new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Apr 28

Evolutionary Optimization of Model Merging Recipes

We present a novel application of evolutionary algorithms to automate the creation of powerful foundation models. While model merging has emerged as a promising approach for LLM development due to its cost-effectiveness, it currently relies on human intuition and domain knowledge, limiting its potential. Here, we propose an evolutionary approach that overcomes this limitation by automatically discovering effective combinations of diverse open-source models, harnessing their collective intelligence without requiring extensive additional training data or compute. Our approach operates in both parameter space and data flow space, allowing for optimization beyond just the weights of the individual models. This approach even facilitates cross-domain merging, generating models like a Japanese LLM with Math reasoning capabilities. Surprisingly, our Japanese Math LLM achieved state-of-the-art performance on a variety of established Japanese LLM benchmarks, even surpassing models with significantly more parameters, despite not being explicitly trained for such tasks. Furthermore, a culturally-aware Japanese VLM generated through our approach demonstrates its effectiveness in describing Japanese culture-specific content, outperforming previous Japanese VLMs. This work not only contributes new state-of-the-art models back to the open-source community, but also introduces a new paradigm for automated model composition, paving the way for exploring alternative, efficient approaches to foundation model development.

A Review of Multi-Modal Large Language and Vision Models

Large Language Models (LLMs) have recently emerged as a focal point of research and application, driven by their unprecedented ability to understand and generate text with human-like quality. Even more recently, LLMs have been extended into multi-modal large language models (MM-LLMs) which extends their capabilities to deal with image, video and audio information, in addition to text. This opens up applications like text-to-video generation, image captioning, text-to-speech, and more and is achieved either by retro-fitting an LLM with multi-modal capabilities, or building a MM-LLM from scratch. This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs. It covers the historical development of LLMs especially the advances enabled by transformer-based architectures like OpenAI's GPT series and Google's BERT, as well as the role of attention mechanisms in enhancing model performance. The paper includes coverage of the major and most important of the LLMs and MM-LLMs and also covers the techniques of model tuning, including fine-tuning and prompt engineering, which tailor pre-trained models to specific tasks or domains. Ethical considerations and challenges, such as data bias and model misuse, are also analysed to underscore the importance of responsible AI development and deployment. Finally, we discuss the implications of open-source versus proprietary models in AI research. Through this review, we provide insights into the transformative potential of MM-LLMs in various applications.

Small LLMs Are Weak Tool Learners: A Multi-LLM Agent

Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.

InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning

We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community.

JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation

Accelerating research on Large Multimodal Models (LMMs) in non-English languages is crucial for enhancing user experiences across broader populations. In this paper, we introduce JMMMU (Japanese MMMU), the first large-scale Japanese benchmark designed to evaluate LMMs on expert-level tasks based on the Japanese cultural context. To facilitate comprehensive culture-aware evaluation, JMMMU features two complementary subsets: (i) culture-agnostic (CA) subset, where the culture-independent subjects (e.g., Math) are selected and translated into Japanese, enabling one-to-one comparison with its English counterpart MMMU; and (ii) culture-specific (CS) subset, comprising newly crafted subjects that reflect Japanese cultural context. Using the CA subset, we observe performance drop in many LMMs when evaluated in Japanese, which is purely attributable to language variation. Using the CS subset, we reveal their inadequate Japanese cultural understanding. Further, by combining both subsets, we identify that some LMMs perform well on the CA subset but not on the CS subset, exposing a shallow understanding of the Japanese language that lacks depth in cultural understanding. We hope this work will not only help advance LMM performance in Japanese but also serve as a guideline to create high-standard, culturally diverse benchmarks for multilingual LMM development. The project page is https://mmmu-japanese-benchmark.github.io/JMMMU/.

On the Tool Manipulation Capability of Open-source Large Language Models

Recent studies on software tool manipulation with large language models (LLMs) mostly rely on closed model APIs. The industrial adoption of these models is substantially constrained due to the security and robustness risks in exposing information to closed LLM API services. In this paper, we ask can we enhance open-source LLMs to be competitive to leading closed LLM APIs in tool manipulation, with practical amount of human supervision. By analyzing common tool manipulation failures, we first demonstrate that open-source LLMs may require training with usage examples, in-context demonstration and generation style regulation to resolve failures. These insights motivate us to revisit classical methods in LLM literature, and demonstrate that we can adapt them as model alignment with programmatic data generation, system prompts and in-context demonstration retrievers to enhance open-source LLMs for tool manipulation. To evaluate these techniques, we create the ToolBench, a tool manipulation benchmark consisting of diverse software tools for real-world tasks. We demonstrate that our techniques can boost leading open-source LLMs by up to 90% success rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such enhancement typically requires about one developer day to curate data for each tool, rendering a recipe with practical amount of human supervision.

Don't Ignore Dual Logic Ability of LLMs while Privatizing: A Data-Intensive Analysis in Medical Domain

Extensive studies have been devoted to privatizing general-domain Large Language Models (LLMs) as Domain-Specific LLMs via feeding specific-domain data. However, these privatization efforts often ignored a critical aspect: Dual Logic Ability, which is a core reasoning ability for LLMs. The dual logic ability of LLMs ensures that they can maintain a consistent stance when confronted with both positive and negative statements about the same fact. Our study focuses on how the dual logic ability of LLMs is affected during the privatization process in the medical domain. We conduct several experiments to analyze the dual logic ability of LLMs by examining the consistency of the stance in responses to paired questions about the same fact. In our experiments, interestingly, we observed a significant decrease in the dual logic ability of existing LLMs after privatization. Besides, our results indicate that incorporating general domain dual logic data into LLMs not only enhances LLMs' dual logic ability but also further improves their accuracy. These findings underscore the importance of prioritizing LLMs' dual logic ability during the privatization process. Our study establishes a benchmark for future research aimed at exploring LLMs' dual logic ability during the privatization process and offers valuable guidance for privatization efforts in real-world applications.

SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution

Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source LLM designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight LLM model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other LLM model to generate patches for the identified files. Then, to mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches, and train the two modules of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving state-of-the-art performance among open-source models with scores of 23.3% and 30.2%, respectively. These outcomes highlight the efficacy of our approach. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.

Multimodal Self-Instruct: Synthetic Abstract Image and Visual Reasoning Instruction Using Language Model

Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs like Claude-3.5-Sonnet and GPT-4o in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks. Our code is available at: https://github.com/zwq2018/Multi-modal-Self-instruct.

NVLM: Open Frontier-Class Multimodal LLMs

We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training. In terms of model design, we perform a comprehensive comparison between decoder-only multimodal LLMs (e.g., LLaVA) and cross-attention-based models (e.g., Flamingo). Based on the strengths and weaknesses of both approaches, we propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities. Furthermore, we introduce a 1-D tile-tagging design for tile-based dynamic high-resolution images, which significantly boosts performance on multimodal reasoning and OCR-related tasks. Regarding training data, we meticulously curate and provide detailed information on our multimodal pretraining and supervised fine-tuning datasets. Our findings indicate that dataset quality and task diversity are more important than scale, even during the pretraining phase, across all architectures. Notably, we develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks while maintaining and even improving text-only performance compared to their LLM backbones. To achieve this, we craft and integrate a high-quality text-only dataset into multimodal training, alongside a substantial amount of multimodal math and reasoning data, leading to enhanced math and coding capabilities across modalities. To advance research in the field, we are releasing the model weights and will open-source the code for the community: https://nvlm-project.github.io/.

Bridging Language Models and Financial Analysis

The rapid advancements in Large Language Models (LLMs) have unlocked transformative possibilities in natural language processing, particularly within the financial sector. Financial data is often embedded in intricate relationships across textual content, numerical tables, and visual charts, posing challenges that traditional methods struggle to address effectively. However, the emergence of LLMs offers new pathways for processing and analyzing this multifaceted data with increased efficiency and insight. Despite the fast pace of innovation in LLM research, there remains a significant gap in their practical adoption within the finance industry, where cautious integration and long-term validation are prioritized. This disparity has led to a slower implementation of emerging LLM techniques, despite their immense potential in financial applications. As a result, many of the latest advancements in LLM technology remain underexplored or not fully utilized in this domain. This survey seeks to bridge this gap by providing a comprehensive overview of recent developments in LLM research and examining their applicability to the financial sector. Building on previous survey literature, we highlight several novel LLM methodologies, exploring their distinctive capabilities and their potential relevance to financial data analysis. By synthesizing insights from a broad range of studies, this paper aims to serve as a valuable resource for researchers and practitioners, offering direction on promising research avenues and outlining future opportunities for advancing LLM applications in finance.

An LLM Compiler for Parallel Function Calling

Large Language Models (LLMs) have shown remarkable results on various complex reasoning benchmarks. The reasoning capabilities of LLMs enable them to execute function calls, using user-provided functions to overcome their inherent limitations, such as knowledge cutoffs, poor arithmetic skills, or lack of access to private data. This development has expanded LLMs' scope to include multi-function calling, where LLMs are equipped with a variety of functions and select the proper functions based on the context. Multi-function calling abilities of LLMs have catalyzed LLM-based software development, allowing them to tackle more complex problems. However, current methods for multi-function calling often require sequential reasoning and acting for each function which can result in high latency, cost, and sometimes inaccurate behavior. To address this, we introduce LLMCompiler, which executes functions in parallel to efficiently orchestrate multi-function calling. Drawing from the principles of classical compilers, LLMCompiler streamlines parallel function calling with three components: (i) an LLM Planner, formulating execution strategies and dependencies; (ii) a Task Fetching Unit, dispatching function calling tasks; and (iii) an Executor, executing these tasks in parallel. LLMCompiler automatically computes an optimized orchestration for the function calls and can be used with open-source models such as LLaMA-2. We have benchmarked LLMCompiler on a range of tasks including cases with non-trivial inter-dependency between function calls, as well as cases that require dynamic replanning based on intermediate results. We observe consistent latency speedup of up to 3.7x, cost savings of up to 6.7x, and accuracy improvement of up to ~9% as compared to ReAct. Additionally, LLMCompiler achieves up to 1.35x latency gain over OpenAI's recent parallel function calling, while achieving similar accuracy.

BiMediX2: Bio-Medical EXpert LMM for Diverse Medical Modalities

This paper introduces BiMediX2, a bilingual (Arabic-English) Bio-Medical EXpert Large Multimodal Model (LMM) with a unified architecture that integrates text and visual modalities, enabling advanced image understanding and medical applications. BiMediX2 leverages the Llama3.1 architecture and integrates text and visual capabilities to facilitate seamless interactions in both English and Arabic, supporting text-based inputs and multi-turn conversations involving medical images. The model is trained on an extensive bilingual healthcare dataset consisting of 1.6M samples of diverse medical interactions for both text and image modalities, mixed in Arabic and English. We also propose the first bilingual GPT-4o based medical LMM benchmark named BiMed-MBench. BiMediX2 is benchmarked on both text-based and image-based tasks, achieving state-of-the-art performance across several medical benchmarks. It outperforms recent state-of-the-art models in medical LLM evaluation benchmarks. Our model also sets a new benchmark in multimodal medical evaluations with over 9% improvement in English and over 20% in Arabic evaluations. Additionally, it surpasses GPT-4 by around 9% in UPHILL factual accuracy evaluations and excels in various medical Visual Question Answering, Report Generation, and Report Summarization tasks. The project page including source code and the trained model, is available at https://github.com/mbzuai-oryx/BiMediX2.

TheoremLlama: Transforming General-Purpose LLMs into Lean4 Experts

Proving mathematical theorems using computer-verifiable formal languages like Lean significantly impacts mathematical reasoning. One approach to formal theorem proving involves generating complete proofs using Large Language Models (LLMs) based on Natural Language (NL) proofs. Similar methods have shown promising results in code generation. However, most modern LLMs exhibit suboptimal performance due to the scarcity of aligned NL and Formal Language (FL) theorem-proving data. This scarcity results in a paucity of methodologies for training LLMs and techniques to fully utilize their capabilities in composing formal proofs. To address the challenges, this paper proposes **TheoremLlama**, an end-to-end framework to train a general-purpose LLM to become a Lean4 expert. This framework encompasses NL-FL aligned dataset generation methods, training approaches for the LLM formal theorem prover, and techniques for LLM Lean4 proof writing. Using the dataset generation method, we provide *Open Bootstrapped Theorems* (OBT), an NL-FL aligned and bootstrapped dataset. A key innovation in this framework is the NL-FL bootstrapping method, where NL proofs are integrated into Lean4 code for training datasets, leveraging the NL reasoning ability of LLMs for formal reasoning. The **TheoremLlama** framework achieves cumulative accuracies of 36.48% and 33.61% on MiniF2F-Valid and Test datasets respectively, surpassing the GPT-4 baseline of 22.95% and 25.41%. We have also open-sourced our model checkpoints and generated dataset, and will soon make all the code publicly available.

Crystal: Illuminating LLM Abilities on Language and Code

Large Language Models (LLMs) specializing in code generation (which are also often referred to as code LLMs), e.g., StarCoder and Code Llama, play increasingly critical roles in various software development scenarios. It is also crucial for code LLMs to possess both code generation and natural language abilities for many specific applications, such as code snippet retrieval using natural language or code explanations. The intricate interaction between acquiring language and coding skills complicates the development of strong code LLMs. Furthermore, there is a lack of thorough prior studies on the LLM pretraining strategy that mixes code and natural language. In this work, we propose a pretraining strategy to enhance the integration of natural language and coding capabilities within a single LLM. Specifically, it includes two phases of training with appropriately adjusted code/language ratios. The resulting model, Crystal, demonstrates remarkable capabilities in both domains. Specifically, it has natural language and coding performance comparable to that of Llama 2 and Code Llama, respectively. Crystal exhibits better data efficiency, using 1.4 trillion tokens compared to the more than 2 trillion tokens used by Llama 2 and Code Llama. We verify our pretraining strategy by analyzing the training process and observe consistent improvements in most benchmarks. We also adopted a typical application adaptation phase with a code-centric data mixture, only to find that it did not lead to enhanced performance or training efficiency, underlining the importance of a carefully designed data recipe. To foster research within the community, we commit to open-sourcing every detail of the pretraining, including our training datasets, code, loggings and 136 checkpoints throughout the training.

Are We on the Right Way for Evaluating Large Vision-Language Models?

Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities. However, we dig into current evaluation works and identify two primary issues: 1) Visual content is unnecessary for many samples. The answers can be directly inferred from the questions and options, or the world knowledge embedded in LLMs. This phenomenon is prevalent across current benchmarks. For instance, GeminiPro achieves 42.9% on the MMMU benchmark without any visual input, and outperforms the random choice baseline across six benchmarks over 20% on average. 2) Unintentional data leakage exists in LLM and LVLM training. LLM and LVLM could still answer some visual-necessary questions without visual content, indicating the memorizing of these samples within large-scale training data. For example, Sphinx-X-MoE gets 43.6% on MMMU without accessing images, surpassing its LLM backbone with 17.9%. Both problems lead to misjudgments of actual multi-modal gains and potentially misguide the study of LVLM. To this end, we present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans. MMStar benchmarks 6 core capabilities and 18 detailed axes, aiming to evaluate LVLMs' multi-modal capacities with carefully balanced and purified samples. These samples are first roughly selected from current benchmarks with an automated pipeline, human review is then involved to ensure each curated sample exhibits visual dependency, minimal data leakage, and requires advanced multi-modal capabilities. Moreover, two metrics are developed to measure data leakage and actual performance gain in multi-modal training. We evaluate 16 leading LVLMs on MMStar to assess their multi-modal capabilities, and on 7 benchmarks with the proposed metrics to investigate their data leakage and actual multi-modal gain.

SCALE: Scaling up the Complexity for Advanced Language Model Evaluation

Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.

LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models

Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at https://github.com/CSHaitao/LexEval and will be continuously updated.

Does Table Source Matter? Benchmarking and Improving Multimodal Scientific Table Understanding and Reasoning

Recent large language models (LLMs) have advanced table understanding capabilities but rely on converting tables into text sequences. While multimodal large language models (MLLMs) enable direct visual processing, they face limitations in handling scientific tables due to fixed input image resolutions and insufficient numerical reasoning capabilities. We present a comprehensive framework for multimodal scientific table understanding and reasoning with dynamic input image resolutions. Our framework consists of three key components: (1) MMSci-Pre, a domain-specific table structure learning dataset of 52K scientific table structure recognition samples, (2) MMSci-Ins, an instruction tuning dataset with 12K samples across three table-based tasks, and (3) MMSci-Eval, a benchmark with 3,114 testing samples specifically designed to evaluate numerical reasoning capabilities. Extensive experiments demonstrate that our domain-specific approach with 52K scientific table images achieves superior performance compared to 150K general-domain tables, highlighting the importance of data quality over quantity. Our proposed table-based MLLMs with dynamic input resolutions show significant improvements in both general table understanding and numerical reasoning capabilities, with strong generalisation to held-out datasets. Our code and data are publicly available at https://github.com/Bernard-Yang/MMSci_Table.

Marco-LLM: Bridging Languages via Massive Multilingual Training for Cross-Lingual Enhancement

Large Language Models (LLMs) have achieved remarkable progress in recent years; however, their excellent performance is still largely limited to major world languages, primarily English. Many LLMs continue to face challenges with multilingual tasks, especially when it comes to low-resource languages. To address this issue, we introduced Marco-LLM: Massive multilingual training for cross-lingual enhancement LLM. We have collected a substantial amount of multilingual data for several low-resource languages and conducted extensive continual pre-training using the Qwen2 models. This effort has resulted in a multilingual LLM named Marco-LLM. Through comprehensive evaluations on various multilingual benchmarks, including MMMLU, AGIEval, Belebele, Flores-200, XCOPA and many others, Marco-LLM has demonstrated substantial improvements over state-of-the-art LLMs. Furthermore, Marco-LLM achieved substantial enhancements in any-to-any machine translation tasks, showing the effectiveness of our multilingual LLM. Marco-LLM is a pioneering multilingual LLM designed to not only perform exceptionally well in multilingual tasks, including low-resource languages, but also maintain strong performance in English and other major languages, closing the performance gap between high- and low-resource language capabilities. By bridging languages, this effort demonstrates our dedication to ensuring LLMs work accurately across various languages.

Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond

This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at https://github.com/Mooler0410/LLMsPracticalGuide.

MME-RealWorld: Could Your Multimodal LLM Challenge High-Resolution Real-World Scenarios that are Difficult for Humans?

Comprehensive evaluation of Multimodal Large Language Models (MLLMs) has recently garnered widespread attention in the research community. However, we observe that existing benchmarks present several common barriers that make it difficult to measure the significant challenges that models face in the real world, including: 1) small data scale leads to a large performance variance; 2) reliance on model-based annotations results in restricted data quality; 3) insufficient task difficulty, especially caused by the limited image resolution. To tackle these issues, we introduce MME-RealWorld. Specifically, we collect more than 300K images from public datasets and the Internet, filtering 13,366 high-quality images for annotation. This involves the efforts of professional 25 annotators and 7 experts in MLLMs, contributing to 29,429 question-answer pairs that cover 43 subtasks across 5 real-world scenarios, extremely challenging even for humans. As far as we know, MME-RealWorld is the largest manually annotated benchmark to date, featuring the highest resolution and a targeted focus on real-world applications. We further conduct a thorough evaluation involving 28 prominent MLLMs, such as GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet. Our results show that even the most advanced models struggle with our benchmarks, where none of them reach 60% accuracy. The challenges of perceiving high-resolution images and understanding complex real-world scenarios remain urgent issues to be addressed. The data and evaluation code are released at https://mme-realworld.github.io/ .

Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large Language Models

Recently, growing interest has been aroused in extending the multimodal capability of large language models (LLMs), e.g., vision-language (VL) learning, which is regarded as the next milestone of artificial general intelligence. However, existing solutions are prohibitively expensive, which not only need to optimize excessive parameters, but also require another large-scale pre-training before VL instruction tuning. In this paper, we propose a novel and affordable solution for the effective VL adaption of LLMs, called Mixture-of-Modality Adaptation (MMA). Instead of using large neural networks to connect the image encoder and LLM, MMA adopts lightweight modules, i.e., adapters, to bridge the gap between LLMs and VL tasks, which also enables the joint optimization of the image and language models. Meanwhile, MMA is also equipped with a routing algorithm to help LLMs achieve an automatic shift between single- and multi-modal instructions without compromising their ability of natural language understanding. To validate MMA, we apply it to a recent LLM called LLaMA and term this formed large vision-language instructed model as LaVIN. To validate MMA and LaVIN, we conduct extensive experiments under two setups, namely multimodal science question answering and multimodal dialogue. The experimental results not only demonstrate the competitive performance and the superior training efficiency of LaVIN than existing multimodal LLMs, but also confirm its great potential as a general-purpose chatbot. More importantly, the actual expenditure of LaVIN is extremely cheap, e.g., only 1.4 training hours with 3.8M trainable parameters, greatly confirming the effectiveness of MMA. Our project is released at https://luogen1996.github.io/lavin.

Low-Resource Court Judgment Summarization for Common Law Systems

Common law courts need to refer to similar precedents' judgments to inform their current decisions. Generating high-quality summaries of court judgment documents can facilitate legal practitioners to efficiently review previous cases and assist the general public in accessing how the courts operate and how the law is applied. Previous court judgment summarization research focuses on civil law or a particular jurisdiction's judgments. However, judges can refer to the judgments from all common law jurisdictions. Current summarization datasets are insufficient to satisfy the demands of summarizing precedents across multiple jurisdictions, especially when labeled data are scarce for many jurisdictions. To address the lack of datasets, we present CLSum, the first dataset for summarizing multi-jurisdictional common law court judgment documents. Besides, this is the first court judgment summarization work adopting large language models (LLMs) in data augmentation, summary generation, and evaluation. Specifically, we design an LLM-based data augmentation method incorporating legal knowledge. We also propose a legal knowledge enhanced evaluation metric based on LLM to assess the quality of generated judgment summaries. Our experimental results verify that the LLM-based summarization methods can perform well in the few-shot and zero-shot settings. Our LLM-based data augmentation method can mitigate the impact of low data resources. Furthermore, we carry out comprehensive comparative experiments to find essential model components and settings that are capable of enhancing summarization performance.

From Image to Video, what do we need in multimodal LLMs?

Multimodal Large Language Models (MLLMs) have demonstrated profound capabilities in understanding multimodal information, covering from Image LLMs to the more complex Video LLMs. Numerous studies have illustrated their exceptional cross-modal comprehension. Recently, integrating video foundation models with large language models to build a comprehensive video understanding system has been proposed to overcome the limitations of specific pre-defined vision tasks. However, the current advancements in Video LLMs tend to overlook the foundational contributions of Image LLMs, often opting for more complicated structures and a wide variety of multimodal data for pre-training. This approach significantly increases the costs associated with these methods.In response to these challenges, this work introduces an efficient method that strategically leverages the priors of Image LLMs, facilitating a resource-efficient transition from Image to Video LLMs. We propose RED-VILLM, a Resource-Efficient Development pipeline for Video LLMs from Image LLMs, which utilizes a temporal adaptation plug-and-play structure within the image fusion module of Image LLMs. This adaptation extends their understanding capabilities to include temporal information, enabling the development of Video LLMs that not only surpass baseline performances but also do so with minimal instructional data and training resources. Our approach highlights the potential for a more cost-effective and scalable advancement in multimodal models, effectively building upon the foundational work of Image LLMs.

LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints

Instruction following is a key capability for LLMs. However, recent studies have shown that LLMs often struggle with instructions containing multiple constraints (e.g. a request to create a social media post "in a funny tone" with "no hashtag"). Despite this, most evaluations focus solely on synthetic data. To address this, we introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions by leveraging queries real users asked AI assistants. We also investigate model-based evaluation as a cost-effective alternative to human annotation for this task. Our findings reveal that even the proprietary GPT-4 model fails to meet at least one constraint on over 21% of instructions, highlighting the limitations of state-of-the-art models. To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline, which enhances LLMs' ability to follow constraints. DeCRIM works by decomposing the original instruction into a list of constraints and using a Critic model to decide when and where the LLM's response needs refinement. Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback. Moreover, we demonstrate that with strong feedback, open-source LLMs with DeCRIM can outperform GPT-4 on both benchmarks.

GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception Tasks?

The recent upsurge in pre-trained large models (e.g. GPT-4) has swept across the entire deep learning community. Such powerful large language models (LLMs) demonstrate advanced generative ability and multimodal understanding capability, which quickly achieve new state-of-the-art performances on a variety of benchmarks. The pre-trained LLM usually plays the role as a universal AI model that can conduct various tasks, including context reasoning, article analysis and image content comprehension. However, considering the prohibitively high memory and computational cost for implementing such a large model, the conventional models (such as CNN and ViT), are still essential for many visual perception tasks. In this paper, we propose to enhance the representation ability of ordinary vision models for perception tasks (e.g. image classification) by taking advantage of large pre-trained models. We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations and achieve better performance. Firstly, we curate a high quality description set by prompting a multimodal LLM to generate descriptive text for all training images. Furthermore, we feed these detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images. During training, text embeddings will serve as extra supervising signals and be aligned with image representations learned by vision models. The alignment process helps vision models learn better and achieve higher accuracy with the assistance of pre-trained LLMs. We conduct extensive experiments to verify that the proposed algorithm consistently improves the performance for various vision models with heterogeneous architectures.

Achieving Peak Performance for Large Language Models: A Systematic Review

In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.

Benchmarking Large Language Models for Molecule Prediction Tasks

Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks. Despite the widespread adoption of LLMs in NLP, much of their potential in broader fields remains largely unexplored, and significant limitations persist in their design and implementation. Notably, LLMs struggle with structured data, such as graphs, and often falter when tasked with answering domain-specific questions requiring deep expertise, such as those in biology and chemistry. In this paper, we explore a fundamental question: Can LLMs effectively handle molecule prediction tasks? Rather than pursuing top-tier performance, our goal is to assess how LLMs can contribute to diverse molecule tasks. We identify several classification and regression prediction tasks across six standard molecule datasets. Subsequently, we carefully design a set of prompts to query LLMs on these tasks and compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules. Our investigation reveals several key insights: Firstly, LLMs generally lag behind ML models in achieving competitive performance on molecule tasks, particularly when compared to models adept at capturing the geometric structure of molecules, highlighting the constrained ability of LLMs to comprehend graph data. Secondly, LLMs show promise in enhancing the performance of ML models when used collaboratively. Lastly, we engage in a discourse regarding the challenges and promising avenues to harness LLMs for molecule prediction tasks. The code and models are available at https://github.com/zhiqiangzhongddu/LLMaMol.

M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models

Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at https://github.com/DAMO-NLP-SG/M3Exam.

Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources

The reproduction of state-of-the-art multimodal LLM pre-training faces barriers at every stage of the pipeline, including high-quality data filtering, multimodal data mixture strategies, sequence packing techniques, and training frameworks. We introduce Open-Qwen2VL, a fully open-source 2B-parameter Multimodal Large Language Model pre-trained efficiently on 29M image-text pairs using only 442 A100-40G GPU hours. Our approach employs low-to-high dynamic image resolution and multimodal sequence packing to significantly enhance pre-training efficiency. The training dataset was carefully curated using both MLLM-based filtering techniques (e.g., MLM-Filter) and conventional CLIP-based filtering methods, substantially improving data quality and training efficiency. The Open-Qwen2VL pre-training is conducted on academic level 8xA100-40G GPUs at UCSB on 5B packed multimodal tokens, which is 0.36\% of 1.4T multimodal pre-training tokens of Qwen2-VL. The final instruction-tuned Open-Qwen2VL outperforms partially-open state-of-the-art MLLM Qwen2-VL-2B on various multimodal benchmarks of MMBench, SEEDBench, MMstar, and MathVista, indicating the remarkable training efficiency of Open-Qwen2VL. We open-source all aspects of our work, including compute-efficient and data-efficient training details, data filtering methods, sequence packing scripts, pre-training data in WebDataset format, FSDP-based training codebase, and both base and instruction-tuned model checkpoints. We redefine "fully open" for multimodal LLMs as the complete release of: 1) the training codebase, 2) detailed data filtering techniques, and 3) all pre-training and supervised fine-tuning data used to develop the model.

Visual AI and Linguistic Intelligence Through Steerability and Composability

This study explores the capabilities of multimodal large language models (LLMs) in handling challenging multistep tasks that integrate language and vision, focusing on model steerability, composability, and the application of long-term memory and context understanding. The problem addressed is the LLM's ability (Nov 2023 GPT-4 Vision Preview) to manage tasks that require synthesizing visual and textual information, especially where stepwise instructions and sequential logic are paramount. The research presents a series of 14 creatively and constructively diverse tasks, ranging from AI Lego Designing to AI Satellite Image Analysis, designed to test the limits of current LLMs in contexts that previously proved difficult without extensive memory and contextual understanding. Key findings from evaluating 800 guided dialogs include notable disparities in task completion difficulty. For instance, 'Image to Ingredient AI Bartender' (Low difficulty) contrasted sharply with 'AI Game Self-Player' (High difficulty), highlighting the LLM's varying proficiency in processing complex visual data and generating coherent instructions. Tasks such as 'AI Genetic Programmer' and 'AI Negotiator' showed high completion difficulty, emphasizing challenges in maintaining context over multiple steps. The results underscore the importance of developing LLMs that combine long-term memory and contextual awareness to mimic human-like thought processes in complex problem-solving scenarios.

LDB: A Large Language Model Debugger via Verifying Runtime Execution Step-by-step

Large language models (LLMs) are leading significant progress in code generation. Beyond one-pass code generation, recent works further integrate unit tests and program verifiers into LLMs to iteratively refine the generated programs. However, these works consider the generated programs as an indivisible entity, which falls short for LLMs in debugging the programs, especially when the programs contain complex logic flows and data operations. In contrast, when human developers debug programs, they typically set breakpoints and selectively examine runtime execution information. The execution flow and the intermediate variables play a crucial role in the debugging process, yet they are underutilized in the existing literature on code generation. In this study, we introduce Large Language Model Debugger (LDB), a novel debugging framework that enables LLMs to refine their generated programs with the runtime execution information. Specifically, LDB segments the programs into basic blocks and tracks the values of intermediate variables after each block throughout the runtime execution. This allows LLMs to concentrate on simpler code units within the overall execution flow, verify their correctness against the task description block by block, and efficiently pinpoint any potential errors. Experiments demonstrate that LDB consistently enhances the baseline performance by up to 9.8% across the HumanEval, MBPP, and TransCoder benchmarks, archiving new state-of-the-art performance in code debugging for various LLM selections.

LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch

Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.

PURPLE: Making a Large Language Model a Better SQL Writer

Large Language Model (LLM) techniques play an increasingly important role in Natural Language to SQL (NL2SQL) translation. LLMs trained by extensive corpora have strong natural language understanding and basic SQL generation abilities without additional tuning specific to NL2SQL tasks. Existing LLMs-based NL2SQL approaches try to improve the translation by enhancing the LLMs with an emphasis on user intention understanding. However, LLMs sometimes fail to generate appropriate SQL due to their lack of knowledge in organizing complex logical operator composition. A promising method is to input the LLMs with demonstrations, which include known NL2SQL translations from various databases. LLMs can learn to organize operator compositions from the input demonstrations for the given task. In this paper, we propose PURPLE (Pre-trained models Utilized to Retrieve Prompts for Logical Enhancement), which improves accuracy by retrieving demonstrations containing the requisite logical operator composition for the NL2SQL task on hand, thereby guiding LLMs to produce better SQL translation. PURPLE achieves a new state-of-the-art performance of 80.5% exact-set match accuracy and 87.8% execution match accuracy on the validation set of the popular NL2SQL benchmark Spider. PURPLE maintains high accuracy across diverse benchmarks, budgetary constraints, and various LLMs, showing robustness and cost-effectiveness.

Aligning to Thousands of Preferences via System Message Generalization

Although humans inherently have diverse values, current large language model (LLM) alignment methods often assume that aligning LLMs with the general public's preferences is optimal. A major challenge in adopting a more individualized approach to LLM alignment is its lack of scalability, as it involves repeatedly acquiring preference data and training new reward models and LLMs for each individual's preferences. To address these challenges, we propose a new paradigm where users specify what they value most within the system message, steering the LLM's generation behavior to better align with the user's intentions. However, a naive application of such an approach is non-trivial since LLMs are typically trained on a uniform system message (e.g., "You are a helpful assistant") which limits their ability to generalize to diverse, unseen system messages. To improve this generalization, we create the Multifaceted Collection, a preference dataset with 192k combinations of values beyond generic helpfulness and harmlessness, spanning 65k user instructions. Using this dataset, we train a 7B LLM called Janus and test it on 921 prompts from 5 benchmarks (AlpacaEval 2.0, FLASK, Koala, MT-Bench, and Self-Instruct) by adding various unseen system messages that reflect user preferences. Janus achieves tie+win rate of 75.2%, 72.4%, and 66.4% against Mistral 7B Instruct v0.2, GPT-3.5 Turbo, and GPT-4, respectively. Unexpectedly, on three benchmarks focused on response helpfulness (AlpacaEval 2.0, MT-Bench, Arena Hard Auto v0.1), Janus also outperforms LLaMA 3 8B Instruct by a +4.0%, +0.1%, +3.0% margin, underscoring that training with a vast array of system messages could also enhance alignment to the general public's preference as well. Our code, dataset, benchmark, and models are available at https://github.com/kaistAI/Janus.

MIBench: Evaluating Multimodal Large Language Models over Multiple Images

Built on the power of LLMs, numerous multimodal large language models (MLLMs) have recently achieved remarkable performance on various vision-language tasks across multiple benchmarks. However, most existing MLLMs and benchmarks primarily focus on single-image input scenarios, leaving the performance of MLLMs when handling realistic multiple images remain underexplored. Although a few benchmarks consider multiple images, their evaluation dimensions and samples are very limited. Therefore, in this paper, we propose a new benchmark MIBench, to comprehensively evaluate fine-grained abilities of MLLMs in multi-image scenarios. Specifically, MIBench categorizes the multi-image abilities into three scenarios: multi-image instruction (MII), multimodal knowledge-seeking (MKS) and multimodal in-context learning (MIC), and constructs 13 tasks with a total of 13K annotated samples. During data construction, for MII and MKS, we extract correct options from manual annotations and create challenging distractors to obtain multiple-choice questions. For MIC, to enable an in-depth evaluation, we set four sub-tasks and transform the original datasets into in-context learning formats. We evaluate several open-source MLLMs and close-source MLLMs on the proposed MIBench. The results reveal that although current models excel in single-image tasks, they exhibit significant shortcomings when faced with multi-image inputs, such as confused fine-grained perception, limited multi-image reasoning, and unstable in-context learning. The annotated data in MIBench is available at https://huggingface.co/datasets/StarBottle/MIBench.

NoteLLM-2: Multimodal Large Representation Models for Recommendation

Large Language Models (LLMs) have demonstrated exceptional text understanding. Existing works explore their application in text embedding tasks. However, there are few works utilizing LLMs to assist multimodal representation tasks. In this work, we investigate the potential of LLMs to enhance multimodal representation in multimodal item-to-item (I2I) recommendations. One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks. However, pre-training MLLMs usually requires collecting high-quality, web-scale multimodal data, resulting in complex training procedures and high costs. This leads the community to rely heavily on open-source MLLMs, hindering customized training for representation scenarios. Therefore, we aim to design an end-to-end training method that customizes the integration of any existing LLMs and vision encoders to construct efficient multimodal representation models. Preliminary experiments show that fine-tuned LLMs in this end-to-end method tend to overlook image content. To overcome this challenge, we propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation. We propose two ways to enhance the focus on visual information. The first method is based on the prompt viewpoint, which separates multimodal content into visual content and textual content. NoteLLM-2 adopts the multimodal In-Content Learning method to teach LLMs to focus on both modalities and aggregate key information. The second method is from the model architecture, utilizing a late fusion mechanism to directly fuse visual information into textual information. Extensive experiments have been conducted to validate the effectiveness of our method.

Beyond Natural Language: LLMs Leveraging Alternative Formats for Enhanced Reasoning and Communication

Natural language (NL) has long been the predominant format for human cognition and communication, and by extension, has been similarly pivotal in the development and application of Large Language Models (LLMs). Yet, besides NL, LLMs have seen various non-NL formats during pre-training, such as code and logical expression. NL's status as the optimal format for LLMs, particularly in single-LLM reasoning and multi-agent communication, has not been thoroughly examined. In this work, we challenge the default use of NL by exploring the utility of non-NL formats in these contexts. We show that allowing LLMs to autonomously select the most suitable format before reasoning or communicating leads to a 3.3 to 5.7\% improvement in reasoning efficiency for different LLMs, and up to a 72.7\% reduction in token usage in multi-agent communication, all while maintaining communicative effectiveness. Our comprehensive analysis further reveals that LLMs can devise a format from limited task instructions and that the devised format is effectively transferable across different LLMs. Intriguingly, the structured communication format decided by LLMs exhibits notable parallels with established agent communication languages, suggesting a natural evolution towards efficient, structured communication in agent communication. Our code is released at https://github.com/thunlp/AutoForm.

mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs

Modular vision-language models (Vision-LLMs) align pretrained image encoders with (pretrained) large language models (LLMs), representing a computationally much more efficient alternative to end-to-end training of large vision-language models from scratch, which is prohibitively expensive for most. Vision-LLMs instead post-hoc condition LLMs to `understand' the output of an image encoder. With the abundance of readily available high-quality English image-text data as well as monolingual English LLMs, the research focus has been on English-only Vision-LLMs. Multilingual vision-language models are still predominantly obtained via expensive end-to-end pretraining, resulting in comparatively smaller models, trained on limited multilingual image data supplemented with text-only multilingual corpora. In this work, we present mBLIP, the first multilingual Vision-LLM, which we obtain in a computationally efficient manner -- on consumer hardware using only a few million training examples -- by leveraging a pretrained multilingual LLM. To this end, we re-align an image encoder previously tuned to an English LLM to a new, multilingual LLM -- for this, we leverage multilingual data from a mix of vision-and-language tasks, which we obtain by machine-translating high-quality English data to 95 languages. On the IGLUE benchmark, mBLIP yields results competitive with state-of-the-art models. Moreover, in image captioning on XM3600, mBLIP (zero-shot) even outperforms PaLI-X (a model with 55B parameters). Compared to these very large multilingual vision-language models trained from scratch, we obtain mBLIP by training orders of magnitude fewer parameters on magnitudes less data. We release our model and code at https://github.com/gregor-ge/mBLIP.

LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation

Following the impressive development of LLMs, vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO. This direction of research is particularly relevant to medical imaging because medical image analysis and generation consist of reasoning based on a combination of visual features and prior knowledge. Many recent works have focused on training adapter networks that serve as an information bridge between image processing networks and LLMs; but presumably, in order to achieve maximum reasoning potential of LLMs on visual information as well, visual and language features should be allowed to interact more freely. This is especially important in the medical domain because understanding and generating medical images such as chest X-rays (CXR) require not only accurate visual and language-based reasoning but also a more intimate mapping between the two modalities. Thus, taking inspiration from previous work on the transformer and VQ-GAN combination for bidirectional image and text generation, we build upon this approach and develop a method for instruction-tuning an LLM pre-trained only on text to gain vision-language capabilities for medical images. Specifically, we leverage a pretrained LLM's existing question-answering and instruction-following abilities to teach it to understand visual inputs by instructing it to answer questions about image inputs and, symmetrically, output both text and image responses appropriate to a given query by tuning the LLM with diverse tasks that encompass image-based text-generation and text-based image-generation. We show that our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks while being smaller in size compared to previously developed models that perform a narrower range of tasks. The code is at https://github.com/hyn2028/llm-cxr.

Herald: A Natural Language Annotated Lean 4 Dataset

Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for these formal languages is the lack of parallel datasets that align natural language with formal language proofs. To address this challenge, this paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language. Building upon this, we employ a dual augmentation strategy that combines tactic-based and informal-based approaches, leveraging the Lean-jixia system, a Lean 4 analyzer. We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean Dataset). We also propose the Herald Translator, which is fine-tuned on Herald. Herald translator achieves a 93.2% accuracy (Pass@128) on formalizing statements in the miniF2F-test and a 22.5% accuracy on our internal graduate-level textbook dataset, outperforming InternLM2-Math-Plus-7B (74.0% and 7.5%) and TheoremLlama (50.1% and 4.0%). Furthermore, we propose a section-level translation framework for real-world applications. As a direct application of Herald translator, we have successfully translated a template section in the Stack project, marking a notable progress in the automatic formalization of graduate-level mathematical literature. Our model, along with the datasets, will be open-sourced to the public soon.

Datasets for Large Language Models: A Comprehensive Survey

This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.

ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models

Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community still needs to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM's hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve a total score of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play a crucial role in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.