language counterpart, thus facilitating disentanglement. We extensively assess the performance of VDR across 15 retrieval benchmark datasets, covering text-to-text and cross-modal retrieval scenarios, as well as human evaluation. Our experimental results compellingly demonstrate the superiority of VDR over previous bi-encoder retrievers with comparable model size and training costs, achieving an impressive 8.7% improvement in NDCG@10 on the BEIR benchmark, a 5.3% increase on MS COCO, and a 6.0% increase on Flickr30k in terms of mean recall in the zero-shot setting. Moreover, The results from human evaluation indicate that interpretability of our method is on par with SOTA captioning models.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
Generation with Dynamic Vocabulary
We introduce a new dynamic vocabulary for language models. It can involve arbitrary text spans during generation. These text spans act as basic generation bricks, akin to tokens in the traditional static vocabularies. We show that, the ability to generate multi-tokens atomically improve both generation quality and efficiency (compared to the standard language model, the MAUVE metric is increased by 25%, the latency is decreased by 20%). The dynamic vocabulary can be deployed in a plug-and-play way, thus is attractive for various downstream applications. For example, we demonstrate that dynamic vocabulary can be applied to different domains in a training-free manner. It also helps to generate reliable citations in question answering tasks (substantially enhancing citation results without compromising answer accuracy).
Dependency-based Hybrid Trees for Semantic Parsing
We propose a novel dependency-based hybrid tree model for semantic parsing, which converts natural language utterance into machine interpretable meaning representations. Unlike previous state-of-the-art models, the semantic information is interpreted as the latent dependency between the natural language words in our joint representation. Such dependency information can capture the interactions between the semantics and natural language words. We integrate a neural component into our model and propose an efficient dynamic-programming algorithm to perform tractable inference. Through extensive experiments on the standard multilingual GeoQuery dataset with eight languages, we demonstrate that our proposed approach is able to achieve state-of-the-art performance across several languages. Analysis also justifies the effectiveness of using our new dependency-based representation.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
A Convolutional Neural Network for Modelling Sentences
The ability to accurately represent sentences is central to language understanding. We describe a convolutional architecture dubbed the Dynamic Convolutional Neural Network (DCNN) that we adopt for the semantic modelling of sentences. The network uses Dynamic k-Max Pooling, a global pooling operation over linear sequences. The network handles input sentences of varying length and induces a feature graph over the sentence that is capable of explicitly capturing short and long-range relations. The network does not rely on a parse tree and is easily applicable to any language. We test the DCNN in four experiments: small scale binary and multi-class sentiment prediction, six-way question classification and Twitter sentiment prediction by distant supervision. The network achieves excellent performance in the first three tasks and a greater than 25% error reduction in the last task with respect to the strongest baseline.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
Vector representations of text data in deep learning
In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings.
TokenButler: Token Importance is Predictable
Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler
QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations
Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations.
Tokenization with Factorized Subword Encoding
In recent years, language models have become increasingly larger and more complex. However, the input representations for these models continue to rely on simple and greedy subword tokenization methods. In this paper, we propose a novel tokenization method that factorizes subwords onto discrete triplets using a VQ-VAE model. The effectiveness of the proposed tokenization method, referred to as the Factorizer, is evaluated on language modeling and morpho-syntactic tasks for 7 diverse languages. Results indicate that this method is more appropriate and robust for morphological tasks than the commonly used byte-pair encoding (BPE) tokenization algorithm.
Critical Tokens Matter: Token-Level Contrastive Estimation Enhence LLM's Reasoning Capability
Large Language Models (LLMs) have exhibited remarkable performance on reasoning tasks. They utilize autoregressive token generation to construct reasoning trajectories, enabling the development of a coherent chain of thought. In this work, we explore the impact of individual tokens on the final outcomes of reasoning tasks. We identify the existence of ``critical tokens'' that lead to incorrect reasoning trajectories in LLMs. Specifically, we find that LLMs tend to produce positive outcomes when forced to decode other tokens instead of critical tokens. Motivated by this observation, we propose a novel approach - cDPO - designed to automatically recognize and conduct token-level rewards for the critical tokens during the alignment process. Specifically, we develop a contrastive estimation approach to automatically identify critical tokens. It is achieved by comparing the generation likelihood of positive and negative models. To achieve this, we separately fine-tune the positive and negative models on various reasoning trajectories, consequently, they are capable of identifying identify critical tokens within incorrect trajectories that contribute to erroneous outcomes. Moreover, to further align the model with the critical token information during the alignment process, we extend the conventional DPO algorithms to token-level DPO and utilize the differential likelihood from the aforementioned positive and negative model as important weight for token-level DPO learning.Experimental results on GSM8K and MATH500 benchmarks with two-widely used models Llama-3 (8B and 70B) and deepseek-math (7B) demonstrate the effectiveness of the propsoed approach cDPO.
Composed Image Retrieval for Training-Free Domain Conversion
This work addresses composed image retrieval in the context of domain conversion, where the content of a query image is retrieved in the domain specified by the query text. We show that a strong vision-language model provides sufficient descriptive power without additional training. The query image is mapped to the text input space using textual inversion. Unlike common practice that invert in the continuous space of text tokens, we use the discrete word space via a nearest-neighbor search in a text vocabulary. With this inversion, the image is softly mapped across the vocabulary and is made more robust using retrieval-based augmentation. Database images are retrieved by a weighted ensemble of text queries combining mapped words with the domain text. Our method outperforms prior art by a large margin on standard and newly introduced benchmarks. Code: https://github.com/NikosEfth/freedom
Semantic Role Labeling Meets Definition Modeling: Using Natural Language to Describe Predicate-Argument Structures
One of the common traits of past and present approaches for Semantic Role Labeling (SRL) is that they rely upon discrete labels drawn from a predefined linguistic inventory to classify predicate senses and their arguments. However, we argue this need not be the case. In this paper, we present an approach that leverages Definition Modeling to introduce a generalized formulation of SRL as the task of describing predicate-argument structures using natural language definitions instead of discrete labels. Our novel formulation takes a first step towards placing interpretability and flexibility foremost, and yet our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance. We release our software for research purposes at https://github.com/SapienzaNLP/dsrl.
Latin BERT: A Contextual Language Model for Classical Philology
We present Latin BERT, a contextual language model for the Latin language, trained on 642.7 million words from a variety of sources spanning the Classical era to the 21st century. In a series of case studies, we illustrate the affordances of this language-specific model both for work in natural language processing for Latin and in using computational methods for traditional scholarship: we show that Latin BERT achieves a new state of the art for part-of-speech tagging on all three Universal Dependency datasets for Latin and can be used for predicting missing text (including critical emendations); we create a new dataset for assessing word sense disambiguation for Latin and demonstrate that Latin BERT outperforms static word embeddings; and we show that it can be used for semantically-informed search by querying contextual nearest neighbors. We publicly release trained models to help drive future work in this space.
Coreferential Reasoning Learning for Language Representation
Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most existing language representation models cannot explicitly handle coreference, which is essential to the coherent understanding of the whole discourse. To address this issue, we present CorefBERT, a novel language representation model that can capture the coreferential relations in context. The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks that require coreferential reasoning, while maintaining comparable performance to previous models on other common NLP tasks. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/CorefBERT.
Scaffold-BPE: Enhancing Byte Pair Encoding with Simple and Effective Scaffold Token Removal
Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus while keeping all tokens that have been merged in the vocabulary, it unavoidably holds tokens that primarily represent subwords of complete words and appear infrequently on their own in the text corpus. We term such tokens as Scaffold Tokens. Due to their infrequent appearance in the text corpus, Scaffold Tokens pose a learning imbalance issue for language models. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for the given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling tasks and machine translation tasks, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness and superiority.
Guided Generation of Cause and Effect
We present a conditional text generation framework that posits sentential expressions of possible causes and effects. This framework depends on two novel resources we develop in the course of this work: a very large-scale collection of English sentences expressing causal patterns CausalBank; and a refinement over previous work on constructing large lexical causal knowledge graphs Cause Effect Graph. Further, we extend prior work in lexically-constrained decoding to support disjunctive positive constraints. Human assessment confirms that our approach gives high-quality and diverse outputs. Finally, we use CausalBank to perform continued training of an encoder supporting a recent state-of-the-art model for causal reasoning, leading to a 3-point improvement on the COPA challenge set, with no change in model architecture.
Exploring Non-Verbal Predicates in Semantic Role Labeling: Challenges and Opportunities
Although we have witnessed impressive progress in Semantic Role Labeling (SRL), most of the research in the area is carried out assuming that the majority of predicates are verbs. Conversely, predicates can also be expressed using other parts of speech, e.g., nouns and adjectives. However, non-verbal predicates appear in the benchmarks we commonly use to measure progress in SRL less frequently than in some real-world settings -- newspaper headlines, dialogues, and tweets, among others. In this paper, we put forward a new PropBank dataset which boasts wide coverage of multiple predicate types. Thanks to it, we demonstrate empirically that standard benchmarks do not provide an accurate picture of the current situation in SRL and that state-of-the-art systems are still incapable of transferring knowledge across different predicate types. Having observed these issues, we also present a novel, manually-annotated challenge set designed to give equal importance to verbal, nominal, and adjectival predicate-argument structures. We use such dataset to investigate whether we can leverage different linguistic resources to promote knowledge transfer. In conclusion, we claim that SRL is far from "solved", and its integration with other semantic tasks might enable significant improvements in the future, especially for the long tail of non-verbal predicates, thereby facilitating further research on SRL for non-verbal predicates.
Lexically Grounded Subword Segmentation
We present three innovations in tokenization and subword segmentation. First, we propose to use unsupervised morphological analysis with Morfessor as pre-tokenization. Second, we present an algebraic method for obtaining subword embeddings grounded in a word embedding space. Based on that, we design a novel subword segmentation algorithm that uses the embeddings, ensuring that the procedure considers lexical meaning. Third, we introduce an efficient segmentation algorithm based on a subword bigram model that can be initialized with the lexically aware segmentation method to avoid using Morfessor and large embedding tables at inference time. We evaluate the proposed approaches using two intrinsic metrics and measure their performance on two downstream tasks: part-of-speech tagging and machine translation. Our experiments show significant improvements in the morphological plausibility of the segmentation when evaluated using segmentation precision on morpheme boundaries and improved R\'enyi efficiency in 8 languages. Although the proposed tokenization methods do not have a large impact on automatic translation quality, we observe consistent performance gains in the arguably more morphological task of part-of-speech tagging.
Data Augmentation for Hypernymy Detection
The automatic detection of hypernymy relationships represents a challenging problem in NLP. The successful application of state-of-the-art supervised approaches using distributed representations has generally been impeded by the limited availability of high quality training data. We have developed two novel data augmentation techniques which generate new training examples from existing ones. First, we combine the linguistic principles of hypernym transitivity and intersective modifier-noun composition to generate additional pairs of vectors, such as "small dog - dog" or "small dog - animal", for which a hypernymy relationship can be assumed. Second, we use generative adversarial networks (GANs) to generate pairs of vectors for which the hypernymy relation can also be assumed. We furthermore present two complementary strategies for extending an existing dataset by leveraging linguistic resources such as WordNet. Using an evaluation across 3 different datasets for hypernymy detection and 2 different vector spaces, we demonstrate that both of the proposed automatic data augmentation and dataset extension strategies substantially improve classifier performance.
Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation
We present an information retrieval based reverse dictionary system using modern pre-trained language models and approximate nearest neighbors search algorithms. The proposed approach is applied to an existing Estonian language lexicon resource, S\~onaveeb (word web), with the purpose of enhancing and enriching it by introducing cross-lingual reverse dictionary functionality powered by semantic search. The performance of the system is evaluated using both an existing labeled English dataset of words and definitions that is extended to contain also Estonian and Russian translations, and a novel unlabeled evaluation approach that extracts the evaluation data from the lexicon resource itself using synonymy relations. Evaluation results indicate that the information retrieval based semantic search approach without any model training is feasible, producing median rank of 1 in the monolingual setting and median rank of 2 in the cross-lingual setting using the unlabeled evaluation approach, with models trained for cross-lingual retrieval and including Estonian in their training data showing superior performance in our particular task.
mALBERT: Is a Compact Multilingual BERT Model Still Worth It?
Within the current trend of Pretained Language Models (PLM), emerge more and more criticisms about the ethical andecological impact of such models. In this article, considering these critical remarks, we propose to focus on smallermodels, such as compact models like ALBERT, which are more ecologically virtuous than these PLM. However,PLMs enable huge breakthroughs in Natural Language Processing tasks, such as Spoken and Natural LanguageUnderstanding, classification, Question--Answering tasks. PLMs also have the advantage of being multilingual, and,as far as we know, a multilingual version of compact ALBERT models does not exist. Considering these facts, wepropose the free release of the first version of a multilingual compact ALBERT model, pre-trained using Wikipediadata, which complies with the ethical aspect of such a language model. We also evaluate the model against classicalmultilingual PLMs in classical NLP tasks. Finally, this paper proposes a rare study on the subword tokenizationimpact on language performances.
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
Machine learning about language can be improved by supplying it with specific knowledge and sources of external information. We present here a new version of the linked open data resource ConceptNet that is particularly well suited to be used with modern NLP techniques such as word embeddings. ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use. When ConceptNet is combined with word embeddings acquired from distributional semantics (such as word2vec), it provides applications with understanding that they would not acquire from distributional semantics alone, nor from narrower resources such as WordNet or DBPedia. We demonstrate this with state-of-the-art results on intrinsic evaluations of word relatedness that translate into improvements on applications of word vectors, including solving SAT-style analogies.
POLYGLOT-NER: Massive Multilingual Named Entity Recognition
The increasing diversity of languages used on the web introduces a new level of complexity to Information Retrieval (IR) systems. We can no longer assume that textual content is written in one language or even the same language family. In this paper, we demonstrate how to build massive multilingual annotators with minimal human expertise and intervention. We describe a system that builds Named Entity Recognition (NER) annotators for 40 major languages using Wikipedia and Freebase. Our approach does not require NER human annotated datasets or language specific resources like treebanks, parallel corpora, and orthographic rules. The novelty of approach lies therein - using only language agnostic techniques, while achieving competitive performance. Our method learns distributed word representations (word embeddings) which encode semantic and syntactic features of words in each language. Then, we automatically generate datasets from Wikipedia link structure and Freebase attributes. Finally, we apply two preprocessing stages (oversampling and exact surface form matching) which do not require any linguistic expertise. Our evaluation is two fold: First, we demonstrate the system performance on human annotated datasets. Second, for languages where no gold-standard benchmarks are available, we propose a new method, distant evaluation, based on statistical machine translation.
Probing Natural Language Inference Models through Semantic Fragments
Do state-of-the-art models for language understanding already have, or can they easily learn, abilities such as boolean coordination, quantification, conditionals, comparatives, and monotonicity reasoning (i.e., reasoning about word substitutions in sentential contexts)? While such phenomena are involved in natural language inference (NLI) and go beyond basic linguistic understanding, it is unclear the extent to which they are captured in existing NLI benchmarks and effectively learned by models. To investigate this, we propose the use of semantic fragments---systematically generated datasets that each target a different semantic phenomenon---for probing, and efficiently improving, such capabilities of linguistic models. This approach to creating challenge datasets allows direct control over the semantic diversity and complexity of the targeted linguistic phenomena, and results in a more precise characterization of a model's linguistic behavior. Our experiments, using a library of 8 such semantic fragments, reveal two remarkable findings: (a) State-of-the-art models, including BERT, that are pre-trained on existing NLI benchmark datasets perform poorly on these new fragments, even though the phenomena probed here are central to the NLI task. (b) On the other hand, with only a few minutes of additional fine-tuning---with a carefully selected learning rate and a novel variation of "inoculation"---a BERT-based model can master all of these logic and monotonicity fragments while retaining its performance on established NLI benchmarks.
ChuXin: 1.6B Technical Report
In this report, we present ChuXin, an entirely open-source language model with a size of 1.6 billion parameters. Unlike the majority of works that only open-sourced the model weights and architecture, we have made everything needed to train a model available, including the training data, the training process, and the evaluation code. Our goal is to empower and strengthen the open research community, fostering transparency and enabling a new wave of innovation in the field of language modeling. Furthermore, we extend the context length to 1M tokens through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. The weights for both models are available at Hugging Face to download and use.
A Probabilistic Generative Grammar for Semantic Parsing
Domain-general semantic parsing is a long-standing goal in natural language processing, where the semantic parser is capable of robustly parsing sentences from domains outside of which it was trained. Current approaches largely rely on additional supervision from new domains in order to generalize to those domains. We present a generative model of natural language utterances and logical forms and demonstrate its application to semantic parsing. Our approach relies on domain-independent supervision to generalize to new domains. We derive and implement efficient algorithms for training, parsing, and sentence generation. The work relies on a novel application of hierarchical Dirichlet processes (HDPs) for structured prediction, which we also present in this manuscript. This manuscript is an excerpt of chapter 4 from the Ph.D. thesis of Saparov (2022), where the model plays a central role in a larger natural language understanding system. This manuscript provides a new simplified and more complete presentation of the work first introduced in Saparov, Saraswat, and Mitchell (2017). The description and proofs of correctness of the training algorithm, parsing algorithm, and sentence generation algorithm are much simplified in this new presentation. We also describe the novel application of hierarchical Dirichlet processes for structured prediction. In addition, we extend the earlier work with a new model of word morphology, which utilizes the comprehensive morphological data from Wiktionary.
DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries
This paper presents a significant improvement on the previous conference paper known as DefSent. The prior study seeks to improve sentence embeddings of language models by projecting definition sentences into the vector space of dictionary entries. We discover that this approach is not fully explored due to the methodological limitation of using word embeddings of language models to represent dictionary entries. This leads to two hindrances. First, dictionary entries are constrained by the single-word vocabulary, and thus cannot be fully exploited. Second, semantic representations of language models are known to be anisotropic, but pre-processing word embeddings for DefSent is not allowed because its weight is frozen during training and tied to the prediction layer. In this paper, we propose a novel method to progressively build entry embeddings not subject to the limitations. As a result, definition sentences can be projected into a quasi-isotropic or isotropic vector space of unlimited dictionary entries, so that sentence embeddings of noticeably better quality are attainable. We abbreviate our approach as DefSent+ (a plus version of DefSent), involving the following strengths: 1) the task performance on measuring sentence similarities is significantly improved compared to DefSent; 2) when DefSent+ is used to further train data-augmented models like SIMCSE, SNCSE, and SynCSE, state-of-the-art performance on measuring sentence similarities can be achieved among the approaches without using manually labeled datasets; 3) DefSent+ is also competitive in feature-based transfer for NLP downstream tasks.
LBPE: Long-token-first Tokenization to Improve Large Language Models
The prevalent use of Byte Pair Encoding (BPE) in Large Language Models (LLMs) facilitates robust handling of subword units and avoids issues of out-of-vocabulary words. Despite its success, a critical challenge persists: long tokens, rich in semantic information, have fewer occurrences in tokenized datasets compared to short tokens, which can result in imbalanced learning issue across different tokens. To address that, we propose LBPE, which prioritizes long tokens during the encoding process. LBPE generates tokens according to their reverse ranks of token length rather than their ranks in the vocabulary, granting longer tokens higher priority during the encoding process. Consequently, LBPE smooths the frequency differences between short and long tokens, and thus mitigates the learning imbalance. Extensive experiments across diverse language modeling tasks demonstrate that LBPE consistently outperforms the original BPE, well demonstrating its effectiveness.
MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity Recognition
We present MultiCoNER, a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation. We applied two NER models on our dataset: a baseline XLM-RoBERTa model, and a state-of-the-art GEMNET model that leverages gazetteers. The baseline achieves moderate performance (macro-F1=54%), highlighting the difficulty of our data. GEMNET, which uses gazetteers, improvement significantly (average improvement of macro-F1=+30%). MultiCoNER poses challenges even for large pre-trained language models, and we believe that it can help further research in building robust NER systems. MultiCoNER is publicly available at https://registry.opendata.aws/multiconer/ and we hope that this resource will help advance research in various aspects of NER.
Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk's information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk's semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach.
Efficient Transformers with Dynamic Token Pooling
Transformers achieve unrivalled performance in modelling language, but remain inefficient in terms of memory and time complexity. A possible remedy is to reduce the sequence length in the intermediate layers by pooling fixed-length segments of tokens. Nevertheless, natural units of meaning, such as words or phrases, display varying sizes. To address this mismatch, we equip language models with a dynamic-pooling mechanism, which predicts segment boundaries in an autoregressive fashion. We compare several methods to infer boundaries, including end-to-end learning through stochastic re-parameterisation, supervised learning (based on segmentations from subword tokenizers or spikes in conditional entropy), as well as linguistically motivated boundaries. We perform character-level evaluation on texts from multiple datasets and morphologically diverse languages. The results demonstrate that dynamic pooling, which jointly segments and models language, is both faster and more accurate than vanilla Transformers and fixed-length pooling within the same computational budget.
Enhancing Lexicon-Based Text Embeddings with Large Language Models
Recent large language models (LLMs) have demonstrated exceptional performance on general-purpose text embedding tasks. While dense embeddings have dominated related research, we introduce the first Lexicon-based EmbeddiNgS (LENS) leveraging LLMs that achieve competitive performance on these tasks. Regarding the inherent tokenization redundancy issue and unidirectional attention limitations in traditional causal LLMs, LENS consolidates the vocabulary space through token embedding clustering, and investigates bidirectional attention and various pooling strategies. Specifically, LENS simplifies lexicon matching by assigning each dimension to a specific token cluster, where semantically similar tokens are grouped together, and unlocking the full potential of LLMs through bidirectional attention. Extensive experiments demonstrate that LENS outperforms dense embeddings on the Massive Text Embedding Benchmark (MTEB), delivering compact feature representations that match the sizes of dense counterparts. Notably, combining LENSE with dense embeddings achieves state-of-the-art performance on the retrieval subset of MTEB (i.e. BEIR).
Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning
Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.
Byte BPE Tokenization as an Inverse string Homomorphism
Tokenization is an important preprocessing step in the training and inference of large language models (LLMs). While there has been extensive research on the expressive power of the neural achitectures used in LLMs, the impact of tokenization has not been well understood. In this work, we demonstrate that tokenization, irrespective of the algorithm used, acts as an inverse homomorphism between strings and tokens. This suggests that the character space of the source language and the token space of the tokenized language are homomorphic, preserving the structural properties of the source language. Additionally, we explore the concept of proper tokenization, which refers to an unambiguous tokenization returned from the tokenizer. Our analysis reveals that the expressiveness of neural architectures in recognizing context-free languages is not affected by tokenization.
Correlation and Navigation in the Vocabulary Key Representation Space of Language Models
Language model (LM) decoding is based on the next-token prediction (NTP) probability distribution. For neural LMs (e.g., Transformer-based), NTP distribution is essentially a softmax-regularized dot product between an encoded input context (query) and fixed vocabulary representations (keys). In this paper, we study the effect of the key distribution on the NTP distribution, with a focus on whether the similarity between keys will trigger spurious correlations in NTP. Through knowledge-probing tasks, we show that in the NTP distribution, the few top-ranked tokens are typically accurate. However, the middle-ranked prediction is highly biased towards the tokens that are distributionally (not necessarily semantically) similar to these top ones. For instance, if "P" is predicted as the top-1 token, "A"-"Z" will all be ranked high in NTP, no matter whether they can lead to correct decoding results. This hurts the sampling diversity and makes the sampling of correct, long-tail results hopeless and noisy. We attempt to alleviate this issue via a novel in-context method that iteratively pushes the query representation away from explored regions. Specifically, we include the explored decoding results in the context and prompt the LM to generate something else, which encourages the LM to produce a query representation that has small dot products with explored keys. Experiments on knowledge-probing tasks show that our method leads to efficient navigation away from explored keys to correct new keys. We further extend our method to open-ended and chain-of-thought (for reasoning) generation. Experiment results show that ICN contributes to better generation diversity and improved self-consistency voting performance. Finally, we discuss potential training issues caused by the fixed key space together with the challenges and possible ways to address them in future research.
Open Sentence Embeddings for Portuguese with the Serafim PT* encoders family
Sentence encoder encode the semantics of their input, enabling key downstream applications such as classification, clustering, or retrieval. In this paper, we present Serafim PT*, a family of open-source sentence encoders for Portuguese with various sizes, suited to different hardware/compute budgets. Each model exhibits state-of-the-art performance and is made openly available under a permissive license, allowing its use for both commercial and research purposes. Besides the sentence encoders, this paper contributes a systematic study and lessons learned concerning the selection criteria of learning objectives and parameters that support top-performing encoders.
Hubness Reduction Improves Sentence-BERT Semantic Spaces
Semantic representations of text, i.e. representations of natural language which capture meaning by geometry, are essential for areas such as information retrieval and document grouping. High-dimensional trained dense vectors have received much attention in recent years as such representations. We investigate the structure of semantic spaces that arise from embeddings made with Sentence-BERT and find that the representations suffer from a well-known problem in high dimensions called hubness. Hubness results in asymmetric neighborhood relations, such that some texts (the hubs) are neighbours of many other texts while most texts (so-called anti-hubs), are neighbours of few or no other texts. We quantify the semantic quality of the embeddings using hubness scores and error rate of a neighbourhood based classifier. We find that when hubness is high, we can reduce error rate and hubness using hubness reduction methods. We identify a combination of two methods as resulting in the best reduction. For example, on one of the tested pretrained models, this combined method can reduce hubness by about 75% and error rate by about 9%. Thus, we argue that mitigating hubness in the embedding space provides better semantic representations of text.
SemEval 2019 Shared Task: Cross-lingual Semantic Parsing with UCCA - Call for Participation
We announce a shared task on UCCA parsing in English, German and French, and call for participants to submit their systems. UCCA is a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. Given the success of recent semantic parsing shared tasks (on SDP and AMR), we expect the task to have a significant contribution to the advancement of UCCA parsing in particular, and semantic parsing in general. Furthermore, existing applications for semantic evaluation that are based on UCCA will greatly benefit from better automatic methods for UCCA parsing. The competition website is https://competitions.codalab.org/competitions/19160
Evaluation of Word Embeddings for the Social Sciences
Word embeddings are an essential instrument in many NLP tasks. Most available resources are trained on general language from Web corpora or Wikipedia dumps. However, word embeddings for domain-specific language are rare, in particular for the social science domain. Therefore, in this work, we describe the creation and evaluation of word embedding models based on 37,604 open-access social science research papers. In the evaluation, we compare domain-specific and general language models for (i) language coverage, (ii) diversity, and (iii) semantic relationships. We found that the created domain-specific model, even with a relatively small vocabulary size, covers a large part of social science concepts, their neighborhoods are diverse in comparison to more general models. Across all relation types, we found a more extensive coverage of semantic relationships.
Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models
While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving reasoning over quantities, especially arithmetics. This has particular relevance in scientific datasets where combinations of text and numerical data are abundant. One fundamental limitation is the nature of the CE loss, which assumes a nominal (categorical) scale and thus cannot convey proximity between generated number tokens. As a remedy, we here present two versions of a number token loss. The first is based on an L_p loss between the ground truth token value and the weighted sum of the predicted class probabilities. The second loss minimizes the Wasserstein-1 distance between the distribution of the predicted output probabilities and the ground truth distribution. These regression-like losses can easily be added to any language model and extend the CE objective during training. We compare the proposed schemes on a mathematics dataset against existing tokenization, encoding, and decoding schemes for improving number representation in language models. Our results reveal a significant improvement in numerical accuracy when equipping a standard T5 model with the proposed loss schemes.
Representing Syntax and Composition with Geometric Transformations
The exploitation of syntactic graphs (SyGs) as a word's context has been shown to be beneficial for distributional semantic models (DSMs), both at the level of individual word representations and in deriving phrasal representations via composition. However, notwithstanding the potential performance benefit, the syntactically-aware DSMs proposed to date have huge numbers of parameters (compared to conventional DSMs) and suffer from data sparsity. Furthermore, the encoding of the SyG links (i.e., the syntactic relations) has been largely limited to linear maps. The knowledge graphs' literature, on the other hand, has proposed light-weight models employing different geometric transformations (GTs) to encode edges in a knowledge graph (KG). Our work explores the possibility of adopting this family of models to encode SyGs. Furthermore, we investigate which GT better encodes syntactic relations, so that these representations can be used to enhance phrase-level composition via syntactic contextualisation.
SEFD: Semantic-Enhanced Framework for Detecting LLM-Generated Text
The widespread adoption of large language models (LLMs) has created an urgent need for robust tools to detect LLM-generated text, especially in light of paraphrasing techniques that often evade existing detection methods. To address this challenge, we present a novel semantic-enhanced framework for detecting LLM-generated text (SEFD) that leverages a retrieval-based mechanism to fully utilize text semantics. Our framework improves upon existing detection methods by systematically integrating retrieval-based techniques with traditional detectors, employing a carefully curated retrieval mechanism that strikes a balance between comprehensive coverage and computational efficiency. We showcase the effectiveness of our approach in sequential text scenarios common in real-world applications, such as online forums and Q\&A platforms. Through comprehensive experiments across various LLM-generated texts and detection methods, we demonstrate that our framework substantially enhances detection accuracy in paraphrasing scenarios while maintaining robustness for standard LLM-generated content.
Locally Typical Sampling
Today's probabilistic language generators fall short when it comes to producing coherent and fluent text despite the fact that the underlying models perform well under standard metrics, e.g., perplexity. This discrepancy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language generation as a discrete stochastic process--which allows for an information-theoretic analysis--can provide new insights into the behavior of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, aiming to do so in a simultaneously efficient and error-minimizing manner; in fact, psycholinguistics research suggests humans choose each word in a string with this subconscious goal in mind. We formally define the set of strings that meet this criterion: those for which each word has an information content close to the expected information content, i.e., the conditional entropy of our model. We then propose a simple and efficient procedure for enforcing this criterion when generating from probabilistic models, which we call locally typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, locally typical sampling offers competitive performance (in both abstractive summarization and story generation) in terms of quality while consistently reducing degenerate repetitions.
Meaning Representations from Trajectories in Autoregressive Models
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: https://github.com/tianyu139/meaning-as-trajectories
Learning Mutually Informed Representations for Characters and Subwords
Most pretrained language models rely on subword tokenization, which processes text as a sequence of subword tokens. However, different granularities of text, such as characters, subwords, and words, can contain different kinds of information. Previous studies have shown that incorporating multiple input granularities improves model generalization, yet very few of them outputs useful representations for each granularity. In this paper, we introduce the entanglement model, aiming to combine character and subword language models. Inspired by vision-language models, our model treats characters and subwords as separate modalities, and it generates mutually informed representations for both granularities as output. We evaluate our model on text classification, named entity recognition, and POS-tagging tasks. Notably, the entanglement model outperforms its backbone language models, particularly in the presence of noisy texts and low-resource languages. Furthermore, the entanglement model even outperforms larger pre-trained models on all English sequence labeling tasks and classification tasks. Our anonymized code is available at https://anonymous.4open.science/r/noisy-IE-A673
A Finnish News Corpus for Named Entity Recognition
We present a corpus of Finnish news articles with a manually prepared named entity annotation. The corpus consists of 953 articles (193,742 word tokens) with six named entity classes (organization, location, person, product, event, and date). The articles are extracted from the archives of Digitoday, a Finnish online technology news source. The corpus is available for research purposes. We present baseline experiments on the corpus using a rule-based and two deep learning systems on two, in-domain and out-of-domain, test sets.
ConMeC: A Dataset for Metonymy Resolution with Common Nouns
Metonymy plays an important role in our daily communication. People naturally think about things using their most salient properties or commonly related concepts. For example, by saying "The bus decided to skip our stop today," we actually mean that the bus driver made the decision, not the bus. Prior work on metonymy resolution has mainly focused on named entities. However, metonymy involving common nouns (such as desk, baby, and school) is also a frequent and challenging phenomenon. We argue that NLP systems should be capable of identifying the metonymic use of common nouns in context. We create a new metonymy dataset ConMeC, which consists of 6,000 sentences, where each sentence is paired with a target common noun and annotated by humans to indicate whether that common noun is used metonymically or not in that context. We also introduce a chain-of-thought based prompting method for detecting metonymy using large language models (LLMs). We evaluate our LLM-based pipeline, as well as a supervised BERT model on our dataset and three other metonymy datasets. Our experimental results demonstrate that LLMs could achieve performance comparable to the supervised BERT model on well-defined metonymy categories, while still struggling with instances requiring nuanced semantic understanding. Our dataset is publicly available at: https://github.com/SaptGhosh/ConMeC.
Engineering Design Knowledge Graphs from Patented Artefact Descriptions for Retrieval-Augmented Generation in the Design Process
Despite significant popularity, Large-language Models (LLMs) require explicit, contextual facts to support domain-specific knowledge-intensive tasks in the design process. The applications built using LLMs should hence adopt Retrieval-Augmented Generation (RAG) to better suit the design process. In this article, we present a data-driven method to identify explicit facts from patent documents that provide standard descriptions of over 8 million artefacts. In our method, we train roBERTa Transformer-based sequence classification models using our dataset of 44,227 sentences and facts. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities so that explicit facts of the form head entity :: relationship :: tail entity are identified. In the benchmark approaches for constructing facts, we use linear classifiers and Graph Neural Networks (GNNs) both incorporating BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base of around 3 million facts. Upon retrieving the facts representing generalisable domain knowledge and the knowledge of specific subsystems and issues, we demonstrate how these facts contextualise LLMs for generating text that is more relevant to the design process.
Compressed Chain of Thought: Efficient Reasoning Through Dense Representations
Chain-of-thought (CoT) decoding enables language models to improve reasoning performance at the cost of high generation latency in decoding. Recent proposals have explored variants of contemplation tokens, a term we introduce that refers to special tokens used during inference to allow for extra computation. Prior work has considered fixed-length sequences drawn from a discrete set of embeddings as contemplation tokens. Here we propose Compressed Chain-of-Thought (CCoT), a framework to generate contentful and continuous contemplation tokens of variable sequence length. The generated contemplation tokens are compressed representations of explicit reasoning chains, and our method can be applied to off-the-shelf decoder language models. Through experiments, we illustrate how CCoT enables additional reasoning over dense contentful representations to achieve corresponding improvements in accuracy. Moreover, the reasoning improvements can be adaptively modified on demand by controlling the number of contemplation tokens generated.
Exploring the Benefits of Tokenization of Discrete Acoustic Units
Tokenization algorithms that merge the units of a base vocabulary into larger, variable-rate units have become standard in natural language processing tasks. This idea, however, has been mostly overlooked when the vocabulary consists of phonemes or Discrete Acoustic Units (DAUs), an audio-based representation that is playing an increasingly important role due to the success of discrete language-modeling techniques. In this paper, we showcase the advantages of tokenization of phonetic units and of DAUs on three prediction tasks: grapheme-to-phoneme, grapheme-to-DAUs, and unsupervised speech generation using DAU language modeling. We demonstrate that tokenization yields significant improvements in terms of performance, as well as training and inference speed, across all three tasks. We also offer theoretical insights to provide some explanation for the superior performance observed.
Uncovering Uncertainty in Transformer Inference
We explore the Iterative Inference Hypothesis (IIH) within the context of transformer-based language models, aiming to understand how a model's latent representations are progressively refined and whether observable differences are present between correct and incorrect generations. Our findings provide empirical support for the IIH, showing that the nth token embedding in the residual stream follows a trajectory of decreasing loss. Additionally, we observe that the rate at which residual embeddings converge to a stable output representation reflects uncertainty in the token generation process. Finally, we introduce a method utilizing cross-entropy to detect this uncertainty and demonstrate its potential to distinguish between correct and incorrect token generations on a dataset of idioms.
Symlink: A New Dataset for Scientific Symbol-Description Linking
Mathematical symbols and descriptions appear in various forms across document section boundaries without explicit markup. In this paper, we present a new large-scale dataset that emphasizes extracting symbols and descriptions in scientific documents. Symlink annotates scientific papers of 5 different domains (i.e., computer science, biology, physics, mathematics, and economics). Our experiments on Symlink demonstrate the challenges of the symbol-description linking task for existing models and call for further research effort in this area. We will publicly release Symlink to facilitate future research.
Zero-Shot Detection of LLM-Generated Text using Token Cohesiveness
The increasing capability and widespread usage of large language models (LLMs) highlight the desirability of automatic detection of LLM-generated text. Zero-shot detectors, due to their training-free nature, have received considerable attention and notable success. In this paper, we identify a new feature, token cohesiveness, that is useful for zero-shot detection, and we demonstrate that LLM-generated text tends to exhibit higher token cohesiveness than human-written text. Based on this observation, we devise TOCSIN, a generic dual-channel detection paradigm that uses token cohesiveness as a plug-and-play module to improve existing zero-shot detectors. To calculate token cohesiveness, TOCSIN only requires a few rounds of random token deletion and semantic difference measurement, making it particularly suitable for a practical black-box setting where the source model used for generation is not accessible. Extensive experiments with four state-of-the-art base detectors on various datasets, source models, and evaluation settings demonstrate the effectiveness and generality of the proposed approach. Code available at: https://github.com/Shixuan-Ma/TOCSIN.
Token Alignment via Character Matching for Subword Completion
Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text autocompletion.
The ACL OCL Corpus: Advancing Open Science in Computational Linguistics
We present ACL OCL, a scholarly corpus derived from the ACL Anthology to assist Open scientific research in the Computational Linguistics domain. Integrating and enhancing the previous versions of the ACL Anthology, the ACL OCL contributes metadata, PDF files, citation graphs and additional structured full texts with sections, figures, and links to a large knowledge resource (Semantic Scholar). The ACL OCL spans seven decades, containing 73K papers, alongside 210K figures. We spotlight how ACL OCL applies to observe trends in computational linguistics. By detecting paper topics with a supervised neural model, we note that interest in "Syntax: Tagging, Chunking and Parsing" is waning and "Natural Language Generation" is resurging. Our dataset is available from HuggingFace (https://huggingface.co/datasets/WINGNUS/ACL-OCL).
Revisiting Token Dropping Strategy in Efficient BERT Pretraining
Token dropping is a recently-proposed strategy to speed up the pretraining of masked language models, such as BERT, by skipping the computation of a subset of the input tokens at several middle layers. It can effectively reduce the training time without degrading much performance on downstream tasks. However, we empirically find that token dropping is prone to a semantic loss problem and falls short in handling semantic-intense tasks. Motivated by this, we propose a simple yet effective semantic-consistent learning method (ScTD) to improve the token dropping. ScTD aims to encourage the model to learn how to preserve the semantic information in the representation space. Extensive experiments on 12 tasks show that, with the help of our ScTD, token dropping can achieve consistent and significant performance gains across all task types and model sizes. More encouragingly, ScTD saves up to 57% of pretraining time and brings up to +1.56% average improvement over the vanilla token dropping.
Give your Text Representation Models some Love: the Case for Basque
Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available.
TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics
We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask.
MANTa: Efficient Gradient-Based Tokenization for Robust End-to-End Language Modeling
Static subword tokenization algorithms have been an essential component of recent works on language modeling. However, their static nature results in important flaws that degrade the models' downstream performance and robustness. In this work, we propose MANTa, a Module for Adaptive Neural TokenizAtion. MANTa is a differentiable tokenizer trained end-to-end with the language model. The resulting system offers a trade-off between the expressiveness of byte-level models and the speed of models trained using subword tokenization. In addition, our tokenizer is highly explainable since it produces an explicit segmentation of sequences into blocks. We evaluate our pre-trained model on several English datasets from different domains as well as on synthetic noise. We find that MANTa improves robustness to character perturbations and out-of-domain data. We then show that MANTa performs comparably to other models on the general-domain GLUE benchmark. Finally, we show that it is considerably faster than strictly byte-level models.
Exploiting Twitter as Source of Large Corpora of Weakly Similar Pairs for Semantic Sentence Embeddings
Semantic sentence embeddings are usually supervisedly built minimizing distances between pairs of embeddings of sentences labelled as semantically similar by annotators. Since big labelled datasets are rare, in particular for non-English languages, and expensive, recent studies focus on unsupervised approaches that require not-paired input sentences. We instead propose a language-independent approach to build large datasets of pairs of informal texts weakly similar, without manual human effort, exploiting Twitter's intrinsic powerful signals of relatedness: replies and quotes of tweets. We use the collected pairs to train a Transformer model with triplet-like structures, and we test the generated embeddings on Twitter NLP similarity tasks (PIT and TURL) and STSb. We also introduce four new sentence ranking evaluation benchmarks of informal texts, carefully extracted from the initial collections of tweets, proving not only that our best model learns classical Semantic Textual Similarity, but also excels on tasks where pairs of sentences are not exact paraphrases. Ablation studies reveal how increasing the corpus size influences positively the results, even at 2M samples, suggesting that bigger collections of Tweets still do not contain redundant information about semantic similarities.
Rethinking Tokenization: Crafting Better Tokenizers for Large Language Models
Tokenization significantly influences language models(LMs)' performance. This paper traces the evolution of tokenizers from word-level to subword-level, analyzing how they balance tokens and types to enhance model adaptability while controlling complexity. Despite subword tokenizers like Byte Pair Encoding (BPE) overcoming many word tokenizer limitations, they encounter difficulties in handling non-Latin languages and depend heavily on extensive training data and computational resources to grasp the nuances of multiword expressions (MWEs). This article argues that tokenizers, more than mere technical tools, should drawing inspiration from the cognitive science about human language processing. This study then introduces the "Principle of Least Effort" from cognitive science, that humans naturally seek to reduce cognitive effort, and discusses the benefits of this principle for tokenizer development. Based on this principle, the paper proposes that the Less-is-Better (LiB) model could be a new approach for LLM tokenizer. The LiB model can autonomously learn an integrated vocabulary consisting of subwords, words, and MWEs, which effectively reduces both the numbers of tokens and types. Comparative evaluations show that the LiB tokenizer outperforms existing word and BPE tokenizers, presenting an innovative method for tokenizer development, and hinting at the possibility of future cognitive science-based tokenizers being more efficient.
Learning High-Quality and General-Purpose Phrase Representations
Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract
Towards Deep Semantic Analysis Of Hashtags
Hashtags are semantico-syntactic constructs used across various social networking and microblogging platforms to enable users to start a topic specific discussion or classify a post into a desired category. Segmenting and linking the entities present within the hashtags could therefore help in better understanding and extraction of information shared across the social media. However, due to lack of space delimiters in the hashtags (e.g #nsavssnowden), the segmentation of hashtags into constituent entities ("NSA" and "Edward Snowden" in this case) is not a trivial task. Most of the current state-of-the-art social media analytics systems like Sentiment Analysis and Entity Linking tend to either ignore hashtags, or treat them as a single word. In this paper, we present a context aware approach to segment and link entities in the hashtags to a knowledge base (KB) entry, based on the context within the tweet. Our approach segments and links the entities in hashtags such that the coherence between hashtag semantics and the tweet is maximized. To the best of our knowledge, no existing study addresses the issue of linking entities in hashtags for extracting semantic information. We evaluate our method on two different datasets, and demonstrate the effectiveness of our technique in improving the overall entity linking in tweets via additional semantic information provided by segmenting and linking entities in a hashtag.
Beyond Word Embeddings: Learning Entity and Concept Representations from Large Scale Knowledge Bases
Text representations using neural word embeddings have proven effective in many NLP applications. Recent researches adapt the traditional word embedding models to learn vectors of multiword expressions (concepts/entities). However, these methods are limited to textual knowledge bases (e.g., Wikipedia). In this paper, we propose a novel and simple technique for integrating the knowledge about concepts from two large scale knowledge bases of different structure (Wikipedia and Probase) in order to learn concept representations. We adapt the efficient skip-gram model to seamlessly learn from the knowledge in Wikipedia text and Probase concept graph. We evaluate our concept embedding models on two tasks: (1) analogical reasoning, where we achieve a state-of-the-art performance of 91% on semantic analogies, (2) concept categorization, where we achieve a state-of-the-art performance on two benchmark datasets achieving categorization accuracy of 100% on one and 98% on the other. Additionally, we present a case study to evaluate our model on unsupervised argument type identification for neural semantic parsing. We demonstrate the competitive accuracy of our unsupervised method and its ability to better generalize to out of vocabulary entity mentions compared to the tedious and error prone methods which depend on gazetteers and regular expressions.
Local Byte Fusion for Neural Machine Translation
Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus do not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes over-segment low-resource languages leading to a drop in translation performance. A simple alternative to subword tokenizers is byte-based methods i.e. tokenization into byte sequences using encoding schemes such as UTF-8. Byte tokens often represent inputs at a sub-character granularity i.e. one character can be represented by a sequence of multiple byte tokens. This results in byte sequences that are significantly longer than character sequences. Enforcing aggregation of local information in the lower layers can guide the model to build higher-level semantic information. We propose a Local Byte Fusion (LOBEF) method for byte-based machine translation -- utilizing byte n-gram and word boundaries -- to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional byte-based models and even over subword techniques. Further analysis also indicates that our byte-based models are parameter-efficient and can be trained faster than subword models.
Automatic WordNet Construction using Word Sense Induction through Sentence Embeddings
Language resources such as wordnets remain indispensable tools for different natural language tasks and applications. However, for low-resource languages such as Filipino, existing wordnets are old and outdated, and producing new ones may be slow and costly in terms of time and resources. In this paper, we propose an automatic method for constructing a wordnet from scratch using only an unlabeled corpus and a sentence embeddings-based language model. Using this, we produce FilWordNet, a new wordnet that supplants and improves the outdated Filipino WordNet. We evaluate our automatically-induced senses and synsets by matching them with senses from the Princeton WordNet, as well as comparing the synsets to the old Filipino WordNet. We empirically show that our method can induce existing, as well as potentially new, senses and synsets automatically without the need for human supervision.
Enhancing Long-form Text Generation in Mental Health with Task-adaptive Tokenization
We propose task-adaptive tokenization as a way to adapt the generation pipeline to the specifics of a downstream task and enhance long-form generation in mental health. Inspired by insights from cognitive science, our task-adaptive tokenizer samples variable segmentations from multiple outcomes, with sampling probabilities optimized based on task-specific data. We introduce a strategy for building a specialized vocabulary and introduce a vocabulary merging protocol that allows for the integration of task-specific tokens into the pre-trained model's tokenization step. Through extensive experiments on psychological question-answering tasks in both Chinese and English, we find that our task-adaptive tokenization approach brings a significant improvement in generation performance while using up to 60% fewer tokens. Preliminary experiments point to promising results when using our tokenization approach with very large language models.
Enriching Word Usage Graphs with Cluster Definitions
We present a dataset of word usage graphs (WUGs), where the existing WUGs for multiple languages are enriched with cluster labels functioning as sense definitions. They are generated from scratch by fine-tuned encoder-decoder language models. The conducted human evaluation has shown that these definitions match the existing clusters in WUGs better than the definitions chosen from WordNet by two baseline systems. At the same time, the method is straightforward to use and easy to extend to new languages. The resulting enriched datasets can be extremely helpful for moving on to explainable semantic change modeling.
Supervised Graph Contrastive Pretraining for Text Classification
Contrastive pretraining techniques for text classification has been largely studied in an unsupervised setting. However, oftentimes labeled data from related tasks which share label semantics with current task is available. We hypothesize that using this labeled data effectively can lead to better generalization on current task. In this paper, we propose a novel way to effectively utilize labeled data from related tasks with a graph based supervised contrastive learning approach. We formulate a token-graph by extrapolating the supervised information from examples to tokens. Our formulation results in an embedding space where tokens with high/low probability of belonging to same class are near/further-away from one another. We also develop detailed theoretical insights which serve as a motivation for our method. In our experiments with 13 datasets, we show our method outperforms pretraining schemes by 2.5% and also example-level contrastive learning based formulation by 1.8% on average. In addition, we show cross-domain effectiveness of our method in a zero-shot setting by 3.91% on average. Lastly, we also demonstrate our method can be used as a noisy teacher in a knowledge distillation setting to significantly improve performance of transformer based models in low labeled data regime by 4.57% on average.
Infusing clinical knowledge into tokenisers for language models
This study introduces a novel knowledge enhanced tokenisation mechanism, K-Tokeniser, for clinical text processing. Technically, at initialisation stage, K-Tokeniser populates global representations of tokens based on semantic types of domain concepts (such as drugs or diseases) from either a domain ontology like Unified Medical Language System or the training data of the task related corpus. At training or inference stage, sentence level localised context will be utilised for choosing the optimal global token representation to realise the semantic-based tokenisation. To avoid pretraining using the new tokeniser, an embedding initialisation approach is proposed to generate representations for new tokens. Using three transformer-based language models, a comprehensive set of experiments are conducted on four real-world datasets for evaluating K-Tokeniser in a wide range of clinical text analytics tasks including clinical concept and relation extraction, automated clinical coding, clinical phenotype identification, and clinical research article classification. Overall, our models demonstrate consistent improvements over their counterparts in all tasks. In particular, substantial improvements are observed in the automated clinical coding task with 13\% increase on Micro F_1 score. Furthermore, K-Tokeniser also shows significant capacities in facilitating quicker converge of language models. Specifically, using K-Tokeniser, the language models would only require 50\% of the training data to achieve the best performance of the baseline tokeniser using all training data in the concept extraction task and less than 20\% of the data for the automated coding task. It is worth mentioning that all these improvements require no pre-training process, making the approach generalisable.
Polyglot Semantic Parsing in APIs
Traditional approaches to semantic parsing (SP) work by training individual models for each available parallel dataset of text-meaning pairs. In this paper, we explore the idea of polyglot semantic translation, or learning semantic parsing models that are trained on multiple datasets and natural languages. In particular, we focus on translating text to code signature representations using the software component datasets of Richardson and Kuhn (2017a,b). The advantage of such models is that they can be used for parsing a wide variety of input natural languages and output programming languages, or mixed input languages, using a single unified model. To facilitate modeling of this type, we develop a novel graph-based decoding framework that achieves state-of-the-art performance on the above datasets, and apply this method to two other benchmark SP tasks.
Probabilistic Transformer: A Probabilistic Dependency Model for Contextual Word Representation
Syntactic structures used to play a vital role in natural language processing (NLP), but since the deep learning revolution, NLP has been gradually dominated by neural models that do not consider syntactic structures in their design. One vastly successful class of neural models is transformers. When used as an encoder, a transformer produces contextual representation of words in the input sentence. In this work, we propose a new model of contextual word representation, not from a neural perspective, but from a purely syntactic and probabilistic perspective. Specifically, we design a conditional random field that models discrete latent representations of all words in a sentence as well as dependency arcs between them; and we use mean field variational inference for approximate inference. Strikingly, we find that the computation graph of our model resembles transformers, with correspondences between dependencies and self-attention and between distributions over latent representations and contextual embeddings of words. Experiments show that our model performs competitively to transformers on small to medium sized datasets. We hope that our work could help bridge the gap between traditional syntactic and probabilistic approaches and cutting-edge neural approaches to NLP, and inspire more linguistically-principled neural approaches in the future.
Vision-centric Token Compression in Large Language Model
Large Language Models (LLMs) have revolutionized natural language processing, excelling in handling longer sequences. However, the inefficiency and redundancy in processing extended in-context tokens remain a challenge. Many attempts to address this rely on compressing tokens with smaller text encoders, yet we question whether text encoders are truly indispensable. Our journey leads to an unexpected discovery-a much smaller vision encoder, applied directly to sequences of text tokens, can rival text encoders on text tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small text understanding benchmarks, VIST leads to comparable results with 16% fewer FLOPs and 50% less memory usage. We further uncover significant token redundancy and devise a frequency-based masking strategy to guide the focus of the visual encoder toward the most critical tokens. Interestingly, we observe the trained visual encoder performs like a summarizer, selectively ignoring less important words such as prepositions and conjunctions. This approach delivers remarkable results, outperforming traditional text encoder-based methods by 5.7% on average over benchmarks like TriviaQA, NQ, PopQA, TREF, SST2, and SST5, setting a new standard for token efficiency in LLMs.
MWE as WSD: Solving Multiword Expression Identification with Word Sense Disambiguation
Recent approaches to word sense disambiguation (WSD) utilize encodings of the sense gloss (definition), in addition to the input context, to improve performance. In this work we demonstrate that this approach can be adapted for use in multiword expression (MWE) identification by training models which use gloss and context information to filter MWE candidates produced by a rule-based extraction pipeline. Our approach substantially improves precision, outperforming the state-of-the-art in MWE identification on the DiMSUM dataset by up to 1.9 F1 points and achieving competitive results on the PARSEME 1.1 English dataset. Our models also retain most of their WSD performance, showing that a single model can be used for both tasks. Finally, building on similar approaches using Bi-encoders for WSD, we introduce a novel Poly-encoder architecture which improves MWE identification performance.
The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations
We introduce a new test of how well language models capture meaning in children's books. Unlike standard language modelling benchmarks, it distinguishes the task of predicting syntactic function words from that of predicting lower-frequency words, which carry greater semantic content. We compare a range of state-of-the-art models, each with a different way of encoding what has been previously read. We show that models which store explicit representations of long-term contexts outperform state-of-the-art neural language models at predicting semantic content words, although this advantage is not observed for syntactic function words. Interestingly, we find that the amount of text encoded in a single memory representation is highly influential to the performance: there is a sweet-spot, not too big and not too small, between single words and full sentences that allows the most meaningful information in a text to be effectively retained and recalled. Further, the attention over such window-based memories can be trained effectively through self-supervision. We then assess the generality of this principle by applying it to the CNN QA benchmark, which involves identifying named entities in paraphrased summaries of news articles, and achieve state-of-the-art performance.
Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis
Although text-to-image (T2I) models exhibit remarkable generation capabilities, they frequently fail to accurately bind semantically related objects or attributes in the input prompts; a challenge termed semantic binding. Previous approaches either involve intensive fine-tuning of the entire T2I model or require users or large language models to specify generation layouts, adding complexity. In this paper, we define semantic binding as the task of associating a given object with its attribute, termed attribute binding, or linking it to other related sub-objects, referred to as object binding. We introduce a novel method called Token Merging (ToMe), which enhances semantic binding by aggregating relevant tokens into a single composite token. This ensures that the object, its attributes and sub-objects all share the same cross-attention map. Additionally, to address potential confusion among main objects with complex textual prompts, we propose end token substitution as a complementary strategy. To further refine our approach in the initial stages of T2I generation, where layouts are determined, we incorporate two auxiliary losses, an entropy loss and a semantic binding loss, to iteratively update the composite token to improve the generation integrity. We conducted extensive experiments to validate the effectiveness of ToMe, comparing it against various existing methods on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our method is particularly effective in complex scenarios that involve multiple objects and attributes, which previous methods often fail to address. The code will be publicly available at https://github.com/hutaihang/ToMe.
A Decade of Knowledge Graphs in Natural Language Processing: A Survey
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Extracting Mathematical Concepts with Large Language Models
We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it.
DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models
Transformer-based Mixture-of-Experts (MoE) models have been driving several recent technological advancements in Natural Language Processing (NLP). These MoE models adopt a router mechanism to determine which experts to activate for routing input tokens. However, existing router mechanisms allocate a fixed number of experts to each token, which neglects the varying importance of different input tokens. In this study, we propose a novel dynamic router mechanism that Dynamically Allocates a variable number of experts for Mixture-of-Experts (DA-MoE) models based on an effective token importance measure. First, we show that the Transformer attention mechanism provides a natural and effective way of calculating token importance. Second, we propose a dynamic router mechanism that effectively decides the optimal number of experts (K) and allocates the top-K experts for each input token. Third, comprehensive experiments on several benchmark datasets demonstrate that our DA-MoE approach consistently outperforms the state-of-the-art Transformer based MoE model on the popular GLUE benchmark.
Integrating Multi-scale Contextualized Information for Byte-based Neural Machine Translation
Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified once it is learned, making it hard to adapt to new words. Second, in multilingual translation, the imbalance in data volumes across different languages spreads to the vocabulary, exacerbating translations involving low-resource languages. While byte-based tokenization addresses these issues, byte-based models struggle with the low information density inherent in UTF-8 byte sequences. Previous works enhance token semantics through local contextualization but fail to select an appropriate contextualizing scope based on the input. Consequently, we propose the Multi-Scale Contextualization (MSC) method, which learns contextualized information of varying scales across different hidden state dimensions. It then leverages the attention module to dynamically integrate the multi-scale contextualized information. Experiments show that MSC significantly outperforms subword-based and other byte-based methods in both multilingual and out-of-domain scenarios. Code can be found in https://github.com/ictnlp/Multiscale-Contextualization.
PAWS: Paraphrase Adversaries from Word Scrambling
Existing paraphrase identification datasets lack sentence pairs that have high lexical overlap without being paraphrases. Models trained on such data fail to distinguish pairs like flights from New York to Florida and flights from Florida to New York. This paper introduces PAWS (Paraphrase Adversaries from Word Scrambling), a new dataset with 108,463 well-formed paraphrase and non-paraphrase pairs with high lexical overlap. Challenging pairs are generated by controlled word swapping and back translation, followed by fluency and paraphrase judgments by human raters. State-of-the-art models trained on existing datasets have dismal performance on PAWS (<40% accuracy); however, including PAWS training data for these models improves their accuracy to 85% while maintaining performance on existing tasks. In contrast, models that do not capture non-local contextual information fail even with PAWS training examples. As such, PAWS provides an effective instrument for driving further progress on models that better exploit structure, context, and pairwise comparisons.
Let's Think Dot by Dot: Hidden Computation in Transformer Language Models
Chain-of-thought responses from language models improve performance across most benchmarks. However, it remains unclear to what extent these performance gains can be attributed to human-like task decomposition or simply the greater computation that additional tokens allow. We show that transformers can use meaningless filler tokens (e.g., '......') in place of a chain of thought to solve two hard algorithmic tasks they could not solve when responding without intermediate tokens. However, we find empirically that learning to use filler tokens is difficult and requires specific, dense supervision to converge. We also provide a theoretical characterization of the class of problems where filler tokens are useful in terms of the quantifier depth of a first-order formula. For problems satisfying this characterization, chain-of-thought tokens need not provide information about the intermediate computational steps involved in multi-token computations. In summary, our results show that additional tokens can provide computational benefits independent of token choice. The fact that intermediate tokens can act as filler tokens raises concerns about large language models engaging in unauditable, hidden computations that are increasingly detached from the observed chain-of-thought tokens.
TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction
Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.
Neural Architectures for Named Entity Recognition
State-of-the-art named entity recognition systems rely heavily on hand-crafted features and domain-specific knowledge in order to learn effectively from the small, supervised training corpora that are available. In this paper, we introduce two new neural architectures---one based on bidirectional LSTMs and conditional random fields, and the other that constructs and labels segments using a transition-based approach inspired by shift-reduce parsers. Our models rely on two sources of information about words: character-based word representations learned from the supervised corpus and unsupervised word representations learned from unannotated corpora. Our models obtain state-of-the-art performance in NER in four languages without resorting to any language-specific knowledge or resources such as gazetteers.
SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing
This paper describes SentencePiece, a language-independent subword tokenizer and detokenizer designed for Neural-based text processing, including Neural Machine Translation. It provides open-source C++ and Python implementations for subword units. While existing subword segmentation tools assume that the input is pre-tokenized into word sequences, SentencePiece can train subword models directly from raw sentences, which allows us to make a purely end-to-end and language independent system. We perform a validation experiment of NMT on English-Japanese machine translation, and find that it is possible to achieve comparable accuracy to direct subword training from raw sentences. We also compare the performance of subword training and segmentation with various configurations. SentencePiece is available under the Apache 2 license at https://github.com/google/sentencepiece.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
SLIM: Sparsified Late Interaction for Multi-Vector Retrieval with Inverted Indexes
This paper introduces Sparsified Late Interaction for Multi-vector (SLIM) retrieval with inverted indexes. Multi-vector retrieval methods have demonstrated their effectiveness on various retrieval datasets, and among them, ColBERT is the most established method based on the late interaction of contextualized token embeddings of pre-trained language models. However, efficient ColBERT implementations require complex engineering and cannot take advantage of off-the-shelf search libraries, impeding their practical use. To address this issue, SLIM first maps each contextualized token vector to a sparse, high-dimensional lexical space before performing late interaction between these sparse token embeddings. We then introduce an efficient two-stage retrieval architecture that includes inverted index retrieval followed by a score refinement module to approximate the sparsified late interaction, which is fully compatible with off-the-shelf lexical search libraries such as Lucene. SLIM achieves competitive accuracy on MS MARCO Passages and BEIR compared to ColBERT while being much smaller and faster on CPUs. To our knowledge, we are the first to explore using sparse token representations for multi-vector retrieval. Source code and data are integrated into the Pyserini IR toolkit.
DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling
For sequence models with large vocabularies, a majority of network parameters lie in the input and output layers. In this work, we describe a new method, DeFINE, for learning deep token representations efficiently. Our architecture uses a hierarchical structure with novel skip-connections which allows for the use of low dimensional input and output layers, reducing total parameters and training time while delivering similar or better performance versus existing methods. DeFINE can be incorporated easily in new or existing sequence models. Compared to state-of-the-art methods including adaptive input representations, this technique results in a 6% to 20% drop in perplexity. On WikiText-103, DeFINE reduces the total parameters of Transformer-XL by half with minimal impact on performance. On the Penn Treebank, DeFINE improves AWD-LSTM by 4 points with a 17% reduction in parameters, achieving comparable performance to state-of-the-art methods with fewer parameters. For machine translation, DeFINE improves the efficiency of the Transformer model by about 1.4 times while delivering similar performance.
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors.
What do Language Models know about word senses? Zero-Shot WSD with Language Models and Domain Inventories
Language Models are the core for almost any Natural Language Processing system nowadays. One of their particularities is their contextualized representations, a game changer feature when a disambiguation between word senses is necessary. In this paper we aim to explore to what extent language models are capable of discerning among senses at inference time. We performed this analysis by prompting commonly used Languages Models such as BERT or RoBERTa to perform the task of Word Sense Disambiguation (WSD). We leverage the relation between word senses and domains, and cast WSD as a textual entailment problem, where the different hypothesis refer to the domains of the word senses. Our results show that this approach is indeed effective, close to supervised systems.
Evaluating Pixel Language Models on Non-Standardized Languages
We explore the potential of pixel-based models for transfer learning from standard languages to dialects. These models convert text into images that are divided into patches, enabling a continuous vocabulary representation that proves especially useful for out-of-vocabulary words common in dialectal data. Using German as a case study, we compare the performance of pixel-based models to token-based models across various syntactic and semantic tasks. Our results show that pixel-based models outperform token-based models in part-of-speech tagging, dependency parsing and intent detection for zero-shot dialect evaluation by up to 26 percentage points in some scenarios, though not in Standard German. However, pixel-based models fall short in topic classification. These findings emphasize the potential of pixel-based models for handling dialectal data, though further research should be conducted to assess their effectiveness in various linguistic contexts.
TaxoLLaMA: WordNet-based Model for Solving Multiple Lexical Sematic Tasks
In this paper, we explore the capabilities of LLMs in capturing lexical-semantic knowledge from WordNet on the example of the LLaMA-2-7b model and test it on multiple lexical semantic tasks. As the outcome of our experiments, we present TaxoLLaMA, the everything-in-one model, lightweight due to 4-bit quantization and LoRA. It achieves 11 SotA results, 4 top-2 results out of 16 tasks for the Taxonomy Enrichment, Hypernym Discovery, Taxonomy Construction, and Lexical Entailment tasks. Moreover, it demonstrates very strong zero-shot performance on Lexical Entailment and Taxonomy Construction with no fine-tuning. We also explore its hidden multilingual and domain adaptation capabilities with a little tuning or few-shot learning. All datasets, code, and model are available online at https://github.com/VityaVitalich/TaxoLLaMA
The first step is the hardest: Pitfalls of Representing and Tokenizing Temporal Data for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable generalization across diverse tasks, leading individuals to increasingly use them as personal assistants and universal computing engines. Nevertheless, a notable obstacle emerges when feeding numerical/temporal data into these models, such as data sourced from wearables or electronic health records. LLMs employ tokenizers in their input that break down text into smaller units. However, tokenizers are not designed to represent numerical values and might struggle to understand repetitive patterns and context, treating consecutive values as separate tokens and disregarding their temporal relationships. Here, we discuss recent works that employ LLMs for human-centric tasks such as in mobile health sensing and present a case study showing that popular LLMs tokenize temporal data incorrectly. To address that, we highlight potential solutions such as prompt tuning with lightweight embedding layers as well as multimodal adapters, that can help bridge this "modality gap". While the capability of language models to generalize to other modalities with minimal or no finetuning is exciting, this paper underscores the fact that their outputs cannot be meaningful if they stumble over input nuances.
Efficient and Interpretable Information Retrieval for Product Question Answering with Heterogeneous Data
Expansion-enhanced sparse lexical representation improves information retrieval (IR) by minimizing vocabulary mismatch problems during lexical matching. In this paper, we explore the potential of jointly learning dense semantic representation and combining it with the lexical one for ranking candidate information. We present a hybrid information retrieval mechanism that maximizes lexical and semantic matching while minimizing their shortcomings. Our architecture consists of dual hybrid encoders that independently encode queries and information elements. Each encoder jointly learns a dense semantic representation and a sparse lexical representation augmented by a learnable term expansion of the corresponding text through contrastive learning. We demonstrate the efficacy of our model in single-stage ranking of a benchmark product question-answering dataset containing the typical heterogeneous information available on online product pages. Our evaluation demonstrates that our hybrid approach outperforms independently trained retrievers by 10.95% (sparse) and 2.7% (dense) in MRR@5 score. Moreover, our model offers better interpretability and performs comparably to state-of-the-art cross encoders while reducing response time by 30% (latency) and cutting computational load by approximately 38% (FLOPs).
ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations
We describe PARANMT-50M, a dataset of more than 50 million English-English sentential paraphrase pairs. We generated the pairs automatically by using neural machine translation to translate the non-English side of a large parallel corpus, following Wieting et al. (2017). Our hope is that ParaNMT-50M can be a valuable resource for paraphrase generation and can provide a rich source of semantic knowledge to improve downstream natural language understanding tasks. To show its utility, we use ParaNMT-50M to train paraphrastic sentence embeddings that outperform all supervised systems on every SemEval semantic textual similarity competition, in addition to showing how it can be used for paraphrase generation.
A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency
Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions).
WangchanBERTa: Pretraining transformer-based Thai Language Models
Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts.
A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics
The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval.
I Bet You Did Not Mean That: Testing Semantic Importance via Betting
Recent works have extended notions of feature importance to semantic concepts that are inherently interpretable to the users interacting with a black-box predictive model. Yet, precise statistical guarantees, such as false positive rate control, are needed to communicate findings transparently and to avoid unintended consequences in real-world scenarios. In this paper, we formalize the global (i.e., over a population) and local (i.e., for a sample) statistical importance of semantic concepts for the predictions of opaque models, by means of conditional independence, which allows for rigorous testing. We use recent ideas of sequential kernelized testing (SKIT) to induce a rank of importance across concepts, and showcase the effectiveness and flexibility of our framework on synthetic datasets as well as on image classification tasks using vision-language models such as CLIP.
Unsupervised Dialogue Topic Segmentation in Hyperdimensional Space
We present HyperSeg, a hyperdimensional computing (HDC) approach to unsupervised dialogue topic segmentation. HDC is a class of vector symbolic architectures that leverages the probabilistic orthogonality of randomly drawn vectors at extremely high dimensions (typically over 10,000). HDC generates rich token representations through its low-cost initialization of many unrelated vectors. This is especially beneficial in topic segmentation, which often operates as a resource-constrained pre-processing step for downstream transcript understanding tasks. HyperSeg outperforms the current state-of-the-art in 4 out of 5 segmentation benchmarks -- even when baselines are given partial access to the ground truth -- and is 10 times faster on average. We show that HyperSeg also improves downstream summarization accuracy. With HyperSeg, we demonstrate the viability of HDC in a major language task. We open-source HyperSeg to provide a strong baseline for unsupervised topic segmentation.
Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers
Historical languages present unique challenges to the NLP community, with one prominent hurdle being the limited resources available in their closed corpora. This work describes our submission to the constrained subtask of the SIGTYP 2024 shared task, focusing on PoS tagging, morphological tagging, and lemmatization for 13 historical languages. For PoS and morphological tagging we adapt a hierarchical tokenization method from Sun et al. (2023) and combine it with the advantages of the DeBERTa-V3 architecture, enabling our models to efficiently learn from every character in the training data. We also demonstrate the effectiveness of character-level T5 models on the lemmatization task. Pre-trained from scratch with limited data, our models achieved first place in the constrained subtask, nearly reaching the performance levels of the unconstrained task's winner. Our code is available at https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers
Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved With Text
In-context vision and language models like Flamingo support arbitrarily interleaved sequences of images and text as input. This format not only enables few-shot learning via interleaving independent supervised (image, text) examples, but also, more complex prompts involving interaction between images, e.g., "What do image A and image B have in common?" To support this interface, pretraining occurs over web corpora that similarly contain interleaved images+text. To date, however, large-scale data of this form have not been publicly available. We release Multimodal C4 (mmc4), an augmentation of the popular text-only c4 corpus with images interleaved. We use a linear assignment algorithm to place images into longer bodies of text using CLIP features, a process that we show outperforms alternatives. mmc4 spans everyday topics like cooking, travel, technology, etc. A manual inspection of a random sample of documents shows that a vast majority (90%) of images are topically relevant, and that linear assignment frequently selects individual sentences specifically well-aligned with each image (78%). After filtering NSFW images, ads, etc., the corpus contains 103M documents containing 585M images interleaved with 43B English tokens.
Sense Vocabulary Compression through the Semantic Knowledge of WordNet for Neural Word Sense Disambiguation
In this article, we tackle the issue of the limited quantity of manually sense annotated corpora for the task of word sense disambiguation, by exploiting the semantic relationships between senses such as synonymy, hypernymy and hyponymy, in order to compress the sense vocabulary of Princeton WordNet, and thus reduce the number of different sense tags that must be observed to disambiguate all words of the lexical database. We propose two different methods that greatly reduces the size of neural WSD models, with the benefit of improving their coverage without additional training data, and without impacting their precision. In addition to our method, we present a WSD system which relies on pre-trained BERT word vectors in order to achieve results that significantly outperform the state of the art on all WSD evaluation tasks.
Toward a Theory of Tokenization in LLMs
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple k^{th}-order Markov processes for k > 1, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from k^{th}-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List
Classical information retrieval systems such as BM25 rely on exact lexical match and carry out search efficiently with inverted list index. Recent neural IR models shifts towards soft semantic matching all query document terms, but they lose the computation efficiency of exact match systems. This paper presents COIL, a contextualized exact match retrieval architecture that brings semantic lexical matching. COIL scoring is based on overlapping query document tokens' contextualized representations. The new architecture stores contextualized token representations in inverted lists, bringing together the efficiency of exact match and the representation power of deep language models. Our experimental results show COIL outperforms classical lexical retrievers and state-of-the-art deep LM retrievers with similar or smaller latency.
Pre-trained Models for Natural Language Processing: A Survey
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that popular encoding schemes, such as maximum prefix encoding (MPE) and byte-pair-encoding (BPE), induce a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, for each encoding scheme above, we propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data. Our methods do not require finetuning the model, and the complexity, defined as the number of model runs, scales linearly with the sequence length in the case of MPE. As a result, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
Fractal Patterns May Unravel the Intelligence in Next-Token Prediction
We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H=0.70. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can lead to a comprehension of the structure of text at multiple levels of granularity, from words and clauses to broader contexts and intents. We also demonstrate that fractal parameters improve upon perplexity-based bits-per-byte (BPB) in predicting downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.
DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew
We present DictaBERT, a new state-of-the-art pre-trained BERT model for modern Hebrew, outperforming existing models on most benchmarks. Additionally, we release two fine-tuned versions of the model, designed to perform two specific foundational tasks in the analysis of Hebrew texts: prefix segmentation and morphological tagging. These fine-tuned models allow any developer to perform prefix segmentation and morphological tagging of a Hebrew sentence with a single call to a HuggingFace model, without the need to integrate any additional libraries or code. In this paper we describe the details of the training as well and the results on the different benchmarks. We release the models to the community, along with sample code demonstrating their use. We release these models as part of our goal to help further research and development in Hebrew NLP.
dMel: Speech Tokenization made Simple
Large language models have revolutionized natural language processing by leveraging self-supervised pretraining on vast textual data. Inspired by this success, researchers have investigated complicated speech tokenization methods to discretize continuous speech signals so that language modeling techniques can be applied to speech data. However, existing approaches either model semantic tokens, potentially losing acoustic information, or model acoustic tokens, risking the loss of semantic information. Having multiple token types also complicates the architecture and requires additional pretraining. Here we show that discretizing mel-filterbank channels into discrete intensity bins produces a simple representation (dMel), that performs better than other existing speech tokenization methods. Using a transformer decoder-only architecture for speech-text modeling, we comprehensively evaluate different speech tokenization methods on speech recognition (ASR), speech synthesis (TTS). Our results demonstrate the effectiveness of dMel in achieving high performance on both tasks within a unified framework, paving the way for efficient and effective joint modeling of speech and text.
Enriching Word Vectors with Subword Information
Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks.
A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task Learning
Subword tokenization is a commonly used input pre-processing step in most recent NLP models. However, it limits the models' ability to leverage end-to-end task learning. Its frequency-based vocabulary creation compromises tokenization in low-resource languages, leading models to produce suboptimal representations. Additionally, the dependency on a fixed vocabulary limits the subword models' adaptability across languages and domains. In this work, we propose a vocabulary-free neural tokenizer by distilling segmentation information from heuristic-based subword tokenization. We pre-train our character-based tokenizer by processing unique words from multilingual corpus, thereby extensively increasing word diversity across languages. Unlike the predefined and fixed vocabularies in subword methods, our tokenizer allows end-to-end task learning, resulting in optimal task-specific tokenization. The experimental results show that replacing the subword tokenizer with our neural tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks, with larger gains in low-resource languages. Additionally, our neural tokenizer exhibits a robust performance on downstream tasks when adversarial noise is present (typos and misspelling), further increasing the initial improvements over statistical subword tokenizers.
A Dataset of German Legal Documents for Named Entity Recognition
We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx.
A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions
This paper presents a comprehensive study of Retrieval-Augmented Generation (RAG), tracing its evolution from foundational concepts to the current state of the art. RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs, addressing key limitations of LLMs. The study explores the basic architecture of RAG, focusing on how retrieval and generation are integrated to handle knowledge-intensive tasks. A detailed review of the significant technological advancements in RAG is provided, including key innovations in retrieval-augmented language models and applications across various domains such as question-answering, summarization, and knowledge-based tasks. Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency. Furthermore, the paper examines ongoing challenges such as scalability, bias, and ethical concerns in deployment. Future research directions are proposed, focusing on improving the robustness of RAG models, expanding the scope of application of RAG models, and addressing societal implications. This survey aims to serve as a foundational resource for researchers and practitioners in understanding the potential of RAG and its trajectory in natural language processing.
The Code2Text Challenge: Text Generation in Source Code Libraries
We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets.
ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features, which serve as the initial tokens. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Experiments on public datasets demonstrate that ActionPiece consistently outperforms existing action tokenization methods, improving NDCG@10 by 6.00% to 12.82%.
TokenVerse: Versatile Multi-concept Personalization in Token Modulation Space
We present TokenVerse -- a method for multi-concept personalization, leveraging a pre-trained text-to-image diffusion model. Our framework can disentangle complex visual elements and attributes from as little as a single image, while enabling seamless plug-and-play generation of combinations of concepts extracted from multiple images. As opposed to existing works, TokenVerse can handle multiple images with multiple concepts each, and supports a wide-range of concepts, including objects, accessories, materials, pose, and lighting. Our work exploits a DiT-based text-to-image model, in which the input text affects the generation through both attention and modulation (shift and scale). We observe that the modulation space is semantic and enables localized control over complex concepts. Building on this insight, we devise an optimization-based framework that takes as input an image and a text description, and finds for each word a distinct direction in the modulation space. These directions can then be used to generate new images that combine the learned concepts in a desired configuration. We demonstrate the effectiveness of TokenVerse in challenging personalization settings, and showcase its advantages over existing methods. project's webpage in https://token-verse.github.io/
How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?
By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading contents. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. Resources are available at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information.
Describing a Knowledge Base
We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) slot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new table position self-attention to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score.
LMentry: A Language Model Benchmark of Elementary Language Tasks
As the performance of large language models rapidly improves, benchmarks are getting larger and more complex as well. We present LMentry, a benchmark that avoids this "arms race" by focusing on a compact set of tasks that are trivial to humans, e.g. writing a sentence containing a specific word, identifying which words in a list belong to a specific category, or choosing which of two words is longer. LMentry is specifically designed to provide quick and interpretable insights into the capabilities and robustness of large language models. Our experiments reveal a wide variety of failure cases that, while immediately obvious to humans, pose a considerable challenge for large language models, including OpenAI's latest 175B-parameter instruction-tuned model, TextDavinci002. LMentry complements contemporary evaluation approaches of large language models, providing a quick, automatic, and easy-to-run "unit test", without resorting to large benchmark suites of complex tasks.
LLM Pretraining with Continuous Concepts
Next token prediction has been the standard training objective used in large language model pretraining. Representations are learned as a result of optimizing for token-level perplexity. We propose Continuous Concept Mixing (CoCoMix), a novel pretraining framework that combines discrete next token prediction with continuous concepts. Specifically, CoCoMix predicts continuous concepts learned from a pretrained sparse autoencoder and mixes them into the model's hidden state by interleaving with token hidden representations. Through experiments on multiple benchmarks, including language modeling and downstream reasoning tasks, we show that CoCoMix is more sample efficient and consistently outperforms standard next token prediction, knowledge distillation and inserting pause tokens. We find that combining both concept learning and interleaving in an end-to-end framework is critical to performance gains. Furthermore, CoCoMix enhances interpretability and steerability by allowing direct inspection and modification of the predicted concept, offering a transparent way to guide the model's internal reasoning process.
NS3: Neuro-Symbolic Semantic Code Search
Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries.
Zero and Few-shot Semantic Parsing with Ambiguous Inputs
Despite the frequent challenges posed by ambiguity when representing meaning via natural language, it is often ignored or deliberately removed in tasks mapping language to formally-designed representations, which generally assume a one-to-one mapping between linguistic and formal representations. We attempt to address this shortcoming by introducing AmP, a framework, dataset, and challenge for translating ambiguous natural language to formal representations like logic and code. We define templates and generate data for five well-documented linguistic ambiguities. Using AmP, we investigate how several few-shot text-to-code systems handle ambiguity, introducing three new metrics. We find that large pre-trained models perform poorly at capturing the distribution of possible meanings without deliberate instruction. However, models are able to capture the distribution well when ambiguity is attested in their inputs. These results motivate a call for including ambiguity explicitly in datasets and promote considering the distribution of possible outputs when evaluating systems. Data and code: https://github.com/esteng/ambiguous_parsing
Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs
Large language models have demonstrated exceptional capability in natural language understanding and generation. However, their generation speed is limited by the inherently sequential nature of their decoding process, posing challenges for real-time applications. This paper introduces Lexical Unit Decoding (LUD), a novel decoding methodology implemented in a data-driven manner, accelerating the decoding process without sacrificing output quality. The core of our approach is the observation that a pre-trained language model can confidently predict multiple contiguous tokens, forming the basis for a lexical unit, in which these contiguous tokens could be decoded in parallel. Extensive experiments validate that our method substantially reduces decoding time while maintaining generation quality, i.e., 33\% speed up on natural language generation with no quality loss, and 30\% speed up on code generation with a negligible quality loss of 3\%. Distinctively, LUD requires no auxiliary models and does not require changes to existing architectures. It can also be integrated with other decoding acceleration methods, thus achieving an even more pronounced inference efficiency boost. We posit that the foundational principles of LUD could define a new decoding paradigm for future language models, enhancing their applicability for a broader spectrum of applications. All codes are be publicly available at https://github.com/tjunlp-lab/Lexical-Unit-Decoding-LUD-. Keywords: Parallel Decoding, Lexical Unit Decoding, Large Language Model
A Survey of Data Augmentation Approaches for NLP
Data augmentation has recently seen increased interest in NLP due to more work in low-resource domains, new tasks, and the popularity of large-scale neural networks that require large amounts of training data. Despite this recent upsurge, this area is still relatively underexplored, perhaps due to the challenges posed by the discrete nature of language data. In this paper, we present a comprehensive and unifying survey of data augmentation for NLP by summarizing the literature in a structured manner. We first introduce and motivate data augmentation for NLP, and then discuss major methodologically representative approaches. Next, we highlight techniques that are used for popular NLP applications and tasks. We conclude by outlining current challenges and directions for future research. Overall, our paper aims to clarify the landscape of existing literature in data augmentation for NLP and motivate additional work in this area. We also present a GitHub repository with a paper list that will be continuously updated at https://github.com/styfeng/DataAug4NLP
Compositional Generalization for Natural Language Interfaces to Web APIs
This paper presents Okapi, a new dataset for Natural Language to executable web Application Programming Interfaces (NL2API). This dataset is in English and contains 22,508 questions and 9,019 unique API calls, covering three domains. We define new compositional generalization tasks for NL2API which explore the models' ability to extrapolate from simple API calls in the training set to new and more complex API calls in the inference phase. Also, the models are required to generate API calls that execute correctly as opposed to the existing approaches which evaluate queries with placeholder values. Our dataset is different than most of the existing compositional semantic parsing datasets because it is a non-synthetic dataset studying the compositional generalization in a low-resource setting. Okapi is a step towards creating realistic datasets and benchmarks for studying compositional generalization alongside the existing datasets and tasks. We report the generalization capabilities of sequence-to-sequence baseline models trained on a variety of the SCAN and Okapi datasets tasks. The best model achieves 15\% exact match accuracy when generalizing from simple API calls to more complex API calls. This highlights some challenges for future research. Okapi dataset and tasks are publicly available at https://aka.ms/nl2api/data.
D2LLM: Decomposed and Distilled Large Language Models for Semantic Search
The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs-Decomposed and Distilled LLMs for semantic search-that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%. The source code is available at https://github.com/codefuse-ai/D2LLM.
S^3 -- Semantic Signal Separation
Topic models are useful tools for discovering latent semantic structures in large textual corpora. Topic modeling historically relied on bag-of-words representations of language. This approach makes models sensitive to the presence of stop words and noise, and does not utilize potentially useful contextual information. Recent efforts have been oriented at incorporating contextual neural representations in topic modeling and have been shown to outperform classical topic models. These approaches are, however, typically slow, volatile and still require preprocessing for optimal results. We present Semantic Signal Separation (S^3), a theory-driven topic modeling approach in neural embedding spaces. S^3 conceptualizes topics as independent axes of semantic space, and uncovers these with blind-source separation. Our approach provides the most diverse, highly coherent topics, requires no preprocessing, and is demonstrated to be the fastest contextually sensitive topic model to date. We offer an implementation of S^3, among other approaches, in the Turftopic Python package.
Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References
Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model's hypotheses. To address this issue, this paper presents a simple and effective method, named Div-Ref, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to diversify the expression of a single reference into multiple high-quality ones to cover the semantic space of the reference sentence as much as possible. We conduct comprehensive experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation. This idea is compatible with recent LLM-based evaluation which can similarly derive advantages from incorporating multiple references. We strongly encourage future generation benchmarks to include more references, even if they are generated by LLMs, which is once for all. We release all the code and data at https://github.com/RUCAIBox/Div-Ref to facilitate research.
KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems
Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation only relies on exact matching with human references and disregards reference-free attributes. This scheme fails to recognize systems that generate keyphrases that are semantically equivalent to the references or keyphrases that have practical utility. To better understand the strengths and weaknesses of different keyphrase systems, we propose a comprehensive evaluation framework consisting of six critical dimensions: naturalness, faithfulness, saliency, coverage, diversity, and utility. For each dimension, we discuss the desiderata and design semantic-based metrics that align with the evaluation objectives. Rigorous meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously used metrics. Using this framework, we re-evaluate 18 keyphrase systems and further discover that (1) the best model differs in different dimensions, with pre-trained language models achieving the best in most dimensions; (2) the utility in downstream tasks does not always correlate well with reference-based metrics; and (3) large language models exhibit a strong performance in reference-free evaluation.
Detecting Unassimilated Borrowings in Spanish: An Annotated Corpus and Approaches to Modeling
This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings -- words from one language that are introduced into another without orthographic adaptation -- and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformer-based embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model.
Towards Human Understanding of Paraphrase Types in ChatGPT
Paraphrases represent a human's intuitive ability to understand expressions presented in various different ways. Current paraphrase evaluations of language models primarily use binary approaches, offering limited interpretability of specific text changes. Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes and offer a granular view of the flexibility in linguistic expression (e.g., a shift in syntax or vocabulary used). In this study, we assess the human preferences towards ChatGPT in generating English paraphrases with ten APTs and five prompting techniques. We introduce APTY (Atomic Paraphrase TYpes), a dataset of 500 sentence-level and word-level annotations by 15 annotators. The dataset also provides a human preference ranking of paraphrases with different types that can be used to fine-tune models with RLHF and DPO methods. Our results reveal that ChatGPT can generate simple APTs, such as additions and deletions, but struggle with complex structures (e.g., subordination changes). This study contributes to understanding which aspects of paraphrasing language models have already succeeded at understanding and what remains elusive. In addition, our curated datasets can be used to develop language models with specific linguistic capabilities.
Contextual Position Encoding: Learning to Count What's Important
The attention mechanism is a critical component of Large Language Models (LLMs) that allows tokens in a sequence to interact with each other, but is order-invariant. Incorporating position encoding (PE) makes it possible to address by position, such as attending to the i-th token. However, current PE methods use token counts to derive position, and thus cannot generalize to higher levels of abstraction, such as attending to the i-th sentence. In this paper, we propose a new position encoding method, Contextual Position Encoding (CoPE), that allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This allows more general position addressing such as attending to the i-th particular word, noun, or sentence. We show that CoPE can solve the selective copy, counting and Flip-Flop tasks where popular position embeddings fail, and improves perplexity on language modeling and coding tasks.