Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEigen Attention: Attention in Low-Rank Space for KV Cache Compression
Large language models (LLMs) represent a groundbreaking advancement in the domain of natural language processing due to their impressive reasoning abilities. Recently, there has been considerable interest in increasing the context lengths for these models to enhance their applicability to complex tasks. However, at long context lengths and large batch sizes, the key-value (KV) cache, which stores the attention keys and values, emerges as the new bottleneck in memory usage during inference. To address this, we propose Eigen Attention, which performs the attention operation in a low-rank space, thereby reducing the KV cache memory overhead. Our proposed approach is orthogonal to existing KV cache compression techniques and can be used synergistically with them. Through extensive experiments over OPT, MPT, and Llama model families, we demonstrate that Eigen Attention results in up to 40% reduction in KV cache sizes and up to 60% reduction in attention operation latency with minimal drop in performance.
Eigen-CAM: Class Activation Map using Principal Components
Deep neural networks are ubiquitous due to the ease of developing models and their influence on other domains. At the heart of this progress is convolutional neural networks (CNNs) that are capable of learning representations or features given a set of data. Making sense of such complex models (i.e., millions of parameters and hundreds of layers) remains challenging for developers as well as the end-users. This is partially due to the lack of tools or interfaces capable of providing interpretability and transparency. A growing body of literature, for example, class activation map (CAM), focuses on making sense of what a model learns from the data or why it behaves poorly in a given task. This paper builds on previous ideas to cope with the increasing demand for interpretable, robust, and transparent models. Our approach provides a simpler and intuitive (or familiar) way of generating CAM. The proposed Eigen-CAM computes and visualizes the principle components of the learned features/representations from the convolutional layers. Empirical studies were performed to compare the Eigen-CAM with the state-of-the-art methods (such as Grad-CAM, Grad-CAM++, CNN-fixations) by evaluating on benchmark datasets such as weakly-supervised localization and localizing objects in the presence of adversarial noise. Eigen-CAM was found to be robust against classification errors made by fully connected layers in CNNs, does not rely on the backpropagation of gradients, class relevance score, maximum activation locations, or any other form of weighting features. In addition, it works with all CNN models without the need to modify layers or retrain models. Empirical results show up to 12% improvement over the best method among the methods compared on weakly supervised object localization.
Optimum Risk Portfolio and Eigen Portfolio: A Comparative Analysis Using Selected Stocks from the Indian Stock Market
Designing an optimum portfolio that allocates weights to its constituent stocks in a way that achieves the best trade-off between the return and the risk is a challenging research problem. The classical mean-variance theory of portfolio proposed by Markowitz is found to perform sub-optimally on the real-world stock market data since the error in estimation for the expected returns adversely affects the performance of the portfolio. This paper presents three approaches to portfolio design, viz, the minimum risk portfolio, the optimum risk portfolio, and the Eigen portfolio, for seven important sectors of the Indian stock market. The daily historical prices of the stocks are scraped from Yahoo Finance website from January 1, 2016, to December 31, 2020. Three portfolios are built for each of the seven sectors chosen for this study, and the portfolios are analyzed on the training data based on several metrics such as annualized return and risk, weights assigned to the constituent stocks, the correlation heatmaps, and the principal components of the Eigen portfolios. Finally, the optimum risk portfolios and the Eigen portfolios for all sectors are tested on their return over a period of a six-month period. The performances of the portfolios are compared and the portfolio yielding the higher return for each sector is identified.
A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen Portfolio on the NIFTY 50 Stocks
Portfolio optimization has been an area of research that has attracted a lot of attention from researchers and financial analysts. Designing an optimum portfolio is a complex task since it not only involves accurate forecasting of future stock returns and risks but also needs to optimize them. This paper presents a systematic approach to portfolio optimization using two approaches, the hierarchical risk parity algorithm and the Eigen portfolio on seven sectors of the Indian stock market. The portfolios are built following the two approaches to historical stock prices from Jan 1, 2016, to Dec 31, 2020. The portfolio performances are evaluated on the test data from Jan 1, 2021, to Nov 1, 2021. The backtesting results of the portfolios indicate that the performance of the HRP portfolio is superior to that of its Eigen counterpart on both training and test data for the majority of the sectors studied.
Linear algebra with transformers
Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true.
On the Stability of Expressive Positional Encodings for Graph Neural Networks
Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) Non-uniqueness: there are many different eigendecompositions of the same Laplacian, and (2) Instability: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.
Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation
Unsupervised semantic segmentation is a long-standing challenge in computer vision with great significance. Spectral clustering is a theoretically grounded solution to it where the spectral embeddings for pixels are computed to construct distinct clusters. Despite recent progress in enhancing spectral clustering with powerful pre-trained models, current approaches still suffer from inefficiencies in spectral decomposition and inflexibility in applying them to the test data. This work addresses these issues by casting spectral clustering as a parametric approach that employs neural network-based eigenfunctions to produce spectral embeddings. The outputs of the neural eigenfunctions are further restricted to discrete vectors that indicate clustering assignments directly. As a result, an end-to-end NN-based paradigm of spectral clustering emerges. In practice, the neural eigenfunctions are lightweight and take the features from pre-trained models as inputs, improving training efficiency and unleashing the potential of pre-trained models for dense prediction. We conduct extensive empirical studies to validate the effectiveness of our approach and observe significant performance gains over competitive baselines on Pascal Context, Cityscapes, and ADE20K benchmarks.
Relative Oscillation Theory for Jacobi Matrices Extended
We present a comprehensive treatment of relative oscillation theory for finite Jacobi matrices. We show that the difference of the number of eigenvalues of two Jacobi matrices in an interval equals the number of weighted sign-changes of the Wronskian of suitable solutions of the two underlying difference equations. Until now only the case of perturbations of the main diagonal was known. We extend the known results to arbitrary perturbations, allow any (half-)open and closed spectral intervals, simplify the proof, and establish the comparison theorem.
Out of equilibrium Phase Diagram of the Quantum Random Energy Model
In this paper we study the out-of-equilibrium phase diagram of the quantum version of Derrida's Random Energy Model, which is the simplest model of mean-field spin glasses. We interpret its corresponding quantum dynamics in Fock space as a one-particle problem in very high dimension to which we apply different theoretical methods tailored for high-dimensional lattices: the Forward-Scattering Approximation, a mapping to the Rosenzweig-Porter model, and the cavity method. Our results indicate the existence of two transition lines and three distinct dynamical phases: a completely many-body localized phase at low energy, a fully ergodic phase at high energy, and a multifractal "bad metal" phase at intermediate energy. In the latter, eigenfunctions occupy a diverging volume, yet an exponentially vanishing fraction of the total Hilbert space. We discuss the limitations of our approximations and the relationship with previous studies.
Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
Decentralized Neural Networks for Robust and Scalable Eigenvalue Computation
This paper introduces a novel method for eigenvalue computation using a distributed cooperative neural network framework. Unlike traditional techniques that face scalability challenges in large systems, our decentralized algorithm enables multiple autonomous agents to collaboratively estimate the smallest eigenvalue of large matrices. Each agent employs a localized neural network, refining its estimates through communication with neighboring agents. Our empirical results confirm the algorithm's convergence towards the true eigenvalue, with estimates clustered closely around the true value. Even in the presence of communication delays or network disruptions, the method demonstrates strong robustness and scalability. Theoretical analysis further validates the accuracy and stability of the proposed approach, while empirical tests highlight its efficiency and precision, surpassing traditional centralized algorithms in large-scale eigenvalue computations.
Equivariant Matrix Function Neural Networks
Graph Neural Networks (GNNs), especially message-passing neural networks (MPNNs), have emerged as powerful architectures for learning on graphs in diverse applications. However, MPNNs face challenges when modeling non-local interactions in graphs such as large conjugated molecules, and social networks due to oversmoothing and oversquashing. Although Spectral GNNs and traditional neural networks such as recurrent neural networks and transformers mitigate these challenges, they often lack generalizability, or fail to capture detailed structural relationships or symmetries in the data. To address these concerns, we introduce Matrix Function Neural Networks (MFNs), a novel architecture that parameterizes non-local interactions through analytic matrix equivariant functions. Employing resolvent expansions offers a straightforward implementation and the potential for linear scaling with system size. The MFN architecture achieves stateof-the-art performance in standard graph benchmarks, such as the ZINC and TU datasets, and is able to capture intricate non-local interactions in quantum systems, paving the way to new state-of-the-art force fields.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.
Deep Laplacian-based Options for Temporally-Extended Exploration
Selecting exploratory actions that generate a rich stream of experience for better learning is a fundamental challenge in reinforcement learning (RL). An approach to tackle this problem consists in selecting actions according to specific policies for an extended period of time, also known as options. A recent line of work to derive such exploratory options builds upon the eigenfunctions of the graph Laplacian. Importantly, until now these methods have been mostly limited to tabular domains where (1) the graph Laplacian matrix was either given or could be fully estimated, (2) performing eigendecomposition on this matrix was computationally tractable, and (3) value functions could be learned exactly. Additionally, these methods required a separate option discovery phase. These assumptions are fundamentally not scalable. In this paper we address these limitations and show how recent results for directly approximating the eigenfunctions of the Laplacian can be leveraged to truly scale up options-based exploration. To do so, we introduce a fully online deep RL algorithm for discovering Laplacian-based options and evaluate our approach on a variety of pixel-based tasks. We compare to several state-of-the-art exploration methods and show that our approach is effective, general, and especially promising in non-stationary settings.
EliGen: Entity-Level Controlled Image Generation with Regional Attention
Recent advancements in diffusion models have significantly advanced text-to-image generation, yet global text prompts alone remain insufficient for achieving fine-grained control over individual entities within an image. To address this limitation, we present EliGen, a novel framework for Entity-Level controlled Image Generation. We introduce regional attention, a mechanism for diffusion transformers that requires no additional parameters, seamlessly integrating entity prompts and arbitrary-shaped spatial masks. By contributing a high-quality dataset with fine-grained spatial and semantic entity-level annotations, we train EliGen to achieve robust and accurate entity-level manipulation, surpassing existing methods in both positional control precision and image quality. Additionally, we propose an inpainting fusion pipeline, extending EliGen to multi-entity image inpainting tasks. We further demonstrate its flexibility by integrating it with community models such as IP-Adapter and MLLM, unlocking new creative possibilities. The source code, dataset, and model will be released publicly.
EIGER IV: The cool 10$^4$K circumgalactic environment of high-$z$ galaxies reveals remarkably efficient IGM enrichment
We report new observations of the cool diffuse gas around 29, 2.3<z<6.3 galaxies, using deep JWST/NIRCam slitless grism spectroscopy around the sightline to the quasar J0100+2802. The galaxies span a stellar mass range of 7.1 leq log M_{*}/M_{sun} leq 10.7, and star-formation rates of -0.1 < log ; SFR/M_{sun}yr^{-1} ; <2.3. We find galaxies for seven MgII absorption systems within 300 kpc of the quasar sightline. The MgII radial absorption profile falls off sharply with radii, with most of the absorption extending out to 2-3R_{200} of the host galaxies. Six out of seven MgII absorption systems are detected around galaxies with log M_{*}/M_{sun} >9. MgII absorption kinematics are shifted from the systemic redshift of host galaxies with a median absolute velocity of 135 km/s and standard deviation of 85 km/s. The high kinematic offset and large radial separation (R> 1.3 R_{200}), suggest that five out of the seven MgII absorption systems are gravitationally not bound to the galaxies. In contrast, most cool circumgalactic media at z<1 are gravitationally bound. The high incidence of unbound MgII gas in this work suggests that towards the end of reionization, galaxy halos are in a state of remarkable disequilibrium, and are highly efficient in enriching the intergalactic medium. Two strongest MgII absorption systems are detected at zsim 4.22 and 4.5, the former associated with a merging galaxy system and the latter associated with three kinematically close galaxies. Both these galaxies reside in local galaxy over-densities, indicating the presence of cool MgII absorption in two "proto-groups" at z>4.
Compatibility of Fundamental Matrices for Complete Viewing Graphs
This paper studies the problem of recovering cameras from a set of fundamental matrices. A set of fundamental matrices is said to be compatible if a set of cameras exists for which they are the fundamental matrices. We focus on the complete graph, where fundamental matrices for each pair of cameras are given. Previous work has established necessary and sufficient conditions for compatibility as rank and eigenvalue conditions on the n-view fundamental matrix obtained by concatenating the individual fundamental matrices. In this work, we show that the eigenvalue condition is redundant. We provide explicit homogeneous polynomials that describe necessary and sufficient conditions for compatibility in terms of the fundamental matrices and their epipoles. In this direction, we find that quadruple-wise compatibility is enough to ensure global compatibility for any number of cameras. We demonstrate that for four cameras, compatibility is generically described by triple-wise conditions and one additional equation involving all fundamental matrices.
Learning Factored Representations in a Deep Mixture of Experts
Mixtures of Experts combine the outputs of several "expert" networks, each of which specializes in a different part of the input space. This is achieved by training a "gating" network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this work, we extend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with multiple sets of gating and experts. This exponentially increases the number of effective experts by associating each input with a combination of experts at each layer, yet maintains a modest model size. On a randomly translated version of the MNIST dataset, we find that the Deep Mixture of Experts automatically learns to develop location-dependent ("where") experts at the first layer, and class-specific ("what") experts at the second layer. In addition, we see that the different combinations are in use when the model is applied to a dataset of speech monophones. These demonstrate effective use of all expert combinations.
How Jellyfish Characterise Alternating Group Equivariant Neural Networks
We provide a full characterisation of all of the possible alternating group (A_n) equivariant neural networks whose layers are some tensor power of R^{n}. In particular, we find a basis of matrices for the learnable, linear, A_n-equivariant layer functions between such tensor power spaces in the standard basis of R^{n}. We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
Brauer's Group Equivariant Neural Networks
We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of R^{n} for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of R^{n} when the group is O(n) or SO(n), and in the symplectic basis of R^{n} when the group is Sp(n).
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.
Flat Minima in Linear Estimation and an Extended Gauss Markov Theorem
We consider the problem of linear estimation, and establish an extension of the Gauss-Markov theorem, in which the bias operator is allowed to be non-zero but bounded with respect to a matrix norm of Schatten type. We derive simple and explicit formulas for the optimal estimator in the cases of Nuclear and Spectral norms (with the Frobenius case recovering ridge regression). Additionally, we analytically derive the generalization error in multiple random matrix ensembles, and compare with Ridge regression. Finally, we conduct an extensive simulation study, in which we show that the cross-validated Nuclear and Spectral regressors can outperform Ridge in several circumstances.
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.
Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors
Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.
The probabilistic world
Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
Generating functions for some series of characters of classical Lie groups
There exist a number of well known multiplicative generating functions for series of Schur functions. Amongst these are some related to the dual Cauchy identity whose expansion coefficients are rather simple, and in some cases periodic in parameters specifying the Schur functions. More recently similar identities have been found involving expansions in terms of characters of the symplectic group. Here these results are extended and generalised to all classical Lie groups. This is done through the derivation of explicit recurrence relations for the expansion coefficients based on the action of the Weyl groups of both the symplectic and orthogonal groups. Copious results are tabulated in the form of explicit values of the expansion coefficients as functions of highest weight parameters. An alternative approach is then based on dual pairs of symplectic and/or orthogonal groups. A byproduct of this approach is that expansions in terms of spin orthogonal group characters can always be recovered from non-spin cases.
An operator preconditioning perspective on training in physics-informed machine learning
In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training.
A Fast Summation Method for translation invariant kernels
We derive a Fast Multipole Method (FMM) where a low-rank approximation of the kernel is obtained using the Empirical Interpolation Method (EIM). Contrary to classical interpolation-based FMM, where the interpolation points and basis are fixed beforehand, the EIM is a nonlinear approximation method which constructs interpolation points and basis which are adapted to the kernel under consideration. The basis functions are obtained using evaluations of the kernel itself. We restrict ourselves to translation-invariant kernels, for which a modified version of the EIM approximation can be used in a multilevel FMM context; we call the obtained algorithm Empirical Interpolation Fast Multipole Method (EIFMM). An important feature of the EIFMM is a built-in error estimation of the interpolation error made by the low-rank approximation of the far-field behavior of the kernel: the algorithm selects the optimal number of interpolation points required to ensure a given accuracy for the result, leading to important gains for inhomogeneous kernels.
Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.
Neural networks with trainable matrix activation functions
The training process of neural networks usually optimize weights and bias parameters of linear transformations, while nonlinear activation functions are pre-specified and fixed. This work develops a systematic approach to constructing matrix activation functions whose entries are generalized from ReLU. The activation is based on matrix-vector multiplications using only scalar multiplications and comparisons. The proposed activation functions depend on parameters that are trained along with the weights and bias vectors. Neural networks based on this approach are simple and efficient and are shown to be robust in numerical experiments.