Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLILO: Learning Interpretable Libraries by Compressing and Documenting Code
While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods - including the state-of-the-art library learning algorithm DreamCoder - LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge.
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models through Logic
Recent advancements in large language models have showcased their remarkable generalizability across various domains. However, their reasoning abilities still have significant room for improvement, especially when confronted with scenarios requiring multi-step reasoning. Although large language models possess extensive knowledge, their behavior, particularly in terms of reasoning, often fails to effectively utilize this knowledge to establish a coherent thinking paradigm. Generative language models sometimes show hallucinations as their reasoning procedures are unconstrained by logical principles. Aiming to improve the zero-shot chain-of-thought reasoning ability of large language models, we propose Logical Chain-of-Thought (LogiCoT), a neurosymbolic framework that leverages principles from symbolic logic to verify and revise the reasoning processes accordingly. Experimental evaluations conducted on language tasks in diverse domains, including arithmetic, commonsense, symbolic, causal inference, and social problems, demonstrate the efficacy of the enhanced reasoning paradigm by logic.
Parallel Neurosymbolic Integration with Concordia
Parallel neurosymbolic architectures have been applied effectively in NLP by distilling knowledge from a logic theory into a deep model.However, prior art faces several limitations including supporting restricted forms of logic theories and relying on the assumption of independence between the logic and the deep network. We present Concordia, a framework overcoming the limitations of prior art. Concordia is agnostic both to the deep network and the logic theory offering support for a wide range of probabilistic theories. Our framework can support supervised training of both components and unsupervised training of the neural component. Concordia has been successfully applied to tasks beyond NLP and data classification, improving the accuracy of state-of-the-art on collective activity detection, entity linking and recommendation tasks.
Unsupervised Learning of Neurosymbolic Encoders
We present a framework for the unsupervised learning of neurosymbolic encoders, which are encoders obtained by composing neural networks with symbolic programs from a domain-specific language. Our framework naturally incorporates symbolic expert knowledge into the learning process, which leads to more interpretable and factorized latent representations compared to fully neural encoders. We integrate modern program synthesis techniques with the variational autoencoding (VAE) framework, in order to learn a neurosymbolic encoder in conjunction with a standard decoder. The programmatic descriptions from our encoders can benefit many analysis workflows, such as in behavior modeling where interpreting agent actions and movements is important. We evaluate our method on learning latent representations for real-world trajectory data from animal biology and sports analytics. We show that our approach offers significantly better separation of meaningful categories than standard VAEs and leads to practical gains on downstream analysis tasks, such as for behavior classification.
VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning
A recent approach to neurosymbolic reasoning is to explicitly combine the strengths of large language models (LLMs) and symbolic solvers to tackle complex reasoning tasks. However, current approaches face significant limitations, including poor generalizability due to task-specific prompts, inefficiencies caused by the lack of separation between knowledge and queries, and restricted inferential capabilities. These shortcomings hinder their scalability and applicability across diverse domains. In this paper, we introduce VERUS-LM, a novel framework designed to address these challenges. VERUS-LM employs a generic prompting mechanism, clearly separates domain knowledge from queries, and supports a wide range of different logical reasoning tasks. This framework enhances adaptability, reduces computational cost, and allows for richer forms of reasoning, such as optimization and constraint satisfaction. We show that our approach succeeds in diverse reasoning on a novel dataset, markedly outperforming LLMs. Additionally, our system achieves competitive results on common reasoning benchmarks when compared to other state-of-the-art approaches, and significantly surpasses them on the difficult AR-LSAT dataset. By pushing the boundaries of hybrid reasoning, VERUS-LM represents a significant step towards more versatile neurosymbolic AI systems
Neurosymbolic Grounding for Compositional World Models
We introduce Cosmos, a framework for object-centric world modeling that is designed for compositional generalization (CG), i.e., high performance on unseen input scenes obtained through the composition of known visual "atoms." The central insight behind Cosmos is the use of a novel form of neurosymbolic grounding. Specifically, the framework introduces two new tools: (i) neurosymbolic scene encodings, which represent each entity in a scene using a real vector computed using a neural encoder, as well as a vector of composable symbols describing attributes of the entity, and (ii) a neurosymbolic attention mechanism that binds these entities to learned rules of interaction. Cosmos is end-to-end differentiable; also, unlike traditional neurosymbolic methods that require representations to be manually mapped to symbols, it computes an entity's symbolic attributes using vision-language foundation models. Through an evaluation that considers two different forms of CG on an established blocks-pushing domain, we show that the framework establishes a new state-of-the-art for CG in world modeling.
A-NeSI: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference
We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to solve three neurosymbolic tasks with exponential combinatorial scaling. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.
NEUSIS: A Compositional Neuro-Symbolic Framework for Autonomous Perception, Reasoning, and Planning in Complex UAV Search Missions
This paper addresses the problem of autonomous UAV search missions, where a UAV must locate specific Entities of Interest (EOIs) within a time limit, based on brief descriptions in large, hazard-prone environments with keep-out zones. The UAV must perceive, reason, and make decisions with limited and uncertain information. We propose NEUSIS, a compositional neuro-symbolic system designed for interpretable UAV search and navigation in realistic scenarios. NEUSIS integrates neuro-symbolic visual perception, reasoning, and grounding (GRiD) to process raw sensory inputs, maintains a probabilistic world model for environment representation, and uses a hierarchical planning component (SNaC) for efficient path planning. Experimental results from simulated urban search missions using AirSim and Unreal Engine show that NEUSIS outperforms a state-of-the-art (SOTA) vision-language model and a SOTA search planning model in success rate, search efficiency, and 3D localization. These results demonstrate the effectiveness of our compositional neuro-symbolic approach in handling complex, real-world scenarios, making it a promising solution for autonomous UAV systems in search missions.
PSYCHIC: A Neuro-Symbolic Framework for Knowledge Graph Question-Answering Grounding
The Scholarly Question Answering over Linked Data (Scholarly QALD) at The International Semantic Web Conference (ISWC) 2023 challenge presents two sub-tasks to tackle question answering (QA) over knowledge graphs (KGs). We answer the KGQA over DBLP (DBLP-QUAD) task by proposing a neuro-symbolic (NS) framework based on PSYCHIC, an extractive QA model capable of identifying the query and entities related to a KG question. Our system achieved a F1 score of 00.18% on question answering and came in third place for entity linking (EL) with a score of 71.00%.
NeSyCoCo: A Neuro-Symbolic Concept Composer for Compositional Generalization
Compositional generalization is crucial for artificial intelligence agents to solve complex vision-language reasoning tasks. Neuro-symbolic approaches have demonstrated promise in capturing compositional structures, but they face critical challenges: (a) reliance on predefined predicates for symbolic representations that limit adaptability, (b) difficulty in extracting predicates from raw data, and (c) using non-differentiable operations for combining primitive concepts. To address these issues, we propose NeSyCoCo, a neuro-symbolic framework that leverages large language models (LLMs) to generate symbolic representations and map them to differentiable neural computations. NeSyCoCo introduces three innovations: (a) augmenting natural language inputs with dependency structures to enhance the alignment with symbolic representations, (b) employing distributed word representations to link diverse, linguistically motivated logical predicates to neural modules, and (c) using the soft composition of normalized predicate scores to align symbolic and differentiable reasoning. Our framework achieves state-of-the-art results on the ReaSCAN and CLEVR-CoGenT compositional generalization benchmarks and demonstrates robust performance with novel concepts in the CLEVR-SYN benchmark.
Dynamic Planning with a LLM
While Large Language Models (LLMs) can solve many NLP tasks in zero-shot settings, applications involving embodied agents remain problematic. In particular, complex plans that require multi-step reasoning become difficult and too costly as the context window grows. Planning requires understanding the likely effects of one's actions and identifying whether the current environment satisfies the goal state. While symbolic planners find optimal solutions quickly, they require a complete and accurate representation of the planning problem, severely limiting their use in practical scenarios. In contrast, modern LLMs cope with noisy observations and high levels of uncertainty when reasoning about a task. Our work presents LLM Dynamic Planner (LLM-DP): a neuro-symbolic framework where an LLM works hand-in-hand with a traditional planner to solve an embodied task. Given action-descriptions, LLM-DP solves Alfworld faster and more efficiently than a naive LLM ReAct baseline.
Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving
Natural language explanations represent a proxy for evaluating explanation-based and multi-step Natural Language Inference (NLI) models. However, assessing the validity of explanations for NLI is challenging as it typically involves the crowd-sourcing of apposite datasets, a process that is time-consuming and prone to logical errors. To address existing limitations, this paper investigates the verification and refinement of natural language explanations through the integration of Large Language Models (LLMs) and Theorem Provers (TPs). Specifically, we present a neuro-symbolic framework, named Explanation-Refiner, that integrates TPs with LLMs to generate and formalise explanatory sentences and suggest potential inference strategies for NLI. In turn, the TP is employed to provide formal guarantees on the logical validity of the explanations and to generate feedback for subsequent improvements. We demonstrate how Explanation-Refiner can be jointly used to evaluate explanatory reasoning, autoformalisation, and error correction mechanisms of state-of-the-art LLMs as well as to automatically enhance the quality of explanations of variable complexity in different domains.
An Interpretable Neuro-Symbolic Reasoning Framework for Task-Oriented Dialogue Generation
We study the interpretability issue of task-oriented dialogue systems in this paper. Previously, most neural-based task-oriented dialogue systems employ an implicit reasoning strategy that makes the model predictions uninterpretable to humans. To obtain a transparent reasoning process, we introduce neuro-symbolic to perform explicit reasoning that justifies model decisions by reasoning chains. Since deriving reasoning chains requires multi-hop reasoning for task-oriented dialogues, existing neuro-symbolic approaches would induce error propagation due to the one-phase design. To overcome this, we propose a two-phase approach that consists of a hypothesis generator and a reasoner. We first obtain multiple hypotheses, i.e., potential operations to perform the desired task, through the hypothesis generator. Each hypothesis is then verified by the reasoner, and the valid one is selected to conduct the final prediction. The whole system is trained by exploiting raw textual dialogues without using any reasoning chain annotations. Experimental studies on two public benchmark datasets demonstrate that the proposed approach not only achieves better results, but also introduces an interpretable decision process.
Neurosymbolic AI -- Why, What, and How
Humans interact with the environment using a combination of perception - transforming sensory inputs from their environment into symbols, and cognition - mapping symbols to knowledge about the environment for supporting abstraction, reasoning by analogy, and long-term planning. Human perception-inspired machine perception, in the context of AI, refers to large-scale pattern recognition from raw data using neural networks trained using self-supervised learning objectives such as next-word prediction or object recognition. On the other hand, machine cognition encompasses more complex computations, such as using knowledge of the environment to guide reasoning, analogy, and long-term planning. Humans can also control and explain their cognitive functions. This seems to require the retention of symbolic mappings from perception outputs to knowledge about their environment. For example, humans can follow and explain the guidelines and safety constraints driving their decision-making in safety-critical applications such as healthcare, criminal justice, and autonomous driving. This article introduces the rapidly emerging paradigm of Neurosymbolic AI combines neural networks and knowledge-guided symbolic approaches to create more capable and flexible AI systems. These systems have immense potential to advance both algorithm-level (e.g., abstraction, analogy, reasoning) and application-level (e.g., explainable and safety-constrained decision-making) capabilities of AI systems.
JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for Conversational Embodied Agents
Building a conversational embodied agent to execute real-life tasks has been a long-standing yet quite challenging research goal, as it requires effective human-agent communication, multi-modal understanding, long-range sequential decision making, etc. Traditional symbolic methods have scaling and generalization issues, while end-to-end deep learning models suffer from data scarcity and high task complexity, and are often hard to explain. To benefit from both worlds, we propose JARVIS, a neuro-symbolic commonsense reasoning framework for modular, generalizable, and interpretable conversational embodied agents. First, it acquires symbolic representations by prompting large language models (LLMs) for language understanding and sub-goal planning, and by constructing semantic maps from visual observations. Then the symbolic module reasons for sub-goal planning and action generation based on task- and action-level common sense. Extensive experiments on the TEACh dataset validate the efficacy and efficiency of our JARVIS framework, which achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, including Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent Task Completion (TATC) (e.g., our method boosts the unseen Success Rate on EDH from 6.1\% to 15.8\%). Moreover, we systematically analyze the essential factors that affect the task performance and also demonstrate the superiority of our method in few-shot settings. Our JARVIS model ranks first in the Alexa Prize SimBot Public Benchmark Challenge.
MindBridge: A Cross-Subject Brain Decoding Framework
Brain decoding, a pivotal field in neuroscience, aims to reconstruct stimuli from acquired brain signals, primarily utilizing functional magnetic resonance imaging (fMRI). Currently, brain decoding is confined to a per-subject-per-model paradigm, limiting its applicability to the same individual for whom the decoding model is trained. This constraint stems from three key challenges: 1) the inherent variability in input dimensions across subjects due to differences in brain size; 2) the unique intrinsic neural patterns, influencing how different individuals perceive and process sensory information; 3) limited data availability for new subjects in real-world scenarios hampers the performance of decoding models. In this paper, we present a novel approach, MindBridge, that achieves cross-subject brain decoding by employing only one model. Our proposed framework establishes a generic paradigm capable of addressing these challenges by introducing biological-inspired aggregation function and novel cyclic fMRI reconstruction mechanism for subject-invariant representation learning. Notably, by cycle reconstruction of fMRI, MindBridge can enable novel fMRI synthesis, which also can serve as pseudo data augmentation. Within the framework, we also devise a novel reset-tuning method for adapting a pretrained model to a new subject. Experimental results demonstrate MindBridge's ability to reconstruct images for multiple subjects, which is competitive with dedicated subject-specific models. Furthermore, with limited data for a new subject, we achieve a high level of decoding accuracy, surpassing that of subject-specific models. This advancement in cross-subject brain decoding suggests promising directions for wider applications in neuroscience and indicates potential for more efficient utilization of limited fMRI data in real-world scenarios. Project page: https://littlepure2333.github.io/MindBridge
Configurable Foundation Models: Building LLMs from a Modular Perspective
Advancements in LLMs have recently unveiled challenges tied to computational efficiency and continual scalability due to their requirements of huge parameters, making the applications and evolution of these models on devices with limited computation resources and scenarios requiring various abilities increasingly cumbersome. Inspired by modularity within the human brain, there is a growing tendency to decompose LLMs into numerous functional modules, allowing for inference with part of modules and dynamic assembly of modules to tackle complex tasks, such as mixture-of-experts. To highlight the inherent efficiency and composability of the modular approach, we coin the term brick to represent each functional module, designating the modularized structure as configurable foundation models. In this paper, we offer a comprehensive overview and investigation of the construction, utilization, and limitation of configurable foundation models. We first formalize modules into emergent bricks - functional neuron partitions that emerge during the pre-training phase, and customized bricks - bricks constructed via additional post-training to improve the capabilities and knowledge of LLMs. Based on diverse functional bricks, we further present four brick-oriented operations: retrieval and routing, merging, updating, and growing. These operations allow for dynamic configuration of LLMs based on instructions to handle complex tasks. To verify our perspective, we conduct an empirical analysis on widely-used LLMs. We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions. Finally, we highlight several open issues and directions for future research. Overall, this paper aims to offer a fresh modular perspective on existing LLM research and inspire the future creation of more efficient and scalable foundational models.
A differentiable brain simulator bridging brain simulation and brain-inspired computing
Brain simulation builds dynamical models to mimic the structure and functions of the brain, while brain-inspired computing (BIC) develops intelligent systems by learning from the structure and functions of the brain. The two fields are intertwined and should share a common programming framework to facilitate each other's development. However, none of the existing software in the fields can achieve this goal, because traditional brain simulators lack differentiability for training, while existing deep learning (DL) frameworks fail to capture the biophysical realism and complexity of brain dynamics. In this paper, we introduce BrainPy, a differentiable brain simulator developed using JAX and XLA, with the aim of bridging the gap between brain simulation and BIC. BrainPy expands upon the functionalities of JAX, a powerful AI framework, by introducing complete capabilities for flexible, efficient, and scalable brain simulation. It offers a range of sparse and event-driven operators for efficient and scalable brain simulation, an abstraction for managing the intricacies of synaptic computations, a modular and flexible interface for constructing multi-scale brain models, and an object-oriented just-in-time compilation approach to handle the memory-intensive nature of brain dynamics. We showcase the efficiency and scalability of BrainPy on benchmark tasks, highlight its differentiable simulation for biologically plausible spiking models, and discuss its potential to support research at the intersection of brain simulation and BIC.
Exploring Neuron Interactions and Emergence in LLMs: From the Multifractal Analysis Perspective
Prior studies on the emergence in large models have primarily focused on how the functional capabilities of large language models (LLMs) scale with model size. Our research, however, transcends this traditional paradigm, aiming to deepen our understanding of the emergence within LLMs by placing a special emphasis not just on the model size but more significantly on the complex behavior of neuron interactions during the training process. By introducing the concepts of "self-organization" and "multifractal analysis," we explore how neuron interactions dynamically evolve during training, leading to "emergence," mirroring the phenomenon in natural systems where simple micro-level interactions give rise to complex macro-level behaviors. To quantitatively analyze the continuously evolving interactions among neurons in large models during training, we propose the Neuron-based Multifractal Analysis (NeuroMFA). Utilizing NeuroMFA, we conduct a comprehensive examination of the emergent behavior in LLMs through the lens of both model size and training process, paving new avenues for research into the emergence in large models.
Neuro-GPT: Towards A Foundation Model for EEG
To handle the scarcity and heterogeneity of electroencephalography (EEG) data for Brain-Computer Interface (BCI) tasks, and to harness the power of large publicly available data sets, we propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model. The foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments. We then fine-tune the model on a Motor Imagery Classification task to validate its performance in a low-data regime (9 subjects). Our experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch, which provides evidence for the generalizability of the foundation model and its ability to address challenges of data scarcity and heterogeneity in EEG. The code is publicly available at github.com/wenhui0206/NeuroGPT.
BrainTransformers: SNN-LLM
This study introduces BrainTransformers, an innovative Large Language Model (LLM) implemented using Spiking Neural Networks (SNN). Our key contributions include: (1) designing SNN-compatible Transformer components such as SNNMatmul, SNNSoftmax, and SNNSiLU; (2) implementing an SNN approximation of the SiLU activation function; and (3) developing a Synapsis module to simulate synaptic plasticity. Our 3-billion parameter model, BrainTransformers-3B-Chat, demonstrates competitive performance across various benchmarks, including MMLU (63.2), BBH (54.1), ARC-C (54.3), and GSM8K (76.3), while potentially offering improved energy efficiency and biological plausibility. The model employs a three-stage training approach, including SNN-specific neuronal synaptic plasticity training. This research opens new avenues for brain-like AI systems in natural language processing and neuromorphic computing. Future work will focus on hardware optimization, developing specialized SNN fine-tuning tools, and exploring practical applications in energy-efficient computing environments.
Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks
Softmax attention is the principle backbone of foundation models for various artificial intelligence applications, yet its quadratic complexity in sequence length can limit its inference throughput in long-context settings. To address this challenge, alternative architectures such as linear attention, State Space Models (SSMs), and Recurrent Neural Networks (RNNs) have been considered as more efficient alternatives. While connections between these approaches exist, such models are commonly developed in isolation and there is a lack of theoretical understanding of the shared principles underpinning these architectures and their subtle differences, greatly influencing performance and scalability. In this paper, we introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation. Our framework facilitates rigorous comparisons, providing new insights on the distinctive characteristics of each model class. For instance, we compare linear attention and selective SSMs, detailing their differences and conditions under which both are equivalent. We also provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated. Additionally, we substantiate these new insights with empirical validations and mathematical arguments. This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.
Aggregating Intrinsic Information to Enhance BCI Performance through Federated Learning
Insufficient data is a long-standing challenge for Brain-Computer Interface (BCI) to build a high-performance deep learning model. Though numerous research groups and institutes collect a multitude of EEG datasets for the same BCI task, sharing EEG data from multiple sites is still challenging due to the heterogeneity of devices. The significance of this challenge cannot be overstated, given the critical role of data diversity in fostering model robustness. However, existing works rarely discuss this issue, predominantly centering their attention on model training within a single dataset, often in the context of inter-subject or inter-session settings. In this work, we propose a hierarchical personalized Federated Learning EEG decoding (FLEEG) framework to surmount this challenge. This innovative framework heralds a new learning paradigm for BCI, enabling datasets with disparate data formats to collaborate in the model training process. Each client is assigned a specific dataset and trains a hierarchical personalized model to manage diverse data formats and facilitate information exchange. Meanwhile, the server coordinates the training procedure to harness knowledge gleaned from all datasets, thus elevating overall performance. The framework has been evaluated in Motor Imagery (MI) classification with nine EEG datasets collected by different devices but implementing the same MI task. Results demonstrate that the proposed frame can boost classification performance up to 16.7% by enabling knowledge sharing between multiple datasets, especially for smaller datasets. Visualization results also indicate that the proposed framework can empower the local models to put a stable focus on task-related areas, yielding better performance. To the best of our knowledge, this is the first end-to-end solution to address this important challenge.
Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis. Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive spatiotemporal generation problem. Neuroformer is a multimodal, multitask generative pretrained transformer (GPT) model that is specifically designed to handle the intricacies of data in systems neuroscience. It scales linearly with feature size, can process an arbitrary number of modalities, and is adaptable to downstream tasks, such as predicting behavior. We first trained Neuroformer on simulated datasets, and found that it both accurately predicted simulated neuronal circuit activity, and also intrinsically inferred the underlying neural circuit connectivity, including direction. When pretrained to decode neural responses, the model predicted the behavior of a mouse with only few-shot fine-tuning, suggesting that the model begins learning how to do so directly from the neural representations themselves, without any explicit supervision. We used an ablation study to show that joint training on neuronal responses and behavior boosted performance, highlighting the model's ability to associate behavioral and neural representations in an unsupervised manner. These findings show that Neuroformer can analyze neural datasets and their emergent properties, informing the development of models and hypotheses associated with the brain.
Understanding Foundation Models: Are We Back in 1924?
This position paper explores the rapid development of Foundation Models (FMs) in AI and their implications for intelligence and reasoning. It examines the characteristics of FMs, including their training on vast datasets and use of embedding spaces to capture semantic relationships. The paper discusses recent advancements in FMs' reasoning abilities which we argue cannot be attributed to increased model size but to novel training techniques which yield learning phenomena like grokking. It also addresses the challenges in benchmarking FMs and compares their structure to the human brain. We argue that while FMs show promising developments in reasoning and knowledge representation, understanding their inner workings remains a significant challenge, similar to ongoing efforts in neuroscience to comprehend human brain function. Despite having some similarities, fundamental differences between FMs and the structure of human brain warn us against making direct comparisons or expecting neuroscience to provide immediate insights into FM function.
Categorical Hopfield Networks
This paper discusses a simple and explicit toy-model example of the categorical Hopfield equations introduced in previous work of Manin and the author. These describe dynamical assignments of resources to networks, where resources are objects in unital symmetric monoidal categories and assignments are realized by summing functors. The special case discussed here is based on computational resources (computational models of neurons) as objects in a category of DNNs, with a simple choice of the endofunctors defining the Hopfield equations that reproduce the usual updating of the weights in DNNs by gradient descent.
From Perception to Programs: Regularize, Overparameterize, and Amortize
Toward combining inductive reasoning with perception abilities, we develop techniques for neurosymbolic program synthesis where perceptual input is first parsed by neural nets into a low-dimensional interpretable representation, which is then processed by a synthesized program. We explore several techniques for relaxing the problem and jointly learning all modules end-to-end with gradient descent: multitask learning; amortized inference; overparameterization; and a differentiable strategy for penalizing lengthy programs. Collectedly this toolbox improves the stability of gradient-guided program search, and suggests ways of learning both how to perceive input as discrete abstractions, and how to symbolically process those abstractions as programs.
Activation Space Selectable Kolmogorov-Arnold Networks
The multilayer perceptron (MLP), a fundamental paradigm in current artificial intelligence, is widely applied in fields such as computer vision and natural language processing. However, the recently proposed Kolmogorov-Arnold Network (KAN), based on nonlinear additive connections, has been proven to achieve performance comparable to MLPs with significantly fewer parameters. Despite this potential, the use of a single activation function space results in reduced performance of KAN and related works across different tasks. To address this issue, we propose an activation space Selectable KAN (S-KAN). S-KAN employs an adaptive strategy to choose the possible activation mode for data at each feedforward KAN node. Our approach outperforms baseline methods in seven representative function fitting tasks and significantly surpasses MLP methods with the same level of parameters. Furthermore, we extend the structure of S-KAN and propose an activation space selectable Convolutional KAN (S-ConvKAN), which achieves leading results on four general image classification datasets. Our method mitigates the performance variability of the original KAN across different tasks and demonstrates through extensive experiments that feedforward KANs with selectable activations can achieve or even exceed the performance of MLP-based methods. This work contributes to the understanding of the data-centric design of new AI paradigms and provides a foundational reference for innovations in KAN-based network architectures.
Representational dissimilarity metric spaces for stochastic neural networks
Quantifying similarity between neural representations -- e.g. hidden layer activation vectors -- is a perennial problem in deep learning and neuroscience research. Existing methods compare deterministic responses (e.g. artificial networks that lack stochastic layers) or averaged responses (e.g., trial-averaged firing rates in biological data). However, these measures of _deterministic_ representational similarity ignore the scale and geometric structure of noise, both of which play important roles in neural computation. To rectify this, we generalize previously proposed shape metrics (Williams et al. 2021) to quantify differences in _stochastic_ representations. These new distances satisfy the triangle inequality, and thus can be used as a rigorous basis for many supervised and unsupervised analyses. Leveraging this novel framework, we find that the stochastic geometries of neurobiological representations of oriented visual gratings and naturalistic scenes respectively resemble untrained and trained deep network representations. Further, we are able to more accurately predict certain network attributes (e.g. training hyperparameters) from its position in stochastic (versus deterministic) shape space.
Generalizable Neural Fields as Partially Observed Neural Processes
Neural fields, which represent signals as a function parameterized by a neural network, are a promising alternative to traditional discrete vector or grid-based representations. Compared to discrete representations, neural representations both scale well with increasing resolution, are continuous, and can be many-times differentiable. However, given a dataset of signals that we would like to represent, having to optimize a separate neural field for each signal is inefficient, and cannot capitalize on shared information or structures among signals. Existing generalization methods view this as a meta-learning problem and employ gradient-based meta-learning to learn an initialization which is then fine-tuned with test-time optimization, or learn hypernetworks to produce the weights of a neural field. We instead propose a new paradigm that views the large-scale training of neural representations as a part of a partially-observed neural process framework, and leverage neural process algorithms to solve this task. We demonstrate that this approach outperforms both state-of-the-art gradient-based meta-learning approaches and hypernetwork approaches.
OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities
In most current research, large language models (LLMs) are able to perform reasoning tasks by generating chains of thought through the guidance of specific prompts. However, there still exists a significant discrepancy between their capability in solving complex reasoning problems and that of humans. At present, most approaches focus on chains of thought (COT) and tool use, without considering the adoption and application of human cognitive frameworks. It is well-known that when confronting complex reasoning challenges, humans typically employ various cognitive abilities, and necessitate interaction with all aspects of tools, knowledge, and the external environment information to accomplish intricate tasks. This paper introduces a novel intelligent framework, referred to as OlaGPT. OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms. Inspired by the active learning mechanism of human beings, it proposes a learning unit to record previous mistakes and expert opinions, and dynamically refer to them to strengthen their ability to solve similar problems. The paper also outlines common effective reasoning frameworks for human problem-solving and designs Chain-of-Thought (COT) templates accordingly. A comprehensive decision-making mechanism is also proposed to maximize model accuracy. The efficacy of OlaGPT has been stringently evaluated on multiple reasoning datasets, and the experimental outcomes reveal that OlaGPT surpasses state-of-the-art benchmarks, demonstrating its superior performance. Our implementation of OlaGPT is available on GitHub: https://github.com/oladata-team/OlaGPT.
Neuro-Vision to Language: Enhancing Visual Reconstruction and Language Interaction through Brain Recordings
Decoding non-invasive brain recordings is pivotal for advancing our understanding of human cognition but faces challenges due to individual differences and complex neural signal representations. Traditional methods often require customized models and extensive trials, lacking interpretability in visual reconstruction tasks. Our framework integrates 3D brain structures with visual semantics using a Vision Transformer 3D. This unified feature extractor efficiently aligns fMRI features with multiple levels of visual embeddings, eliminating the need for subject-specific models and allowing extraction from single-trial data. The extractor consolidates multi-level visual features into one network, simplifying integration with Large Language Models (LLMs). Additionally, we have enhanced the fMRI dataset with diverse fMRI-image-related textual data to support multimodal large model development. Integrating with LLMs enhances decoding capabilities, enabling tasks such as brain captioning, complex reasoning, concept localization, and visual reconstruction. Our approach demonstrates superior performance across these tasks, precisely identifying language-based concepts within brain signals, enhancing interpretability, and providing deeper insights into neural processes. These advances significantly broaden the applicability of non-invasive brain decoding in neuroscience and human-computer interaction, setting the stage for advanced brain-computer interfaces and cognitive models.
NeuroSynth: MRI-Derived Neuroanatomical Generative Models and Associated Dataset of 18,000 Samples
Availability of large and diverse medical datasets is often challenged by privacy and data sharing restrictions. For successful application of machine learning techniques for disease diagnosis, prognosis, and precision medicine, large amounts of data are necessary for model building and optimization. To help overcome such limitations in the context of brain MRI, we present NeuroSynth: a collection of generative models of normative regional volumetric features derived from structural brain imaging. NeuroSynth models are trained on real brain imaging regional volumetric measures from the iSTAGING consortium, which encompasses over 40,000 MRI scans across 13 studies, incorporating covariates such as age, sex, and race. Leveraging NeuroSynth, we produce and offer 18,000 synthetic samples spanning the adult lifespan (ages 22-90 years), alongside the model's capability to generate unlimited data. Experimental results indicate that samples generated from NeuroSynth agree with the distributions obtained from real data. Most importantly, the generated normative data significantly enhance the accuracy of downstream machine learning models on tasks such as disease classification. Data and models are available at: https://huggingface.co/spaces/rongguangw/neuro-synth.
The Tensor Brain: Semantic Decoding for Perception and Memory
We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of subject-predicate-object (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.
Protecting Intellectual Property of EEG-based Neural Networks with Watermarking
EEG-based neural networks, pivotal in medical diagnosis and brain-computer interfaces, face significant intellectual property (IP) risks due to their reliance on sensitive neurophysiological data and resource-intensive development. Current watermarking methods, particularly those using abstract trigger sets, lack robust authentication and fail to address the unique challenges of EEG models. This paper introduces a cryptographic wonder filter-based watermarking framework tailored for EEG-based neural networks. Leveraging collision-resistant hashing and public-key encryption, the wonder filter embeds the watermark during training, ensuring minimal distortion (leq 5% drop in EEG task accuracy) and high reliability (100\% watermark detection). The framework is rigorously evaluated against adversarial attacks, including fine-tuning, transfer learning, and neuron pruning. Results demonstrate persistent watermark retention, with classification accuracy for watermarked states remaining above 90\% even after aggressive pruning, while primary task performance degrades faster, deterring removal attempts. Piracy resistance is validated by the inability to embed secondary watermarks without severe accuracy loss ( >10% in EEGNet and CCNN models). Cryptographic hashing ensures authentication, reducing brute-force attack success probabilities. Evaluated on the DEAP dataset across models (CCNN, EEGNet, TSception), the method achieves >99.4% null-embedding accuracy, effectively eliminating false positives. By integrating wonder filters with EEG-specific adaptations, this work bridges a critical gap in IP protection for neurophysiological models, offering a secure, tamper-proof solution for healthcare and biometric applications. The framework's robustness against adversarial modifications underscores its potential to safeguard sensitive EEG models while maintaining diagnostic utility.
Using Left and Right Brains Together: Towards Vision and Language Planning
Large Language Models (LLMs) and Large Multi-modality Models (LMMs) have demonstrated remarkable decision masking capabilities on a variety of tasks. However, they inherently operate planning within the language space, lacking the vision and spatial imagination ability. In contrast, humans utilize both left and right hemispheres of the brain for language and visual planning during the thinking process. Therefore, we introduce a novel vision-language planning framework in this work to perform concurrent visual and language planning for tasks with inputs of any form. Our framework incorporates visual planning to capture intricate environmental details, while language planning enhances the logical coherence of the overall system. We evaluate the effectiveness of our framework across vision-language tasks, vision-only tasks, and language-only tasks. The results demonstrate the superior performance of our approach, indicating that the integration of visual and language planning yields better contextually aware task execution.
Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality
While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling.
Mamba base PKD for efficient knowledge compression
Deep neural networks (DNNs) have remarkably succeeded in various image processing tasks. However, their large size and computational complexity present significant challenges for deploying them in resource-constrained environments. This paper presents an innovative approach for integrating Mamba Architecture within a Progressive Knowledge Distillation (PKD) process to address the challenge of reducing model complexity while maintaining accuracy in image classification tasks. The proposed framework distills a large teacher model into progressively smaller student models, designed using Mamba blocks. Each student model is trained using Selective-State-Space Models (S-SSM) within the Mamba blocks, focusing on important input aspects while reducing computational complexity. The work's preliminary experiments use MNIST and CIFAR-10 as datasets to demonstrate the effectiveness of this approach. For MNIST, the teacher model achieves 98% accuracy. A set of seven student models as a group retained 63% of the teacher's FLOPs, approximating the teacher's performance with 98% accuracy. The weak student used only 1% of the teacher's FLOPs and maintained 72% accuracy. Similarly, for CIFAR-10, the students achieved 1% less accuracy compared to the teacher, with the small student retaining 5% of the teacher's FLOPs to achieve 50% accuracy. These results confirm the flexibility and scalability of Mamba Architecture, which can be integrated into PKD, succeeding in the process of finding students as weak learners. The framework provides a solution for deploying complex neural networks in real-time applications with a reduction in computational cost.
Modeling the Machine Learning Multiverse
Amid mounting concern about the reliability and credibility of machine learning research, we present a principled framework for making robust and generalizable claims: the multiverse analysis. Our framework builds upon the multiverse analysis (Steegen et al., 2016) introduced in response to psychology's own reproducibility crisis. To efficiently explore high-dimensional and often continuous ML search spaces, we model the multiverse with a Gaussian Process surrogate and apply Bayesian experimental design. Our framework is designed to facilitate drawing robust scientific conclusions about model performance, and thus our approach focuses on exploration rather than conventional optimization. In the first of two case studies, we investigate disputed claims about the relative merit of adaptive optimizers. Second, we synthesize conflicting research on the effect of learning rate on the large batch training generalization gap. For the machine learning community, the multiverse analysis is a simple and effective technique for identifying robust claims, for increasing transparency, and a step toward improved reproducibility.
Table as Thought: Exploring Structured Thoughts in LLM Reasoning
Large language models' reasoning abilities benefit from methods that organize their thought processes, such as chain-of-thought prompting, which employs a sequential structure to guide the reasoning process step-by-step. However, existing approaches focus primarily on organizing the sequence of thoughts, leaving structure in individual thought steps underexplored. To address this gap, we propose Table as Thought, a framework inspired by cognitive neuroscience theories on human thought. Table as Thought organizes reasoning within a tabular schema, where rows represent sequential thought steps and columns capture critical constraints and contextual information to enhance reasoning. The reasoning process iteratively populates the table until self-verification ensures completeness and correctness. Our experiments show that Table as Thought excels in planning tasks and demonstrates a strong potential for enhancing LLM performance in mathematical reasoning compared to unstructured thought baselines. This work provides a novel exploration of refining thought representation within LLMs, paving the way for advancements in reasoning and AI cognition.
Decoding Natural Images from EEG for Object Recognition
Electroencephalography (EEG) signals, known for convenient non-invasive acquisition but low signal-to-noise ratio, have recently gained substantial attention due to the potential to decode natural images. This paper presents a self-supervised framework to demonstrate the feasibility of learning image representations from EEG signals, particularly for object recognition. The framework utilizes image and EEG encoders to extract features from paired image stimuli and EEG responses. Contrastive learning aligns these two modalities by constraining their similarity. With the framework, we attain significantly above-chance results on a comprehensive EEG-image dataset, achieving a top-1 accuracy of 15.6% and a top-5 accuracy of 42.8% in challenging 200-way zero-shot tasks. Moreover, we perform extensive experiments to explore the biological plausibility by resolving the temporal, spatial, spectral, and semantic aspects of EEG signals. Besides, we introduce attention modules to capture spatial correlations, providing implicit evidence of the brain activity perceived from EEG data. These findings yield valuable insights for neural decoding and brain-computer interfaces in real-world scenarios. The code will be released on https://github.com/eeyhsong/NICE-EEG.
Structure Learning for Neural Module Networks
Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that involve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules.
NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties
In the pursuit to understand the intricacies of human brain's visual processing, reconstructing dynamic visual experiences from brain activities emerges as a challenging yet fascinating endeavor. While recent advancements have achieved success in reconstructing static images from non-invasive brain recordings, the domain of translating continuous brain activities into video format remains underexplored. In this work, we introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data, such as noises, spatial redundancy and temporal lags. This framework proposes spatial masking and temporal interpolation-based augmentation for contrastive learning fMRI representations and a diffusion model enhanced by dependent prior noise for video generation. Tested on a publicly available fMRI dataset, our method shows promising results, outperforming the previous state-of-the-art models by a notable margin of {20.97%}, {31.00%} and {12.30%} respectively on decoding the brain activities of three subjects in the fMRI dataset, as measured by SSIM. Additionally, our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
A streamable large-scale clinical EEG dataset for Deep Learning
Deep Learning has revolutionized various fields, including Computer Vision, Natural Language Processing, as well as Biomedical research. Within the field of neuroscience, specifically in electrophysiological neuroimaging, researchers are starting to explore leveraging deep learning to make predictions on their data without extensive feature engineering. The availability of large-scale datasets is a crucial aspect of allowing the experimentation of Deep Learning models. We are publishing the first large-scale clinical EEG dataset that simplifies data access and management for Deep Learning. This dataset contains eyes-closed EEG data prepared from a collection of 1,574 juvenile participants from the Healthy Brain Network. We demonstrate a use case integrating this framework, and discuss why providing such neuroinformatics infrastructure to the community is critical for future scientific discoveries.
Effects of Plasticity Functions on Neural Assemblies
We explore the effects of various plasticity functions on assemblies of neurons. To bridge the gap between experimental and computational theories we make use of a conceptual framework, the Assembly Calculus, which is a formal system for the description of brain function based on assemblies of neurons. The Assembly Calculus includes operations for projecting, associating, and merging assemblies of neurons. Our research is focused on simulating different plasticity functions with Assembly Calculus. Our main contribution is the modification and evaluation of the projection operation. We experiment with Oja's and Spike Time-Dependent Plasticity (STDP) rules and test the effect of various hyper-parameters.
Multimodal Deep Learning
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
Learning Symmetrization for Equivariance with Orbit Distance Minimization
We present a general framework for symmetrizing an arbitrary neural-network architecture and making it equivariant with respect to a given group. We build upon the proposals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them by replacing their conversion of neural features into group representations, with an optimization whose loss intuitively measures the distance between group orbits. This change makes our approach applicable to a broader range of matrix groups, such as the Lorentz group O(1, 3), than these two proposals. We experimentally show our method's competitiveness on the SO(2) image classification task, and also its increased generality on the task with O(1, 3). Our implementation will be made accessible at https://github.com/tiendatnguyen-vision/Orbit-symmetrize.
A Unified Implicit Attention Formulation for Gated-Linear Recurrent Sequence Models
Recent advances in efficient sequence modeling have led to attention-free layers, such as Mamba, RWKV, and various gated RNNs, all featuring sub-quadratic complexity in sequence length and excellent scaling properties, enabling the construction of a new type of foundation models. In this paper, we present a unified view of these models, formulating such layers as implicit causal self-attention layers. The formulation includes most of their sub-components and is not limited to a specific part of the architecture. The framework compares the underlying mechanisms on similar grounds for different layers and provides a direct means for applying explainability methods. Our experiments show that our attention matrices and attribution method outperform an alternative and a more limited formulation that was recently proposed for Mamba. For the other architectures for which our method is the first to provide such a view, our method is effective and competitive in the relevant metrics compared to the results obtained by state-of-the-art transformer explainability methods. Our code is publicly available.
Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers
Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.
BriLLM: Brain-inspired Large Language Model
This paper reports the first brain-inspired large language model (BriLLM). This is a non-Transformer, non-GPT, non-traditional machine learning input-output controlled generative language model. The model is based on the Signal Fully-connected flowing (SiFu) definition on the directed graph in terms of the neural network, and has the interpretability of all nodes on the graph of the whole model, instead of the traditional machine learning model that only has limited interpretability at the input and output ends. In the language model scenario, the token is defined as a node in the graph. A randomly shaped or user-defined signal flow flows between nodes on the principle of "least resistance" along paths. The next token or node to be predicted or generated is the target of the signal flow. As a language model, BriLLM theoretically supports infinitely long n-gram models when the model size is independent of the input and predicted length of the model. The model's working signal flow provides the possibility of recall activation and innate multi-modal support similar to the cognitive patterns of the human brain. At present, we released the first BriLLM version in Chinese, with 4000 tokens, 32-dimensional node width, 16-token long sequence prediction ability, and language model prediction performance comparable to GPT-1. More computing power will help us explore the infinite possibilities depicted above.
Internal Consistency and Self-Feedback in Large Language Models: A Survey
Large language models (LLMs) are expected to respond accurately but often exhibit deficient reasoning or generate hallucinatory content. To address these, studies prefixed with ``Self-'' such as Self-Consistency, Self-Improve, and Self-Refine have been initiated. They share a commonality: involving LLMs evaluating and updating itself to mitigate the issues. Nonetheless, these efforts lack a unified perspective on summarization, as existing surveys predominantly focus on categorization without examining the motivations behind these works. In this paper, we summarize a theoretical framework, termed Internal Consistency, which offers unified explanations for phenomena such as the lack of reasoning and the presence of hallucinations. Internal Consistency assesses the coherence among LLMs' latent layer, decoding layer, and response layer based on sampling methodologies. Expanding upon the Internal Consistency framework, we introduce a streamlined yet effective theoretical framework capable of mining Internal Consistency, named Self-Feedback. The Self-Feedback framework consists of two modules: Self-Evaluation and Self-Update. This framework has been employed in numerous studies. We systematically classify these studies by tasks and lines of work; summarize relevant evaluation methods and benchmarks; and delve into the concern, ``Does Self-Feedback Really Work?'' We propose several critical viewpoints, including the ``Hourglass Evolution of Internal Consistency'', ``Consistency Is (Almost) Correctness'' hypothesis, and ``The Paradox of Latent and Explicit Reasoning''. Furthermore, we outline promising directions for future research. We have open-sourced the experimental code, reference list, and statistical data, available at https://github.com/IAAR-Shanghai/ICSFSurvey.
Interpreting the Second-Order Effects of Neurons in CLIP
We interpret the function of individual neurons in CLIP by automatically describing them using text. Analyzing the direct effects (i.e. the flow from a neuron through the residual stream to the output) or the indirect effects (overall contribution) fails to capture the neurons' function in CLIP. Therefore, we present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output. We find that these effects are highly selective: for each neuron, the effect is significant for <2% of the images. Moreover, each effect can be approximated by a single direction in the text-image space of CLIP. We describe neurons by decomposing these directions into sparse sets of text representations. The sets reveal polysemantic behavior - each neuron corresponds to multiple, often unrelated, concepts (e.g. ships and cars). Exploiting this neuron polysemy, we mass-produce "semantic" adversarial examples by generating images with concepts spuriously correlated to the incorrect class. Additionally, we use the second-order effects for zero-shot segmentation and attribute discovery in images. Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
Modular Deep Learning
Transfer learning has recently become the dominant paradigm of machine learning. Pre-trained models fine-tuned for downstream tasks achieve better performance with fewer labelled examples. Nonetheless, it remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference and that generalise systematically to non-identically distributed tasks. Modular deep learning has emerged as a promising solution to these challenges. In this framework, units of computation are often implemented as autonomous parameter-efficient modules. Information is conditionally routed to a subset of modules and subsequently aggregated. These properties enable positive transfer and systematic generalisation by separating computation from routing and updating modules locally. We offer a survey of modular architectures, providing a unified view over several threads of research that evolved independently in the scientific literature. Moreover, we explore various additional purposes of modularity, including scaling language models, causal inference, programme induction, and planning in reinforcement learning. Finally, we report various concrete applications where modularity has been successfully deployed such as cross-lingual and cross-modal knowledge transfer. Related talks and projects to this survey, are available at https://www.modulardeeplearning.com/.
Hebbian Learning based Orthogonal Projection for Continual Learning of Spiking Neural Networks
Neuromorphic computing with spiking neural networks is promising for energy-efficient artificial intelligence (AI) applications. However, different from humans who continually learn different tasks in a lifetime, neural network models suffer from catastrophic forgetting. How could neuronal operations solve this problem is an important question for AI and neuroscience. Many previous studies draw inspiration from observed neuroscience phenomena and propose episodic replay or synaptic metaplasticity, but they are not guaranteed to explicitly preserve knowledge for neuron populations. Other works focus on machine learning methods with more mathematical grounding, e.g., orthogonal projection on high dimensional spaces, but there is no neural correspondence for neuromorphic computing. In this work, we develop a new method with neuronal operations based on lateral connections and Hebbian learning, which can protect knowledge by projecting activity traces of neurons into an orthogonal subspace so that synaptic weight update will not interfere with old tasks. We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities and enable orthogonal projection. This provides new insights into how neural circuits and Hebbian learning can help continual learning, and also how the concept of orthogonal projection can be realized in neuronal systems. Our method is also flexible to utilize arbitrary training methods based on presynaptic activities/traces. Experiments show that our method consistently solves forgetting for spiking neural networks with nearly zero forgetting under various supervised training methods with different error propagation approaches, and outperforms previous approaches under various settings. Our method can pave a solid path for building continual neuromorphic computing systems.
The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
NeMo: a toolkit for building AI applications using Neural Modules
NeMo (Neural Modules) is a Python framework-agnostic toolkit for creating AI applications through re-usability, abstraction, and composition. NeMo is built around neural modules, conceptual blocks of neural networks that take typed inputs and produce typed outputs. Such modules typically represent data layers, encoders, decoders, language models, loss functions, or methods of combining activations. NeMo makes it easy to combine and re-use these building blocks while providing a level of semantic correctness checking via its neural type system. The toolkit comes with extendable collections of pre-built modules for automatic speech recognition and natural language processing. Furthermore, NeMo provides built-in support for distributed training and mixed precision on latest NVIDIA GPUs. NeMo is open-source https://github.com/NVIDIA/NeMo
Life, uh, Finds a Way: Systematic Neural Search
We tackle the challenge of rapidly adapting an agent's behavior to solve spatiotemporally continuous problems in novel settings. Animals exhibit extraordinary abilities to adapt to new contexts, a capacity unmatched by artificial systems. Instead of focusing on generalization through deep reinforcement learning, we propose viewing behavior as the physical manifestation of a search procedure, where robust problem-solving emerges from an exhaustive search across all possible behaviors. Surprisingly, this can be done efficiently using online modification of a cognitive graph that guides action, challenging the predominant view that exhaustive search in continuous spaces is impractical. We describe an algorithm that implicitly enumerates behaviors by regulating the tight feedback loop between execution of behaviors and mutation of the graph, and provide a neural implementation based on Hebbian learning and a novel high-dimensional harmonic representation inspired by entorhinal cortex. By framing behavior as search, we provide a mathematically simple and biologically plausible model for real-time behavioral adaptation, successfully solving a variety of continuous state-space navigation problems. This framework not only offers a flexible neural substrate for other applications but also presents a powerful paradigm for understanding adaptive behavior. Our results suggest potential advancements in developmental learning and unsupervised skill acquisition, paving the way for autonomous robots to master complex skills in data-sparse environments demanding flexibility.
Learning dynamic representations of the functional connectome in neurobiological networks
The static synaptic connectivity of neuronal circuits stands in direct contrast to the dynamics of their function. As in changing community interactions, different neurons can participate actively in various combinations to effect behaviors at different times. We introduce an unsupervised approach to learn the dynamic affinities between neurons in live, behaving animals, and to reveal which communities form among neurons at different times. The inference occurs in two major steps. First, pairwise non-linear affinities between neuronal traces from brain-wide calcium activity are organized by non-negative tensor factorization (NTF). Each factor specifies which groups of neurons are most likely interacting for an inferred interval in time, and for which animals. Finally, a generative model that allows for weighted community detection is applied to the functional motifs produced by NTF to reveal a dynamic functional connectome. Since time codes the different experimental variables (e.g., application of chemical stimuli), this provides an atlas of neural motifs active during separate stages of an experiment (e.g., stimulus application or spontaneous behaviors). Results from our analysis are experimentally validated, confirming that our method is able to robustly predict causal interactions between neurons to generate behavior. Code is available at https://github.com/dyballa/dynamic-connectomes.
Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
Recent advances in Large Multimodal Models (LMMs) lead to significant breakthroughs in both academia and industry. One question that arises is how we, as humans, can understand their internal neural representations. This paper takes an initial step towards addressing this question by presenting a versatile framework to identify and interpret the semantics within LMMs. Specifically, 1) we first apply a Sparse Autoencoder(SAE) to disentangle the representations into human understandable features. 2) We then present an automatic interpretation framework to interpreted the open-semantic features learned in SAE by the LMMs themselves. We employ this framework to analyze the LLaVA-NeXT-8B model using the LLaVA-OV-72B model, demonstrating that these features can effectively steer the model's behavior. Our results contribute to a deeper understanding of why LMMs excel in specific tasks, including EQ tests, and illuminate the nature of their mistakes along with potential strategies for their rectification. These findings offer new insights into the internal mechanisms of LMMs and suggest parallels with the cognitive processes of the human brain.
Massively Multitask Networks for Drug Discovery
Massively multitask neural architectures provide a learning framework for drug discovery that synthesizes information from many distinct biological sources. To train these architectures at scale, we gather large amounts of data from public sources to create a dataset of nearly 40 million measurements across more than 200 biological targets. We investigate several aspects of the multitask framework by performing a series of empirical studies and obtain some interesting results: (1) massively multitask networks obtain predictive accuracies significantly better than single-task methods, (2) the predictive power of multitask networks improves as additional tasks and data are added, (3) the total amount of data and the total number of tasks both contribute significantly to multitask improvement, and (4) multitask networks afford limited transferability to tasks not in the training set. Our results underscore the need for greater data sharing and further algorithmic innovation to accelerate the drug discovery process.
Dense Hebbian neural networks: a replica symmetric picture of supervised learning
We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.
A brain basis of dynamical intelligence for AI and computational neuroscience
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
Bio-inspired computational memory model of the Hippocampus: an approach to a neuromorphic spike-based Content-Addressable Memory
The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.
Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation
The development of foundation models has revolutionized our ability to interpret the Earth's surface using satellite observational data. Traditional models have been siloed, tailored to specific sensors or data types like optical, radar, and hyperspectral, each with its own unique characteristics. This specialization hinders the potential for a holistic analysis that could benefit from the combined strengths of these diverse data sources. Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science to integrate various data modalities into a single framework adaptively. This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining. DOFA's innovative design offers a promising leap towards more accurate, efficient, and unified Earth observation analysis, showcasing remarkable adaptability and performance in harnessing the potential of multimodal Earth observation data.
Enhancing Neural Subset Selection: Integrating Background Information into Set Representations
Learning neural subset selection tasks, such as compound selection in AI-aided drug discovery, have become increasingly pivotal across diverse applications. The existing methodologies in the field primarily concentrate on constructing models that capture the relationship between utility function values and subsets within their respective supersets. However, these approaches tend to overlook the valuable information contained within the superset when utilizing neural networks to model set functions. In this work, we address this oversight by adopting a probabilistic perspective. Our theoretical findings demonstrate that when the target value is conditioned on both the input set and subset, it is essential to incorporate an invariant sufficient statistic of the superset into the subset of interest for effective learning. This ensures that the output value remains invariant to permutations of the subset and its corresponding superset, enabling identification of the specific superset from which the subset originated. Motivated by these insights, we propose a simple yet effective information aggregation module designed to merge the representations of subsets and supersets from a permutation invariance perspective. Comprehensive empirical evaluations across diverse tasks and datasets validate the enhanced efficacy of our approach over conventional methods, underscoring the practicality and potency of our proposed strategies in real-world contexts.
A Multi-Level Framework for Accelerating Training Transformer Models
The fast growing capabilities of large-scale deep learning models, such as Bert, GPT and ViT, are revolutionizing the landscape of NLP, CV and many other domains. Training such models, however, poses an unprecedented demand for computing power, which incurs exponentially increasing energy cost and carbon dioxide emissions. It is thus critical to develop efficient training solutions to reduce the training costs. Motivated by a set of key observations of inter- and intra-layer similarities among feature maps and attentions that can be identified from typical training processes, we propose a multi-level framework for training acceleration. Specifically, the framework is based on three basic operators, Coalescing, De-coalescing and Interpolation, which can be orchestrated to build a multi-level training framework. The framework consists of a V-cycle training process, which progressively down- and up-scales the model size and projects the parameters between adjacent levels of models via coalescing and de-coalescing. The key idea is that a smaller model that can be trained for fast convergence and the trained parameters provides high-qualities intermediate solutions for the next level larger network. The interpolation operator is designed to break the symmetry of neurons incurred by de-coalescing for better convergence performance. Our experiments on transformer-based language models (e.g. Bert, GPT) as well as a vision model (e.g. DeiT) prove that the proposed framework reduces the computational cost by about 20% on training BERT/GPT-Base models and up to 51.6% on training the BERT-Large model while preserving the performance.
FAN: Fourier Analysis Networks
Despite the remarkable success achieved by neural networks, particularly those represented by MLP and Transformer, we reveal that they exhibit potential flaws in the modeling and reasoning of periodicity, i.e., they tend to memorize the periodic data rather than genuinely understanding the underlying principles of periodicity. However, periodicity is a crucial trait in various forms of reasoning and generalization, underpinning predictability across natural and engineered systems through recurring patterns in observations. In this paper, we propose FAN, a novel network architecture based on Fourier Analysis, which empowers the ability to efficiently model and reason about periodic phenomena. By introducing Fourier Series, the periodicity is naturally integrated into the structure and computational processes of the neural network, thus achieving a more accurate expression and prediction of periodic patterns. As a promising substitute to multi-layer perceptron (MLP), FAN can seamlessly replace MLP in various models with fewer parameters and FLOPs. Through extensive experiments, we demonstrate the effectiveness of FAN in modeling and reasoning about periodic functions, and the superiority and generalizability of FAN across a range of real-world tasks, including symbolic formula representation, time series forecasting, and language modeling.
Datamodels: Predicting Predictions from Training Data
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data. For any fixed "target" example x, training set S, and learning algorithm, a datamodel is a parameterized function 2^S to R that for any subset of S' subset S -- using only information about which examples of S are contained in S' -- predicts the outcome of training a model on S' and evaluating on x. Despite the potential complexity of the underlying process being approximated (e.g., end-to-end training and evaluation of deep neural networks), we show that even simple linear datamodels can successfully predict model outputs. We then demonstrate that datamodels give rise to a variety of applications, such as: accurately predicting the effect of dataset counterfactuals; identifying brittle predictions; finding semantically similar examples; quantifying train-test leakage; and embedding data into a well-behaved and feature-rich representation space. Data for this paper (including pre-computed datamodels as well as raw predictions from four million trained deep neural networks) is available at https://github.com/MadryLab/datamodels-data .
The Hidden Attention of Mamba Models
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains including NLP, long-range sequences processing, and computer vision. Selective SSMs are viewed as dual models, in which one trains in parallel on the entire sequence via IO-aware parallel scan, and deploys in an autoregressive manner. We add a third view and show that such models can be viewed as attention-driven models. This new perspective enables us to compare the underlying mechanisms to that of the self-attention layers in transformers and allows us to peer inside the inner workings of the Mamba model with explainability methods. Our code is publicly available.
How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites
We propose a formal mathematical model for sparse representations and active dendrites in neocortex. Our model is inspired by recent experimental findings on active dendritic processing and NMDA spikes in pyramidal neurons. These experimental and modeling studies suggest that the basic unit of pattern memory in the neocortex is instantiated by small clusters of synapses operated on by localized non-linear dendritic processes. We derive a number of scaling laws that characterize the accuracy of such dendrites in detecting activation patterns in a neuronal population under adverse conditions. We introduce the union property which shows that synapses for multiple patterns can be randomly mixed together within a segment and still lead to highly accurate recognition. We describe simulation results that provide further insight into sparse representations as well as two primary results. First we show that pattern recognition by a neuron with active dendrites can be extremely accurate and robust with high dimensional sparse inputs even when using a tiny number of synapses to recognize large patterns. Second, equations representing recognition accuracy of a dendrite predict optimal NMDA spiking thresholds under a generous set of assumptions. The prediction tightly matches NMDA spiking thresholds measured in the literature. Our model matches many of the known properties of pyramidal neurons. As such the theory provides a mathematical framework for understanding the benefits and limits of sparse representations in cortical networks.
Rule-Based Error Detection and Correction to Operationalize Movement Trajectory Classification
Classification of movement trajectories has many applications in transportation. Supervised neural models represent the current state-of-the-art. Recent security applications require this task to be rapidly employed in environments that may differ from the data used to train such models for which there is little training data. We provide a neuro-symbolic rule-based framework to conduct error correction and detection of these models to support eventual deployment in security applications. We provide a suite of experiments on several recent and state-of-the-art models and show an accuracy improvement of 1.7% over the SOTA model in the case where all classes are present in training and when 40% of classes are omitted from training, we obtain a 5.2% improvement (zero-shot) and 23.9% (few-shot) improvement over the SOTA model without resorting to retraining of the base model.
Mindstorms in Natural Language-Based Societies of Mind
Both Minsky's "society of mind" and Schmidhuber's "learning to think" inspire diverse societies of large multimodal neural networks (NNs) that solve problems by interviewing each other in a "mindstorm." Recent implementations of NN-based societies of minds consist of large language models (LLMs) and other NN-based experts communicating through a natural language interface. In doing so, they overcome the limitations of single LLMs, improving multimodal zero-shot reasoning. In these natural language-based societies of mind (NLSOMs), new agents -- all communicating through the same universal symbolic language -- are easily added in a modular fashion. To demonstrate the power of NLSOMs, we assemble and experiment with several of them (having up to 129 members), leveraging mindstorms in them to solve some practical AI tasks: visual question answering, image captioning, text-to-image synthesis, 3D generation, egocentric retrieval, embodied AI, and general language-based task solving. We view this as a starting point towards much larger NLSOMs with billions of agents-some of which may be humans. And with this emergence of great societies of heterogeneous minds, many new research questions have suddenly become paramount to the future of artificial intelligence. What should be the social structure of an NLSOM? What would be the (dis)advantages of having a monarchical rather than a democratic structure? How can principles of NN economies be used to maximize the total reward of a reinforcement learning NLSOM? In this work, we identify, discuss, and try to answer some of these questions.
Resistive memory-based zero-shot liquid state machine for multimodal event data learning
The human brain is a complex spiking neural network (SNN) that learns multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, the brain achieves this with minimal power consumption, using event-based signals that propagate within its structure. However, mimicking the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore's law and the von Neumann bottleneck, hinder the efficiency of digital computers. On the software side, SNNs are known for their difficult training, especially when learning multimodal signals. To overcome these challenges, we propose a hardware-software co-design that combines a fixed and random liquid state machine (LSM) SNN encoder with trainable artificial neural network (ANN) projections. The LSM is physically implemented using analogue resistive memory, leveraging the inherent stochasticity of resistive switching to generate random weights. This highly efficient and nanoscale in-memory computing approach effectively addresses the von Neumann bottleneck and the slowdown of Moore's law. The ANN projections are implemented digitally, allowing for easy optimization using contrastive loss, which helps to overcome the difficulties associated with SNN training. We experimentally implement this co-design on a 40nm 256Kb in-memory computing macro. We first demonstrate LSM-based event encoding through supervised classification and linear probing on the N-MNIST and N-TIDIGITS datasets.
Sparse Autoencoders Find Highly Interpretable Features in Language Models
One of the roadblocks to a better understanding of neural networks' internals is polysemanticity, where neurons appear to activate in multiple, semantically distinct contexts. Polysemanticity prevents us from identifying concise, human-understandable explanations for what neural networks are doing internally. One hypothesised cause of polysemanticity is superposition, where neural networks represent more features than they have neurons by assigning features to an overcomplete set of directions in activation space, rather than to individual neurons. Here, we attempt to identify those directions, using sparse autoencoders to reconstruct the internal activations of a language model. These autoencoders learn sets of sparsely activating features that are more interpretable and monosemantic than directions identified by alternative approaches, where interpretability is measured by automated methods. Ablating these features enables precise model editing, for example, by removing capabilities such as pronoun prediction, while disrupting model behaviour less than prior techniques. This work indicates that it is possible to resolve superposition in language models using a scalable, unsupervised method. Our method may serve as a foundation for future mechanistic interpretability work, which we hope will enable greater model transparency and steerability.
A Deep Learning Framework for Lifelong Machine Learning
Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learning a new concept or task with only a few examples. Several lines of machine learning research, such as lifelong machine learning, few-shot learning, and transfer learning attempt to capture these properties. However, most previous approaches can only demonstrate subsets of these properties, often by different complex mechanisms. In this work, we propose a simple yet powerful unified deep learning framework that supports almost all of these properties and approaches through one central mechanism. Experiments on toy examples support our claims. We also draw connections between many peculiarities of human learning (such as memory loss and "rain man") and our framework. As academics, we often lack resources required to build and train, deep neural networks with billions of parameters on hundreds of TPUs. Thus, while our framework is still conceptual, and our experiment results are surely not SOTA, we hope that this unified lifelong learning framework inspires new work towards large-scale experiments and understanding human learning in general. This paper is summarized in two short YouTube videos: https://youtu.be/gCuUyGETbTU (part 1) and https://youtu.be/XsaGI01b-1o (part 2).
A Chain Graph Interpretation of Real-World Neural Networks
The last decade has witnessed a boom of deep learning research and applications achieving state-of-the-art results in various domains. However, most advances have been established empirically, and their theoretical analysis remains lacking. One major issue is that our current interpretation of neural networks (NNs) as function approximators is too generic to support in-depth analysis. In this paper, we remedy this by proposing an alternative interpretation that identifies NNs as chain graphs (CGs) and feed-forward as an approximate inference procedure. The CG interpretation specifies the nature of each NN component within the rich theoretical framework of probabilistic graphical models, while at the same time remains general enough to cover real-world NNs with arbitrary depth, multi-branching and varied activations, as well as common structures including convolution / recurrent layers, residual block and dropout. We demonstrate with concrete examples that the CG interpretation can provide novel theoretical support and insights for various NN techniques, as well as derive new deep learning approaches such as the concept of partially collapsed feed-forward inference. It is thus a promising framework that deepens our understanding of neural networks and provides a coherent theoretical formulation for future deep learning research.
Deep Learning Meets Sparse Regularization: A Signal Processing Perspective
Deep learning has been wildly successful in practice and most state-of-the-art machine learning methods are based on neural networks. Lacking, however, is a rigorous mathematical theory that adequately explains the amazing performance of deep neural networks. In this article, we present a relatively new mathematical framework that provides the beginning of a deeper understanding of deep learning. This framework precisely characterizes the functional properties of neural networks that are trained to fit to data. The key mathematical tools which support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory, which are all techniques deeply rooted in signal processing. This framework explains the effect of weight decay regularization in neural network training, the use of skip connections and low-rank weight matrices in network architectures, the role of sparsity in neural networks, and explains why neural networks can perform well in high-dimensional problems.
NeuralArTS: Structuring Neural Architecture Search with Type Theory
Neural Architecture Search (NAS) algorithms automate the task of finding optimal deep learning architectures given an initial search space of possible operations. Developing these search spaces is usually a manual affair with pre-optimized search spaces being more efficient, rather than searching from scratch. In this paper we present a new framework called Neural Architecture Type System (NeuralArTS) that categorizes the infinite set of network operations in a structured type system. We further demonstrate how NeuralArTS can be applied to convolutional layers and propose several future directions.
Neural-Symbolic Recursive Machine for Systematic Generalization
Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required.
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
Neuralizer: General Neuroimage Analysis without Re-Training
Neuroimage processing tasks like segmentation, reconstruction, and registration are central to the study of neuroscience. Robust deep learning strategies and architectures used to solve these tasks are often similar. Yet, when presented with a new task or a dataset with different visual characteristics, practitioners most often need to train a new model, or fine-tune an existing one. This is a time-consuming process that poses a substantial barrier for the thousands of neuroscientists and clinical researchers who often lack the resources or machine-learning expertise to train deep learning models. In practice, this leads to a lack of adoption of deep learning, and neuroscience tools being dominated by classical frameworks. We introduce Neuralizer, a single model that generalizes to previously unseen neuroimaging tasks and modalities without the need for re-training or fine-tuning. Tasks do not have to be known a priori, and generalization happens in a single forward pass during inference. The model can solve processing tasks across multiple image modalities, acquisition methods, and datasets, and generalize to tasks and modalities it has not been trained on. Our experiments on coronal slices show that when few annotated subjects are available, our multi-task network outperforms task-specific baselines without training on the task.
Evaluation and Mitigation of Agnosia in Multimodal Large Language Models
While Multimodal Large Language Models (MLLMs) are widely used for a variety of vision-language tasks, one observation is that they sometimes misinterpret visual inputs or fail to follow textual instructions even in straightforward cases, leading to irrelevant responses, mistakes, and ungrounded claims. This observation is analogous to a phenomenon in neuropsychology known as Agnosia, an inability to correctly process sensory modalities and recognize things (e.g., objects, colors, relations). In our study, we adapt this similar concept to define "agnosia in MLLMs", and our goal is to comprehensively evaluate and mitigate such agnosia in MLLMs. Inspired by the diagnosis and treatment process in neuropsychology, we propose a novel framework EMMA (Evaluation and Mitigation of Multimodal Agnosia). In EMMA, we develop an evaluation module that automatically creates fine-grained and diverse visual question answering examples to assess the extent of agnosia in MLLMs comprehensively. We also develop a mitigation module to reduce agnosia in MLLMs through multimodal instruction tuning on fine-grained conversations. To verify the effectiveness of our framework, we evaluate and analyze agnosia in seven state-of-the-art MLLMs using 9K test samples. The results reveal that most of them exhibit agnosia across various aspects and degrees. We further develop a fine-grained instruction set and tune MLLMs to mitigate agnosia, which led to notable improvement in accuracy.
Ensembles of Compact, Region-specific & Regularized Spiking Neural Networks for Scalable Place Recognition
Spiking neural networks have significant potential utility in robotics due to their high energy efficiency on specialized hardware, but proof-of-concept implementations have not yet typically achieved competitive performance or capability with conventional approaches. In this paper, we tackle one of the key practical challenges of scalability by introducing a novel modular ensemble network approach, where compact, localized spiking networks each learn and are solely responsible for recognizing places in a local region of the environment only. This modular approach creates a highly scalable system. However, it comes with a high-performance cost where a lack of global regularization at deployment time leads to hyperactive neurons that erroneously respond to places outside their learned region. Our second contribution introduces a regularization approach that detects and removes these problematic hyperactive neurons during the initial environmental learning phase. We evaluate this new scalable modular system on benchmark localization datasets Nordland and Oxford RobotCar, with comparisons to standard techniques NetVLAD, DenseVLAD, and SAD, and a previous spiking neural network system. Our system substantially outperforms the previous SNN system on its small dataset, but also maintains performance on 27 times larger benchmark datasets where the operation of the previous system is computationally infeasible, and performs competitively with the conventional localization systems.
KAN: Kolmogorov-Arnold Networks
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametrized as a spline. We show that this seemingly simple change makes KANs outperform MLPs in terms of accuracy and interpretability. For accuracy, much smaller KANs can achieve comparable or better accuracy than much larger MLPs in data fitting and PDE solving. Theoretically and empirically, KANs possess faster neural scaling laws than MLPs. For interpretability, KANs can be intuitively visualized and can easily interact with human users. Through two examples in mathematics and physics, KANs are shown to be useful collaborators helping scientists (re)discover mathematical and physical laws. In summary, KANs are promising alternatives for MLPs, opening opportunities for further improving today's deep learning models which rely heavily on MLPs.
Neural Processing of Tri-Plane Hybrid Neural Fields
Driven by the appealing properties of neural fields for storing and communicating 3D data, the problem of directly processing them to address tasks such as classification and part segmentation has emerged and has been investigated in recent works. Early approaches employ neural fields parameterized by shared networks trained on the whole dataset, achieving good task performance but sacrificing reconstruction quality. To improve the latter, later methods focus on individual neural fields parameterized as large Multi-Layer Perceptrons (MLPs), which are, however, challenging to process due to the high dimensionality of the weight space, intrinsic weight space symmetries, and sensitivity to random initialization. Hence, results turn out significantly inferior to those achieved by processing explicit representations, e.g., point clouds or meshes. In the meantime, hybrid representations, in particular based on tri-planes, have emerged as a more effective and efficient alternative to realize neural fields, but their direct processing has not been investigated yet. In this paper, we show that the tri-plane discrete data structure encodes rich information, which can be effectively processed by standard deep-learning machinery. We define an extensive benchmark covering a diverse set of fields such as occupancy, signed/unsigned distance, and, for the first time, radiance fields. While processing a field with the same reconstruction quality, we achieve task performance far superior to frameworks that process large MLPs and, for the first time, almost on par with architectures handling explicit representations.
Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis
Sequence modeling plays a vital role across various domains, with recurrent neural networks being historically the predominant method of performing these tasks. However, the emergence of transformers has altered this paradigm due to their superior performance. Built upon these advances, transformers have conjoined CNNs as two leading foundational models for learning visual representations. However, transformers are hindered by the O(N^2) complexity of their attention mechanisms, while CNNs lack global receptive fields and dynamic weight allocation. State Space Models (SSMs), specifically the \textbf{Mamba} model with selection mechanisms and hardware-aware architecture, have garnered immense interest lately in sequential modeling and visual representation learning, challenging the dominance of transformers by providing infinite context lengths and offering substantial efficiency maintaining linear complexity in the input sequence. Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models. Intending to help researchers navigate the surge, this survey seeks to offer an encyclopedic review of Mamba models in medical imaging. Specifically, we start with a comprehensive theoretical review forming the basis of SSMs, including Mamba architecture and its alternatives for sequence modeling paradigms in this context. Next, we offer a structured classification of Mamba models in the medical field and introduce a diverse categorization scheme based on their application, imaging modalities, and targeted organs. Finally, we summarize key challenges, discuss different future research directions of the SSMs in the medical domain, and propose several directions to fulfill the demands of this field. In addition, we have compiled the studies discussed in this paper along with their open-source implementations on our GitHub repository.
Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models
Multimodal learning typically relies on the assumption that all modalities are fully available during both the training and inference phases. However, in real-world scenarios, consistently acquiring complete multimodal data presents significant challenges due to various factors. This often leads to the issue of missing modalities, where data for certain modalities are absent, posing considerable obstacles not only for the availability of multimodal pretrained models but also for their fine-tuning and the preservation of robustness in downstream tasks. To address these challenges, we propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method. This framework enables the model to predict the embedding of a missing modality in the representation space during inference. Our method effectively predicts the missing embedding through prompt tuning, leveraging information from available modalities. We evaluate our approach on several multimodal benchmark datasets and demonstrate its effectiveness and robustness across various scenarios of missing modalities.
Image Translation as Diffusion Visual Programmers
We introduce the novel Diffusion Visual Programmer (DVP), a neuro-symbolic image translation framework. Our proposed DVP seamlessly embeds a condition-flexible diffusion model within the GPT architecture, orchestrating a coherent sequence of visual programs (i.e., computer vision models) for various pro-symbolic steps, which span RoI identification, style transfer, and position manipulation, facilitating transparent and controllable image translation processes. Extensive experiments demonstrate DVP's remarkable performance, surpassing concurrent arts. This success can be attributed to several key features of DVP: First, DVP achieves condition-flexible translation via instance normalization, enabling the model to eliminate sensitivity caused by the manual guidance and optimally focus on textual descriptions for high-quality content generation. Second, the framework enhances in-context reasoning by deciphering intricate high-dimensional concepts in feature spaces into more accessible low-dimensional symbols (e.g., [Prompt], [RoI object]), allowing for localized, context-free editing while maintaining overall coherence. Last but not least, DVP improves systemic controllability and explainability by offering explicit symbolic representations at each programming stage, empowering users to intuitively interpret and modify results. Our research marks a substantial step towards harmonizing artificial image translation processes with cognitive intelligence, promising broader applications.
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
Deep metric learning using Triplet network
Deep learning has proven itself as a successful set of models for learning useful semantic representations of data. These, however, are mostly implicitly learned as part of a classification task. In this paper we propose the triplet network model, which aims to learn useful representations by distance comparisons. A similar model was defined by Wang et al. (2014), tailor made for learning a ranking for image information retrieval. Here we demonstrate using various datasets that our model learns a better representation than that of its immediate competitor, the Siamese network. We also discuss future possible usage as a framework for unsupervised learning.
Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion
How to decode human vision through neural signals has attracted a long-standing interest in neuroscience and machine learning. Modern contrastive learning and generative models improved the performance of fMRI-based visual decoding and reconstruction. However, the high cost and low temporal resolution of fMRI limit their applications in brain-computer interfaces (BCIs), prompting a high need for EEG-based visual reconstruction. In this study, we present an EEG-based visual reconstruction framework. It consists of a plug-and-play EEG encoder called the Adaptive Thinking Mapper (ATM), which is aligned with image embeddings, and a two-stage EEG guidance image generator that first transforms EEG features into image priors and then reconstructs the visual stimuli with a pre-trained image generator. Our approach allows EEG embeddings to achieve superior performance in image classification and retrieval tasks. Our two-stage image generation strategy vividly reconstructs images seen by humans. Furthermore, we analyzed the impact of signals from different time windows and brain regions on decoding and reconstruction. The versatility of our framework is demonstrated in the magnetoencephalogram (MEG) data modality. We report that EEG-based visual decoding achieves SOTA performance, highlighting the portability, low cost, and high temporal resolution of EEG, enabling a wide range of BCI applications. The code of ATM is available at https://github.com/dongyangli-del/EEG_Image_decode.
Du-IN: Discrete units-guided mask modeling for decoding speech from Intracranial Neural signals
Invasive brain-computer interfaces have garnered significant attention due to their high performance. The current intracranial stereoElectroEncephaloGraphy (sEEG) foundation models typically build univariate representations based on a single channel. Some of them further use Transformer to model the relationship among channels. However, due to the locality and specificity of brain computation, their performance on more difficult tasks, e.g., speech decoding, which demands intricate processing in specific brain regions, is yet to be fully investigated. We hypothesize that building multi-variate representations within certain brain regions can better capture the specific neural processing. To explore this hypothesis, we collect a well-annotated Chinese word-reading sEEG dataset, targeting language-related brain networks, over 12 subjects. Leveraging this benchmark dataset, we developed the Du-IN model that can extract contextual embeddings from specific brain regions through discrete codebook-guided mask modeling. Our model achieves SOTA performance on the downstream 61-word classification task, surpassing all baseline models. Model comparison and ablation analysis reveal that our design choices, including (i) multi-variate representation by fusing channels in vSMC and STG regions and (ii) self-supervision by discrete codebook-guided mask modeling, significantly contribute to these performances. Collectively, our approach, inspired by neuroscience findings, capitalizing on multi-variate neural representation from specific brain regions, is suitable for invasive brain modeling. It marks a promising neuro-inspired AI approach in BCI.
Statistical mechanics of continual learning: variational principle and mean-field potential
An obstacle to artificial general intelligence is set by continual learning of multiple tasks of different nature. Recently, various heuristic tricks, both from machine learning and from neuroscience angles, were proposed, but they lack a unified theory ground. Here, we focus on continual learning in single-layered and multi-layered neural networks of binary weights. A variational Bayesian learning setting is thus proposed, where the neural networks are trained in a field-space, rather than gradient-ill-defined discrete-weight space, and furthermore, weight uncertainty is naturally incorporated, and modulates synaptic resources among tasks. From a physics perspective, we translate the variational continual learning into Franz-Parisi thermodynamic potential framework, where previous task knowledge acts as a prior and a reference as well. We thus interpret the continual learning of the binary perceptron in a teacher-student setting as a Franz-Parisi potential computation. The learning performance can then be analytically studied with mean-field order parameters, whose predictions coincide with numerical experiments using stochastic gradient descent methods. Based on the variational principle and Gaussian field approximation of internal preactivations in hidden layers, we also derive the learning algorithm considering weight uncertainty, which solves the continual learning with binary weights using multi-layered neural networks, and performs better than the currently available metaplasticity algorithm. Our proposed principled frameworks also connect to elastic weight consolidation, weight-uncertainty modulated learning, and neuroscience inspired metaplasticity, providing a theory-grounded method for the real-world multi-task learning with deep networks.
HypoTermQA: Hypothetical Terms Dataset for Benchmarking Hallucination Tendency of LLMs
Hallucinations pose a significant challenge to the reliability and alignment of Large Language Models (LLMs), limiting their widespread acceptance beyond chatbot applications. Despite ongoing efforts, hallucinations remain a prevalent challenge in LLMs. The detection of hallucinations itself is also a formidable task, frequently requiring manual labeling or constrained evaluations. This paper introduces an automated scalable framework that combines benchmarking LLMs' hallucination tendencies with efficient hallucination detection. We leverage LLMs to generate challenging tasks related to hypothetical phenomena, subsequently employing them as agents for efficient hallucination detection. The framework is domain-agnostic, allowing the use of any language model for benchmark creation or evaluation in any domain. We introduce the publicly available HypoTermQA Benchmarking Dataset, on which state-of-the-art models' performance ranged between 3% and 11%, and evaluator agents demonstrated a 6% error rate in hallucination prediction. The proposed framework provides opportunities to test and improve LLMs. Additionally, it has the potential to generate benchmarking datasets tailored to specific domains, such as law, health, and finance.
NEUROSEC: FPGA-Based Neuromorphic Audio Security
Neuromorphic systems, inspired by the complexity and functionality of the human brain, have gained interest in academic and industrial attention due to their unparalleled potential across a wide range of applications. While their capabilities herald innovation, it is imperative to underscore that these computational paradigms, analogous to their traditional counterparts, are not impervious to security threats. Although the exploration of neuromorphic methodologies for image and video processing has been rigorously pursued, the realm of neuromorphic audio processing remains in its early stages. Our results highlight the robustness and precision of our FPGA-based neuromorphic system. Specifically, our system showcases a commendable balance between desired signal and background noise, efficient spike rate encoding, and unparalleled resilience against adversarial attacks such as FGSM and PGD. A standout feature of our framework is its detection rate of 94%, which, when compared to other methodologies, underscores its greater capability in identifying and mitigating threats within 5.39 dB, a commendable SNR ratio. Furthermore, neuromorphic computing and hardware security serve many sensor domains in mission-critical and privacy-preserving applications.
Brain Diffusion for Visual Exploration: Cortical Discovery using Large Scale Generative Models
A long standing goal in neuroscience has been to elucidate the functional organization of the brain. Within higher visual cortex, functional accounts have remained relatively coarse, focusing on regions of interest (ROIs) and taking the form of selectivity for broad categories such as faces, places, bodies, food, or words. Because the identification of such ROIs has typically relied on manually assembled stimulus sets consisting of isolated objects in non-ecological contexts, exploring functional organization without robust a priori hypotheses has been challenging. To overcome these limitations, we introduce a data-driven approach in which we synthesize images predicted to activate a given brain region using paired natural images and fMRI recordings, bypassing the need for category-specific stimuli. Our approach -- Brain Diffusion for Visual Exploration ("BrainDiVE") -- builds on recent generative methods by combining large-scale diffusion models with brain-guided image synthesis. Validating our method, we demonstrate the ability to synthesize preferred images with appropriate semantic specificity for well-characterized category-selective ROIs. We then show that BrainDiVE can characterize differences between ROIs selective for the same high-level category. Finally we identify novel functional subdivisions within these ROIs, validated with behavioral data. These results advance our understanding of the fine-grained functional organization of human visual cortex, and provide well-specified constraints for further examination of cortical organization using hypothesis-driven methods.
Neural Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic Scenes
Humans and animals have a rich and flexible understanding of the physical world, which enables them to infer the underlying dynamical trajectories of objects and events, plausible future states, and use that to plan and anticipate the consequences of actions. However, the neural mechanisms underlying these computations are unclear. We combine a goal-driven modeling approach with dense neurophysiological data and high-throughput human behavioral readouts to directly impinge on this question. Specifically, we construct and evaluate several classes of sensory-cognitive networks to predict the future state of rich, ethologically-relevant environments, ranging from self-supervised end-to-end models with pixel-wise or object-centric objectives, to models that future predict in the latent space of purely static image-based or dynamic video-based pretrained foundation models. We find strong differentiation across these model classes in their ability to predict neural and behavioral data both within and across diverse environments. In particular, we find that neural responses are currently best predicted by models trained to predict the future state of their environment in the latent space of pretrained foundation models optimized for dynamic scenes in a self-supervised manner. Notably, models that future predict in the latent space of video foundation models that are optimized to support a diverse range of sensorimotor tasks, reasonably match both human behavioral error patterns and neural dynamics across all environmental scenarios that we were able to test. Overall, these findings suggest that the neural mechanisms and behaviors of primate mental simulation are thus far most consistent with being optimized to future predict on dynamic, reusable visual representations that are useful for embodied AI more generally.
Three Decades of Activations: A Comprehensive Survey of 400 Activation Functions for Neural Networks
Neural networks have proven to be a highly effective tool for solving complex problems in many areas of life. Recently, their importance and practical usability have further been reinforced with the advent of deep learning. One of the important conditions for the success of neural networks is the choice of an appropriate activation function introducing non-linearity into the model. Many types of these functions have been proposed in the literature in the past, but there is no single comprehensive source containing their exhaustive overview. The absence of this overview, even in our experience, leads to redundancy and the unintentional rediscovery of already existing activation functions. To bridge this gap, our paper presents an extensive survey involving 400 activation functions, which is several times larger in scale than previous surveys. Our comprehensive compilation also references these surveys; however, its main goal is to provide the most comprehensive overview and systematization of previously published activation functions with links to their original sources. The secondary aim is to update the current understanding of this family of functions.
Toy Models of Superposition
Neural networks often pack many unrelated concepts into a single neuron - a puzzling phenomenon known as 'polysemanticity' which makes interpretability much more challenging. This paper provides a toy model where polysemanticity can be fully understood, arising as a result of models storing additional sparse features in "superposition." We demonstrate the existence of a phase change, a surprising connection to the geometry of uniform polytopes, and evidence of a link to adversarial examples. We also discuss potential implications for mechanistic interpretability.
Attention: Marginal Probability is All You Need?
Attention mechanisms are a central property of cognitive systems allowing them to selectively deploy cognitive resources in a flexible manner. Attention has been long studied in the neurosciences and there are numerous phenomenological models that try to capture its core properties. Recently attentional mechanisms have become a dominating architectural choice of machine learning and are the central innovation of Transformers. The dominant intuition and formalism underlying their development has drawn on ideas of keys and queries in database management systems. In this work, we propose an alternative Bayesian foundation for attentional mechanisms and show how this unifies different attentional architectures in machine learning. This formulation allows to to identify commonality across different attention ML architectures as well as suggest a bridge to those developed in neuroscience. We hope this work will guide more sophisticated intuitions into the key properties of attention architectures and suggest new ones.
Neural Fields in Robotics: A Survey
Neural Fields have emerged as a transformative approach for 3D scene representation in computer vision and robotics, enabling accurate inference of geometry, 3D semantics, and dynamics from posed 2D data. Leveraging differentiable rendering, Neural Fields encompass both continuous implicit and explicit neural representations enabling high-fidelity 3D reconstruction, integration of multi-modal sensor data, and generation of novel viewpoints. This survey explores their applications in robotics, emphasizing their potential to enhance perception, planning, and control. Their compactness, memory efficiency, and differentiability, along with seamless integration with foundation and generative models, make them ideal for real-time applications, improving robot adaptability and decision-making. This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers. First, we present four key Neural Fields frameworks: Occupancy Networks, Signed Distance Fields, Neural Radiance Fields, and Gaussian Splatting. Second, we detail Neural Fields' applications in five major robotics domains: pose estimation, manipulation, navigation, physics, and autonomous driving, highlighting key works and discussing takeaways and open challenges. Finally, we outline the current limitations of Neural Fields in robotics and propose promising directions for future research. Project page: https://robonerf.github.io
On the Power of Foundation Models
With infinitely many high-quality data points, infinite computational power, an infinitely large foundation model with a perfect training algorithm and guaranteed zero generalization error on the pretext task, can the model be used for everything? This question cannot be answered by the existing theory of representation, optimization or generalization, because the issues they mainly investigate are assumed to be nonexistent here. In this paper, we show that category theory provides powerful machinery to answer this question. We have proved three results. The first one limits the power of prompt-based learning, saying that the model can solve a downstream task with prompts if and only if the task is representable. The second one says fine tuning does not have this limit, as a foundation model with the minimum required power (up to symmetry) can theoretically solve downstream tasks for the category defined by pretext task, with fine tuning and enough resources. Our final result can be seen as a new type of generalization theorem, showing that the foundation model can generate unseen objects from the target category (e.g., images) using the structural information from the source category (e.g., texts). Along the way, we provide a categorical framework for supervised and self-supervised learning, which might be of independent interest.
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Foundation Models Secretly Understand Neural Network Weights: Enhancing Hypernetwork Architectures with Foundation Models
Large pre-trained models, or foundation models, have shown impressive performance when adapted to a variety of downstream tasks, often out-performing specialized models. Hypernetworks, neural networks that generate some or all of the parameters of another neural network, have become an increasingly important technique for conditioning and generalizing implicit neural representations (INRs), which represent signals or objects such as audio or 3D shapes using a neural network. However, despite the potential benefits of incorporating foundation models in hypernetwork methods, this research direction has not been investigated, likely due to the dissimilarity of the weight generation task with other visual tasks. To address this gap, we (1) show how foundation models can improve hypernetworks with Transformer-based architectures, (2) provide an empirical analysis of the benefits of foundation models for hypernetworks through the lens of the generalizable INR task, showing that leveraging foundation models improves performance, generalizability, and data efficiency across a variety of algorithms and modalities. We also provide further analysis in examining the design space of foundation model-based hypernetworks, including examining the choice of foundation models, algorithms, and the effect of scaling foundation models.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behaviour have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that learns to use outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public.
CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Research on LLM technologies is rapidly emerging, with most of them employing a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. To validate the effectiveness of our framework, we conducted extensive experiments across a range of generative and reasoning tasks. These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity. The framework's ability to iteratively expand its search space while retaining contextually relevant information results.
Overcoming catastrophic forgetting in neural networks
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
Theoretical Foundations of Deep Selective State-Space Models
Structured state-space models (SSMs) such as S4, stemming from the seminal work of Gu et al., are gaining popularity as effective approaches for modeling sequential data. Deep SSMs demonstrate outstanding performance across a diverse set of domains, at a reduced training and inference cost compared to attention-based transformers. Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states (e.g. GateLoop, Mamba, GLA), then the resulting architecture can surpass in both in accuracy and efficiency attention-powered foundation models trained on text, at scales of billion parameters. In this paper, we give theoretical grounding to this recent finding using tools from Rough Path Theory: we show that when random linear recurrences are equipped with simple input-controlled transitions (selectivity mechanism), then the hidden state is provably a low-dimensional projection of a powerful mathematical object called the signature of the input -- capturing non-linear interactions between tokens at distinct timescales. Our theory not only motivates the success of modern selective state-space models such as Mamba but also provides a solid framework to understand the expressive power of future SSM variants.
Generative Adversarial Networks
We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.
The Topology and Geometry of Neural Representations
A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.
Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications, ranging from content generation to interactive entertainment, and artistic creation. However, the diversity of downstream tasks in multitask scenarios presents substantial adaptation challenges for LLMs. While traditional methods often succumb to knowledge confusion on their monolithic dense models, Mixture-of-Experts (MoE) has been emerged as a promising solution with its sparse architecture for effective task decoupling. Inspired by the principles of human cognitive neuroscience, we design a novel framework Intuition-MoR1E that leverages the inherent semantic clustering of instances to mimic the human brain to deal with multitask, offering implicit guidance to router for optimized feature allocation. Moreover, we introduce cutting-edge Rank-1 Experts formulation designed to manage a spectrum of intuitions, demonstrating enhanced parameter efficiency and effectiveness in multitask LLM finetuning. Extensive experiments demonstrate that Intuition-MoR1E achieves superior efficiency and 2.15\% overall accuracy improvement across 14 public datasets against other state-of-the-art baselines.
A Theoretical Framework for Inference Learning
Backpropagation (BP) is the most successful and widely used algorithm in deep learning. However, the computations required by BP are challenging to reconcile with known neurobiology. This difficulty has stimulated interest in more biologically plausible alternatives to BP. One such algorithm is the inference learning algorithm (IL). IL has close connections to neurobiological models of cortical function and has achieved equal performance to BP on supervised learning and auto-associative tasks. In contrast to BP, however, the mathematical foundations of IL are not well-understood. Here, we develop a novel theoretical framework for IL. Our main result is that IL closely approximates an optimization method known as implicit stochastic gradient descent (implicit SGD), which is distinct from the explicit SGD implemented by BP. Our results further show how the standard implementation of IL can be altered to better approximate implicit SGD. Our novel implementation considerably improves the stability of IL across learning rates, which is consistent with our theory, as a key property of implicit SGD is its stability. We provide extensive simulation results that further support our theoretical interpretations and also demonstrate IL achieves quicker convergence when trained with small mini-batches while matching the performance of BP for large mini-batches.
Mamba2D: A Natively Multi-Dimensional State-Space Model for Vision Tasks
State-Space Models (SSMs) have recently emerged as a powerful and efficient alternative to the long-standing transformer architecture. However, existing SSM conceptualizations retain deeply rooted biases from their roots in natural language processing. This constrains their ability to appropriately model the spatially-dependent characteristics of visual inputs. In this paper, we address these limitations by re-deriving modern selective state-space techniques, starting from a natively multidimensional formulation. Currently, prior works attempt to apply natively 1D SSMs to 2D data (i.e. images) by relying on arbitrary combinations of 1D scan directions to capture spatial dependencies. In contrast, Mamba2D improves upon this with a single 2D scan direction that factors in both dimensions of the input natively, effectively modelling spatial dependencies when constructing hidden states. Mamba2D shows comparable performance to prior adaptations of SSMs for vision tasks, on standard image classification evaluations with the ImageNet-1K dataset. Source code is available at https://github.com/cocoalex00/Mamba2D.
A Function Interpretation Benchmark for Evaluating Interpretability Methods
Labeling neural network submodules with human-legible descriptions is useful for many downstream tasks: such descriptions can surface failures, guide interventions, and perhaps even explain important model behaviors. To date, most mechanistic descriptions of trained networks have involved small models, narrowly delimited phenomena, and large amounts of human labor. Labeling all human-interpretable sub-computations in models of increasing size and complexity will almost certainly require tools that can generate and validate descriptions automatically. Recently, techniques that use learned models in-the-loop for labeling have begun to gain traction, but methods for evaluating their efficacy are limited and ad-hoc. How should we validate and compare open-ended labeling tools? This paper introduces FIND (Function INterpretation and Description), a benchmark suite for evaluating the building blocks of automated interpretability methods. FIND contains functions that resemble components of trained neural networks, and accompanying descriptions of the kind we seek to generate. The functions are procedurally constructed across textual and numeric domains, and involve a range of real-world complexities, including noise, composition, approximation, and bias. We evaluate new and existing methods that use language models (LMs) to produce code-based and language descriptions of function behavior. We find that an off-the-shelf LM augmented with only black-box access to functions can sometimes infer their structure, acting as a scientist by forming hypotheses, proposing experiments, and updating descriptions in light of new data. However, LM-based descriptions tend to capture global function behavior and miss local corruptions. These results show that FIND will be useful for characterizing the performance of more sophisticated interpretability methods before they are applied to real-world models.
Emergent representations in networks trained with the Forward-Forward algorithm
The Backpropagation algorithm, widely used to train neural networks, has often been criticised for its lack of biological realism. In an attempt to find a more biologically plausible alternative, and avoid to back-propagate gradients in favour of using local learning rules, the recently introduced Forward-Forward algorithm replaces the traditional forward and backward passes of Backpropagation with two forward passes. In this work, we show that internal representations obtained with the Forward-Forward algorithm organize into robust, category-specific ensembles, composed by an extremely low number of active units (high sparsity). This is remarkably similar to what is observed in cortical representations during sensory processing. While not found in models trained with standard Backpropagation, sparsity emerges also in networks optimized by Backpropagation, on the same training objective of Forward-Forward. These results suggest that the learning procedure proposed by Forward-Forward may be superior to Backpropagation in modelling learning in the cortex, even when a backward pass is used.
CortexCompile: Harnessing Cortical-Inspired Architectures for Enhanced Multi-Agent NLP Code Synthesis
Current approaches to automated code generation often rely on monolithic models that lack real-time adaptability and scalability. This limitation is particularly evident in complex programming tasks that require dynamic adjustment and efficiency. The integration of neuroscience principles into Natural Language Processing (NLP) has the potential to revolutionize automated code generation. This paper presents CortexCompile, a novel modular system inspired by the specialized functions of the human brain's cortical regions. By emulating the distinct roles of the Prefrontal Cortex, Parietal Cortex, Temporal Lobe, and Motor Cortex, CortexCompile achieves significant advancements in scalability, efficiency, and adaptability compared to traditional monolithic models like GPT-4o. The system's architecture features a Task Orchestration Agent that manages dynamic task delegation and parallel processing, facilitating the generation of highly accurate and optimized code across increasingly complex programming tasks. Experimental evaluations demonstrate that CortexCompile consistently outperforms GPT-4o in development time, accuracy, and user satisfaction, particularly in tasks involving real-time strategy games and first-person shooters. These findings underscore the viability of neuroscience-inspired architectures in addressing the limitations of current NLP models, paving the way for more efficient and human-like AI systems.
Scalable Mechanistic Neural Networks
We propose Scalable Mechanistic Neural Network (S-MNN), an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences. By reformulating the original Mechanistic Neural Network (MNN) (Pervez et al., 2024), we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear. This significant improvement enables efficient modeling of long-term dynamics without sacrificing accuracy or interpretability. Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources. Consequently, S-MNN can drop-in replace the original MNN in applications, providing a practical and efficient tool for integrating mechanistic bottlenecks into neural network models of complex dynamical systems.
MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.
Centaur: a foundation model of human cognition
Establishing a unified theory of cognition has been a major goal of psychology. While there have been previous attempts to instantiate such theories by building computational models, we currently do not have one model that captures the human mind in its entirety. Here we introduce Centaur, a computational model that can predict and simulate human behavior in any experiment expressible in natural language. We derived Centaur by finetuning a state-of-the-art language model on a novel, large-scale data set called Psych-101. Psych-101 reaches an unprecedented scale, covering trial-by-trial data from over 60,000 participants performing over 10,000,000 choices in 160 experiments. Centaur not only captures the behavior of held-out participants better than existing cognitive models, but also generalizes to new cover stories, structural task modifications, and entirely new domains. Furthermore, we find that the model's internal representations become more aligned with human neural activity after finetuning. Taken together, Centaur is the first real candidate for a unified model of human cognition. We anticipate that it will have a disruptive impact on the cognitive sciences, challenging the existing paradigm for developing computational models.
Cueless EEG imagined speech for subject identification: dataset and benchmarks
Electroencephalogram (EEG) signals have emerged as a promising modality for biometric identification. While previous studies have explored the use of imagined speech with semantically meaningful words for subject identification, most have relied on additional visual or auditory cues. In this study, we introduce a cueless EEG-based imagined speech paradigm, where subjects imagine the pronunciation of semantically meaningful words without any external cues. This innovative approach addresses the limitations of prior methods by requiring subjects to select and imagine words from a predefined list naturally. The dataset comprises over 4,350 trials from 11 subjects across five sessions. We assess a variety of classification methods, including traditional machine learning techniques such as Support Vector Machines (SVM) and XGBoost, as well as time-series foundation models and deep learning architectures specifically designed for EEG classification, such as EEG Conformer and Shallow ConvNet. A session-based hold-out validation strategy was employed to ensure reliable evaluation and prevent data leakage. Our results demonstrate outstanding classification accuracy, reaching 97.93%. These findings highlight the potential of cueless EEG paradigms for secure and reliable subject identification in real-world applications, such as brain-computer interfaces (BCIs).
Categorical Foundations of Gradient-Based Learning
We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses, parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross-entropy, shedding new light on their similarities and differences. Our approach to gradient-based learning has examples generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be realized in the discrete setting of boolean circuits. Finally, we demonstrate the practical significance of our framework with an implementation in Python.
Astrocyte-Enabled Advancements in Spiking Neural Networks for Large Language Modeling
Within the complex neuroarchitecture of the brain, astrocytes play crucial roles in development, structure, and metabolism. These cells regulate neural activity through tripartite synapses, directly impacting cognitive processes such as learning and memory. Despite the growing recognition of astrocytes' significance, traditional Spiking Neural Network (SNN) models remain predominantly neuron-centric, overlooking the profound influence of astrocytes on neural dynamics. Inspired by these biological insights, we have developed an Astrocyte-Modulated Spiking Unit (AM-SU), an innovative framework that integrates neuron-astrocyte interactions into the computational paradigm, demonstrating wide applicability across various hardware platforms. Our Astrocyte-Modulated Spiking Neural Network (AstroSNN) exhibits exceptional performance in tasks involving memory retention and natural language generation, particularly in handling long-term dependencies and complex linguistic structures. The design of AstroSNN not only enhances its biological authenticity but also introduces novel computational dynamics, enabling more effective processing of complex temporal dependencies. Furthermore, AstroSNN shows low latency, high throughput, and reduced memory usage in practical applications, making it highly suitable for resource-constrained environments. By successfully integrating astrocytic dynamics into intelligent neural networks, our work narrows the gap between biological plausibility and neural modeling, laying the groundwork for future biologically-inspired neural computing research that includes both neurons and astrocytes.
A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.
A Three-regime Model of Network Pruning
Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the hyperparameter of the Sharpness Aware Minimization method for better pruning performance.
Applications of Spiking Neural Networks in Visual Place Recognition
In robotics, Spiking Neural Networks (SNNs) are increasingly recognized for their largely-unrealized potential energy efficiency and low latency particularly when implemented on neuromorphic hardware. Our paper highlights three advancements for SNNs in Visual Place Recognition (VPR). First, we propose Modular SNNs, where each SNN represents a set of non-overlapping geographically distinct places, enabling scalable networks for large environments. Secondly, we present Ensembles of Modular SNNs, where multiple networks represent the same place, significantly enhancing accuracy compared to single-network models. Our SNNs are compact and small, comprising only 1500 neurons and 474k synapses, which makes them ideally suited for ensembling due to this small size. Lastly, we investigate the role of sequence matching in SNN-based VPR, a technique where consecutive images are used to refine place recognition. We analyze the responsiveness of SNNs to ensembling and sequence matching compared to other VPR techniques. Our contributions highlight the viability of SNNs for VPR, offering scalable and robust solutions, paving the way for their application in various energy-sensitive robotic tasks.
Foundation Models for Decision Making: Problems, Methods, and Opportunities
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data
This paper explores the use of unstructured, multimodal data, namely text and images, in causal inference and treatment effect estimation. We propose a neural network architecture that is adapted to the double machine learning (DML) framework, specifically the partially linear model. An additional contribution of our paper is a new method to generate a semi-synthetic dataset which can be used to evaluate the performance of causal effect estimation in the presence of text and images as confounders. The proposed methods and architectures are evaluated on the semi-synthetic dataset and compared to standard approaches, highlighting the potential benefit of using text and images directly in causal studies. Our findings have implications for researchers and practitioners in economics, marketing, finance, medicine and data science in general who are interested in estimating causal quantities using non-traditional data.
AutoDistil: Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models
Knowledge distillation (KD) methods compress large models into smaller students with manually-designed student architectures given pre-specified computational cost. This requires several trials to find a viable student, and further repeating the process for each student or computational budget change. We use Neural Architecture Search (NAS) to automatically distill several compressed students with variable cost from a large model. Current works train a single SuperLM consisting of millions of subnetworks with weight-sharing, resulting in interference between subnetworks of different sizes. Our framework AutoDistil addresses above challenges with the following steps: (a) Incorporates inductive bias and heuristics to partition Transformer search space into K compact sub-spaces (K=3 for typical student sizes of base, small and tiny); (b) Trains one SuperLM for each sub-space using task-agnostic objective (e.g., self-attention distillation) with weight-sharing of students; (c) Lightweight search for the optimal student without re-training. Fully task-agnostic training and search allow students to be reused for fine-tuning on any downstream task. Experiments on GLUE benchmark against state-of-the-art KD and NAS methods demonstrate AutoDistil to outperform leading compression techniques with upto 2.7x reduction in computational cost and negligible loss in task performance.
Advancing Reasoning in Large Language Models: Promising Methods and Approaches
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks, yet their reasoning capabilities remain a fundamental challenge. While LLMs exhibit impressive fluency and factual recall, their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations. This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs. We categorize existing methods into key approaches, including prompting strategies (e.g., Chain-of-Thought reasoning, Self-Consistency, and Tree-of-Thought reasoning), architectural innovations (e.g., retrieval-augmented models, modular reasoning networks, and neuro-symbolic integration), and learning paradigms (e.g., fine-tuning with reasoning-specific datasets, reinforcement learning, and self-supervised reasoning objectives). Additionally, we explore evaluation frameworks used to assess reasoning in LLMs and highlight open challenges, such as hallucinations, robustness, and reasoning generalization across diverse tasks. By synthesizing recent advancements, this survey aims to provide insights into promising directions for future research and practical applications of reasoning-augmented LLMs.
Checkmating One, by Using Many: Combining Mixture of Experts with MCTS to Improve in Chess
This paper presents a new approach that integrates deep learning with computational chess, using both the Mixture of Experts (MoE) method and Monte-Carlo Tree Search (MCTS). Our methodology employs a suite of specialized models, each designed to respond to specific changes in the game's input data. This results in a framework with sparsely activated models, which provides significant computational benefits. Our framework combines the MoE method with MCTS, in order to align it with the strategic phases of chess, thus departing from the conventional ``one-for-all'' model. Instead, we utilize distinct game phase definitions to effectively distribute computational tasks across multiple expert neural networks. Our empirical research shows a substantial improvement in playing strength, surpassing the traditional single-model framework. This validates the efficacy of our integrated approach and highlights the potential of incorporating expert knowledge and strategic principles into neural network design. The fusion of MoE and MCTS offers a promising avenue for advancing machine learning architectures.
Multi-scale fMRI time series analysis for understanding neurodegeneration in MCI
In this study, we present a technique that spans multi-scale views (global scale -- meaning brain network-level and local scale -- examining each individual ROI that constitutes the network) applied to resting-state fMRI volumes. Deep learning based classification is utilized in understanding neurodegeneration. The novelty of the proposed approach lies in utilizing two extreme scales of analysis. One branch considers the entire network within graph-analysis framework. Concurrently, the second branch scrutinizes each ROI within a network independently, focusing on evolution of dynamics. For each subject, graph-based approach employs partial correlation to profile the subject in a single graph where each ROI is a node, providing insights into differences in levels of participation. In contrast, non-linear analysis employs recurrence plots to profile a subject as a multichannel 2D image, revealing distinctions in underlying dynamics. The proposed approach is employed for classification of a cohort of 50 healthy control (HC) and 50 Mild Cognitive Impairment (MCI), sourced from ADNI dataset. Results point to: (1) reduced activity in ROIs such as PCC in MCI (2) greater activity in occipital in MCI, which is not seen in HC (3) when analysed for dynamics, all ROIs in MCI show greater predictability in time-series.
A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem
Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. This framework is realized in three instants in this work with a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. All three instances of the framework monopolize the top three positions in all experiments, outdistancing other compared trading algorithms. Although with a high commission rate of 0.25% in the backtests, the framework is able to achieve at least 4-fold returns in 50 days.
MLP-KAN: Unifying Deep Representation and Function Learning
Recent advancements in both representation learning and function learning have demonstrated substantial promise across diverse domains of artificial intelligence. However, the effective integration of these paradigms poses a significant challenge, particularly in cases where users must manually decide whether to apply a representation learning or function learning model based on dataset characteristics. To address this issue, we introduce MLP-KAN, a unified method designed to eliminate the need for manual model selection. By integrating Multi-Layer Perceptrons (MLPs) for representation learning and Kolmogorov-Arnold Networks (KANs) for function learning within a Mixture-of-Experts (MoE) architecture, MLP-KAN dynamically adapts to the specific characteristics of the task at hand, ensuring optimal performance. Embedded within a transformer-based framework, our work achieves remarkable results on four widely-used datasets across diverse domains. Extensive experimental evaluation demonstrates its superior versatility, delivering competitive performance across both deep representation and function learning tasks. These findings highlight the potential of MLP-KAN to simplify the model selection process, offering a comprehensive, adaptable solution across various domains. Our code and weights are available at https://github.com/DLYuanGod/MLP-KAN.
Model-Based Control with Sparse Neural Dynamics
Learning predictive models from observations using deep neural networks (DNNs) is a promising new approach to many real-world planning and control problems. However, common DNNs are too unstructured for effective planning, and current control methods typically rely on extensive sampling or local gradient descent. In this paper, we propose a new framework for integrated model learning and predictive control that is amenable to efficient optimization algorithms. Specifically, we start with a ReLU neural model of the system dynamics and, with minimal losses in prediction accuracy, we gradually sparsify it by removing redundant neurons. This discrete sparsification process is approximated as a continuous problem, enabling an end-to-end optimization of both the model architecture and the weight parameters. The sparsified model is subsequently used by a mixed-integer predictive controller, which represents the neuron activations as binary variables and employs efficient branch-and-bound algorithms. Our framework is applicable to a wide variety of DNNs, from simple multilayer perceptrons to complex graph neural dynamics. It can efficiently handle tasks involving complicated contact dynamics, such as object pushing, compositional object sorting, and manipulation of deformable objects. Numerical and hardware experiments show that, despite the aggressive sparsification, our framework can deliver better closed-loop performance than existing state-of-the-art methods.
Thinking Before Looking: Improving Multimodal LLM Reasoning via Mitigating Visual Hallucination
Multimodal large language models (MLLMs) have advanced the integration of visual and linguistic modalities, establishing themselves as the dominant paradigm for visual-language tasks. Current approaches like chain of thought (CoT) reasoning have augmented the cognitive capabilities of large language models (LLMs), yet their adaptation to MLLMs is hindered by heightened risks of hallucination in cross-modality comprehension. In this paper, we find that the thinking while looking paradigm in current multimodal CoT approaches--where reasoning chains are generated alongside visual input--fails to mitigate hallucinations caused by misleading images. To address these limitations, we propose the Visual Inference Chain (VIC) framework, a novel approach that constructs reasoning chains using textual context alone before introducing visual input, effectively reducing cross-modal biases and enhancing multimodal reasoning accuracy. Comprehensive evaluations demonstrate that VIC significantly improves zero-shot performance across various vision-related tasks, mitigating hallucinations while refining the reasoning capabilities of MLLMs. Our code repository can be found at https://github.com/Terry-Xu-666/visual_inference_chain.
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5times higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics
The dominant paradigm for neural text generation is left-to-right decoding from autoregressive language models. Constrained or controllable generation under complex lexical constraints, however, requires foresight to plan ahead feasible future paths. Drawing inspiration from the A* search algorithm, we propose NeuroLogic A*esque, a decoding algorithm that incorporates heuristic estimates of future cost. We develop efficient lookahead heuristics that are efficient for large-scale language models, making our method a drop-in replacement for common techniques such as beam search and top-k sampling. To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction. Our approach outperforms competitive baselines on five generation tasks, and achieves new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation. The improvements are particularly notable on tasks that require complex constraint satisfaction or in few-shot or zero-shot settings. NeuroLogic A*esque illustrates the power of decoding for improving and enabling new capabilities of large-scale language models.
On the Role of Neural Collapse in Transfer Learning
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes. Recent results in the literature show that representations learned by a single classifier over many classes are competitive on few-shot learning problems with representations learned by special-purpose algorithms designed for such problems. In this paper we provide an explanation for this behavior based on the recently observed phenomenon that the features learned by overparameterized classification networks show an interesting clustering property, called neural collapse. We demonstrate both theoretically and empirically that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well, allowing foundation models to provide feature maps that work well in transfer learning and, specifically, in the few-shot setting.
The LLM Language Network: A Neuroscientific Approach for Identifying Causally Task-Relevant Units
Large language models (LLMs) exhibit remarkable capabilities on not just language tasks, but also various tasks that are not linguistic in nature, such as logical reasoning and social inference. In the human brain, neuroscience has identified a core language system that selectively and causally supports language processing. We here ask whether similar specialization for language emerges in LLMs. We identify language-selective units within 18 popular LLMs, using the same localization approach that is used in neuroscience. We then establish the causal role of these units by demonstrating that ablating LLM language-selective units -- but not random units -- leads to drastic deficits in language tasks. Correspondingly, language-selective LLM units are more aligned to brain recordings from the human language system than random units. Finally, we investigate whether our localization method extends to other cognitive domains: while we find specialized networks in some LLMs for reasoning and social capabilities, there are substantial differences among models. These findings provide functional and causal evidence for specialization in large language models, and highlight parallels with the functional organization in the brain.
M^{3}: A Modular World Model over Streams of Tokens
Token-based world models emerged as a promising modular framework, modeling dynamics over token streams while optimizing tokenization separately. While successful in visual environments with discrete actions (e.g., Atari games), their broader applicability remains uncertain. In this paper, we introduce M^{3}, a modular world model that extends this framework, enabling flexible combinations of observation and action modalities through independent modality-specific components. M^{3} integrates several improvements from existing literature to enhance agent performance. Through extensive empirical evaluation across diverse benchmarks, M^{3} achieves state-of-the-art sample efficiency for planning-free world models. Notably, among these methods, it is the first to reach a human-level median score on Atari 100K, with superhuman performance on 13 games. We https://github.com/leor-c/M3{open-source our code and weights}.
Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning
A key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL). However, constructing a standalone RL policy that maps perception to action directly encounters severe problems, chief among them being its lack of generality across multiple tasks and the need for a large amount of training data. The leading cause is that it cannot effectively integrate prior information into the perception-action cycle when devising the policy. Large language models (LLMs) emerged as a fundamental way to incorporate cross-domain knowledge into AI agents but lack crucial learning and adaptation toward specific decision problems. This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies. Our methodology is motivated by the modularity found in the human brain. The framework utilises the construction of intrinsic and extrinsic functions to add previous understandings of reasoning structures. It also provides the adaptive ability to learn models inside every module or function, consistent with the modular structure of cognitive processes. We describe the framework in-depth and compare it with other AI pipelines and existing frameworks. The paper explores practical applications, covering experiments that show the effectiveness of our method. Our results indicate that AI agents perform and adapt far better when organised reasoning and prior knowledge are embedded. This opens the door to more resilient and general AI agent systems.
A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding
Given a stationary state-space model that relates a sequence of hidden states and corresponding measurements or observations, Bayesian filtering provides a principled statistical framework for inferring the posterior distribution of the current state given all measurements up to the present time. For example, the Apollo lunar module implemented a Kalman filter to infer its location from a sequence of earth-based radar measurements and land safely on the moon. To perform Bayesian filtering, we require a measurement model that describes the conditional distribution of each observation given state. The Kalman filter takes this measurement model to be linear, Gaussian. Here we show how a nonlinear, Gaussian approximation to the distribution of state given observation can be used in conjunction with Bayes' rule to build a nonlinear, non-Gaussian measurement model. The resulting approach, called the Discriminative Kalman Filter (DKF), retains fast closed-form updates for the posterior. We argue there are many cases where the distribution of state given measurement is better-approximated as Gaussian, especially when the dimensionality of measurements far exceeds that of states and the Bernstein-von Mises theorem applies. Online neural decoding for brain-computer interfaces provides a motivating example, where filtering incorporates increasingly detailed measurements of neural activity to provide users control over external devices. Within the BrainGate2 clinical trial, the DKF successfully enabled three volunteers with quadriplegia to control an on-screen cursor in real-time using mental imagery alone. Participant "T9" used the DKF to type out messages on a tablet PC.
Brain-Inspired Two-Stage Approach: Enhancing Mathematical Reasoning by Imitating Human Thought Processes
Although large language models demonstrate emergent abilities in solving math word problems, there is a challenging task in complex multi-step mathematical reasoning tasks. To improve model performance on mathematical reasoning tasks, previous work has conducted supervised fine-tuning on open-source models by improving the quality and quantity of data. In this paper, we propose a novel approach, named Brain, to imitate human thought processes to enhance mathematical reasoning abilities, using the Frontal Lobe Model to generate plans, and then employing the Parietal Lobe Model to generate code and execute to obtain answers. First, we achieve SOTA performance in comparison with Code LLaMA 7B based models through this method. Secondly, we find that plans can be explicitly extracted from natural language, code, or formal language. Our code and data are publicly available at https://github.com/cyzhh/Brain.
Towards Secure and Private AI: A Framework for Decentralized Inference
The rapid advancement of ML models in critical sectors such as healthcare, finance, and security has intensified the need for robust data security, model integrity, and reliable outputs. Large multimodal foundational models, while crucial for complex tasks, present challenges in scalability, reliability, and potential misuse. Decentralized systems offer a solution by distributing workload and mitigating central points of failure, but they introduce risks of unauthorized access to sensitive data across nodes. We address these challenges with a comprehensive framework designed for responsible AI development. Our approach incorporates: 1) Zero-knowledge proofs for secure model verification, enhancing trust without compromising privacy. 2) Consensus-based verification checks to ensure consistent outputs across nodes, mitigating hallucinations and maintaining model integrity. 3) Split Learning techniques that segment models across different nodes, preserving data privacy by preventing full data access at any point. 4) Hardware-based security through trusted execution environments (TEEs) to protect data and computations. This framework aims to enhance security and privacy and improve the reliability and fairness of multimodal AI systems. Promoting efficient resource utilization contributes to more sustainable AI development. Our state-of-the-art proofs and principles demonstrate the framework's effectiveness in responsibly democratizing artificial intelligence, offering a promising approach for building secure and private foundational models.
MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks. Although an essential element of modern AI, LMs are also inherently limited in a number of ways. We discuss these limitations and how they can be avoided by adopting a systems approach. Conceptualizing the challenge as one that involves knowledge and reasoning in addition to linguistic processing, we define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules. We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL, pronounced "miracle") system, some of the technical challenges in implementing it, and Jurassic-X, AI21 Labs' MRKL system implementation.
UMBRAE: Unified Multimodal Brain Decoding
We address prevailing challenges of the brain-powered research, departing from the observation that the literature hardly recover accurate spatial information and require subject-specific models. To address these challenges, we propose UMBRAE, a unified multimodal decoding of brain signals. First, to extract instance-level conceptual and spatial details from neural signals, we introduce an efficient universal brain encoder for multimodal-brain alignment and recover object descriptions at multiple levels of granularity from subsequent multimodal large language model (MLLM). Second, we introduce a cross-subject training strategy mapping subject-specific features to a common feature space. This allows a model to be trained on multiple subjects without extra resources, even yielding superior results compared to subject-specific models. Further, we demonstrate this supports weakly-supervised adaptation to new subjects, with only a fraction of the total training data. Experiments demonstrate that UMBRAE not only achieves superior results in the newly introduced tasks but also outperforms methods in well established tasks. To assess our method, we construct and share with the community a comprehensive brain understanding benchmark BrainHub. Our code and benchmark are available at https://weihaox.github.io/UMBRAE.
On the Provable Advantage of Unsupervised Pretraining
Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
EEGFormer: Towards Transferable and Interpretable Large-Scale EEG Foundation Model
Self-supervised learning has emerged as a highly effective approach in the fields of natural language processing and computer vision. It is also applicable to brain signals such as electroencephalography (EEG) data, given the abundance of available unlabeled data that exist in a wide spectrum of real-world medical applications ranging from seizure detection to wave analysis. The existing works leveraging self-supervised learning on EEG modeling mainly focus on pretraining upon each individual dataset corresponding to a single downstream task, which cannot leverage the power of abundant data, and they may derive sub-optimal solutions with a lack of generalization. Moreover, these methods rely on end-to-end model learning which is not easy for humans to understand. In this paper, we present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data. The pretrained model cannot only learn universal representations on EEG signals with adaptable performance on various downstream tasks but also provide interpretable outcomes of the useful patterns within the data. To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings. Furthermore, we demonstrate how the learned model exhibits transferable anomaly detection performance and provides valuable interpretability of the acquired patterns via self-supervised learning.
Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches
Generative artificial intelligence (AI) systems based on large-scale pretrained foundation models (PFMs) such as vision-language models, large language models (LLMs), diffusion models and vision-language-action (VLA) models have demonstrated the ability to solve complex and truly non-trivial AI problems in a wide variety of domains and contexts. Multimodal large language models (MLLMs), in particular, learn from vast and diverse data sources, allowing rich and nuanced representations of the world and, thereby, providing extensive capabilities, including the ability to reason, engage in meaningful dialog; collaborate with humans and other agents to jointly solve complex problems; and understand social and emotional aspects of humans. Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle. Consequently, generic LLMs are severely limited in their generalist capabilities. A number of foundational problems -- embodiment, symbol grounding, causality and memory -- are required to be addressed for LLMs to attain human-level general intelligence. These concepts are more aligned with human cognition and provide LLMs with inherent human-like cognitive properties that support the realization of physically-plausible, semantically meaningful, flexible and more generalizable knowledge and intelligence. In this work, we discuss the aforementioned foundational issues and survey state-of-the art approaches for implementing these concepts in LLMs. Specifically, we discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.
RNNs of RNNs: Recursive Construction of Stable Assemblies of Recurrent Neural Networks
Recurrent neural networks (RNNs) are widely used throughout neuroscience as models of local neural activity. Many properties of single RNNs are well characterized theoretically, but experimental neuroscience has moved in the direction of studying multiple interacting areas, and RNN theory needs to be likewise extended. We take a constructive approach towards this problem, leveraging tools from nonlinear control theory and machine learning to characterize when combinations of stable RNNs will themselves be stable. Importantly, we derive conditions which allow for massive feedback connections between interacting RNNs. We parameterize these conditions for easy optimization using gradient-based techniques, and show that stability-constrained "networks of networks" can perform well on challenging sequential-processing benchmark tasks. Altogether, our results provide a principled approach towards understanding distributed, modular function in the brain.
Not All Language Model Features Are Linear
Recent work has proposed the linear representation hypothesis: that language models perform computation by manipulating one-dimensional representations of concepts ("features") in activation space. In contrast, we explore whether some language model representations may be inherently multi-dimensional. We begin by developing a rigorous definition of irreducible multi-dimensional features based on whether they can be decomposed into either independent or non-co-occurring lower-dimensional features. Motivated by these definitions, we design a scalable method that uses sparse autoencoders to automatically find multi-dimensional features in GPT-2 and Mistral 7B. These auto-discovered features include strikingly interpretable examples, e.g. circular features representing days of the week and months of the year. We identify tasks where these exact circles are used to solve computational problems involving modular arithmetic in days of the week and months of the year. Finally, we provide evidence that these circular features are indeed the fundamental unit of computation in these tasks with intervention experiments on Mistral 7B and Llama 3 8B, and we find further circular representations by breaking down the hidden states for these tasks into interpretable components.
Artificial Kuramoto Oscillatory Neurons
It has long been known in both neuroscience and AI that ``binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network. More recently, it was also hypothesized that dynamic (spatiotemporal) representations play an important role in both neuroscience and AI. Building on these ideas, we introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alternative to threshold units, which can be combined with arbitrary connectivity designs such as fully connected, convolutional, or attentive mechanisms. Our generalized Kuramoto updates bind neurons together through their synchronization dynamics. We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, calibrated uncertainty quantification, and reasoning. We believe that these empirical results show the importance of rethinking our assumptions at the most basic neuronal level of neural representation, and in particular show the importance of dynamical representations.
Why do networks have inhibitory/negative connections?
Why do brains have inhibitory connections? Why do deep networks have negative weights? We propose an answer from the perspective of representation capacity. We believe representing functions is the primary role of both (i) the brain in natural intelligence, and (ii) deep networks in artificial intelligence. Our answer to why there are inhibitory/negative weights is: to learn more functions. We prove that, in the absence of negative weights, neural networks with non-decreasing activation functions are not universal approximators. While this may be an intuitive result to some, to the best of our knowledge, there is no formal theory, in either machine learning or neuroscience, that demonstrates why negative weights are crucial in the context of representation capacity. Further, we provide insights on the geometric properties of the representation space that non-negative deep networks cannot represent. We expect these insights will yield a deeper understanding of more sophisticated inductive priors imposed on the distribution of weights that lead to more efficient biological and machine learning.
Revealing Vision-Language Integration in the Brain with Multimodal Networks
We use (multi)modal deep neural networks (DNNs) to probe for sites of multimodal integration in the human brain by predicting stereoencephalography (SEEG) recordings taken while human subjects watched movies. We operationalize sites of multimodal integration as regions where a multimodal vision-language model predicts recordings better than unimodal language, unimodal vision, or linearly-integrated language-vision models. Our target DNN models span different architectures (e.g., convolutional networks and transformers) and multimodal training techniques (e.g., cross-attention and contrastive learning). As a key enabling step, we first demonstrate that trained vision and language models systematically outperform their randomly initialized counterparts in their ability to predict SEEG signals. We then compare unimodal and multimodal models against one another. Because our target DNN models often have different architectures, number of parameters, and training sets (possibly obscuring those differences attributable to integration), we carry out a controlled comparison of two models (SLIP and SimCLR), which keep all of these attributes the same aside from input modality. Using this approach, we identify a sizable number of neural sites (on average 141 out of 1090 total sites or 12.94%) and brain regions where multimodal integration seems to occur. Additionally, we find that among the variants of multimodal training techniques we assess, CLIP-style training is the best suited for downstream prediction of the neural activity in these sites.
Rigorously Assessing Natural Language Explanations of Neurons
Natural language is an appealing medium for explaining how large language models process and store information, but evaluating the faithfulness of such explanations is challenging. To help address this, we develop two modes of evaluation for natural language explanations that claim individual neurons represent a concept in a text input. In the observational mode, we evaluate claims that a neuron a activates on all and only input strings that refer to a concept picked out by the proposed explanation E. In the intervention mode, we construe E as a claim that the neuron a is a causal mediator of the concept denoted by E. We apply our framework to the GPT-4-generated explanations of GPT-2 XL neurons of Bills et al. (2023) and show that even the most confident explanations have high error rates and little to no causal efficacy. We close the paper by critically assessing whether natural language is a good choice for explanations and whether neurons are the best level of analysis.
Functional Neural Networks: Shift invariant models for functional data with applications to EEG classification
It is desirable for statistical models to detect signals of interest independently of their position. If the data is generated by some smooth process, this additional structure should be taken into account. We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs). For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data. We propose different model architectures, show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
Let's Focus on Neuron: Neuron-Level Supervised Fine-tuning for Large Language Model
Large Language Models (LLMs) are composed of neurons that exhibit various behaviors and roles, which become increasingly diversified as models scale. Recent studies have revealed that not all neurons are active across different datasets, and this sparsity correlates positively with the task-specific ability, leading to advancements in model pruning and training efficiency. Traditional fine-tuning methods engage all parameters of LLMs, which is computationally expensive and may not be necessary. In contrast, Parameter-Efficient Fine-Tuning (PEFT) approaches aim to minimize the number of trainable parameters, yet they still operate at a relatively macro scale (e.g., layer-level). We introduce Neuron-Level Fine-Tuning (NeFT), a novel approach that refines the granularity of parameter training down to the individual neuron, enabling more precise and computationally efficient model updates. The experimental results show that NeFT not only exceeded the performance of full-parameter fine-tuning and PEFT but also provided insights into the analysis of neurons.
Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction
Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.
Robust Associative Memories Naturally Occuring From Recurrent Hebbian Networks Under Noise
The brain is a noisy system subject to energy constraints. These facts are rarely taken into account when modelling artificial neural networks. In this paper, we are interested in demonstrating that those factors can actually lead to the appearance of robust associative memories. We first propose a simplified model of noise in the brain, taking into account synaptic noise and interference from neurons external to the network. When coarsely quantized, we show that this noise can be reduced to insertions and erasures. We take a neural network with recurrent modifiable connections, and subject it to noisy external inputs. We introduce an energy usage limitation principle in the network as well as consolidated Hebbian learning, resulting in an incremental processing of inputs. We show that the connections naturally formed correspond to state-of-the-art binary sparse associative memories.
Looking for a Needle in a Haystack: A Comprehensive Study of Hallucinations in Neural Machine Translation
Although the problem of hallucinations in neural machine translation (NMT) has received some attention, research on this highly pathological phenomenon lacks solid ground. Previous work has been limited in several ways: it often resorts to artificial settings where the problem is amplified, it disregards some (common) types of hallucinations, and it does not validate adequacy of detection heuristics. In this paper, we set foundations for the study of NMT hallucinations. First, we work in a natural setting, i.e., in-domain data without artificial noise neither in training nor in inference. Next, we annotate a dataset of over 3.4k sentences indicating different kinds of critical errors and hallucinations. Then, we turn to detection methods and both revisit methods used previously and propose using glass-box uncertainty-based detectors. Overall, we show that for preventive settings, (i) previously used methods are largely inadequate, (ii) sequence log-probability works best and performs on par with reference-based methods. Finally, we propose DeHallucinator, a simple method for alleviating hallucinations at test time that significantly reduces the hallucinatory rate. To ease future research, we release our annotated dataset for WMT18 German-English data, along with the model, training data, and code.
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN
Recurrent Spiking Neural Networks (RSNNs) have emerged as a computationally efficient and brain-inspired learning model. The design of sparse RSNNs with fewer neurons and synapses helps reduce the computational complexity of RSNNs. Traditionally, sparse SNNs are obtained by first training a dense and complex SNN for a target task, and, then, pruning neurons with low activity (activity-based pruning) while maintaining task performance. In contrast, this paper presents a task-agnostic methodology for designing sparse RSNNs by pruning a large randomly initialized model. We introduce a novel Lyapunov Noise Pruning (LNP) algorithm that uses graph sparsification methods and utilizes Lyapunov exponents to design a stable sparse RSNN from a randomly initialized RSNN. We show that the LNP can leverage diversity in neuronal timescales to design a sparse Heterogeneous RSNN (HRSNN). Further, we show that the same sparse HRSNN model can be trained for different tasks, such as image classification and temporal prediction. We experimentally show that, in spite of being task-agnostic, LNP increases computational efficiency (fewer neurons and synapses) and prediction performance of RSNNs compared to traditional activity-based pruning of trained dense models.
Classification of BCI-EEG based on augmented covariance matrix
Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.
Artificial Intelligence for EEG Prediction: Applied Chaos Theory
In the present research, we delve into the intricate realm of electroencephalogram (EEG) data analysis, focusing on sequence-to-sequence prediction of data across 32 EEG channels. The study harmoniously fuses the principles of applied chaos theory and dynamical systems theory to engender a novel feature set, enriching the representational capacity of our deep learning model. The endeavour's cornerstone is a transformer-based sequence-to-sequence architecture, calibrated meticulously to capture the non-linear and high-dimensional temporal dependencies inherent in EEG sequences. Through judicious architecture design, parameter initialisation strategies, and optimisation techniques, we have navigated the intricate balance between computational expediency and predictive performance. Our model stands as a vanguard in EEG data sequence prediction, demonstrating remarkable generalisability and robustness. The findings not only extend our understanding of EEG data dynamics but also unveil a potent analytical framework that can be adapted to diverse temporal sequence prediction tasks in neuroscience and beyond.
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
We propose split-brain autoencoders, a straightforward modification of the traditional autoencoder architecture, for unsupervised representation learning. The method adds a split to the network, resulting in two disjoint sub-networks. Each sub-network is trained to perform a difficult task -- predicting one subset of the data channels from another. Together, the sub-networks extract features from the entire input signal. By forcing the network to solve cross-channel prediction tasks, we induce a representation within the network which transfers well to other, unseen tasks. This method achieves state-of-the-art performance on several large-scale transfer learning benchmarks.
Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning
Pathology diagnosis based on EEG signals and decoding brain activity holds immense importance in understanding neurological disorders. With the advancement of artificial intelligence methods and machine learning techniques, the potential for accurate data-driven diagnoses and effective treatments has grown significantly. However, applying machine learning algorithms to real-world datasets presents diverse challenges at multiple levels. The scarcity of labelled data, especially in low regime scenarios with limited availability of real patient cohorts due to high costs of recruitment, underscores the vital deployment of scaling and transfer learning techniques. In this study, we explore a real-world pathology classification task to highlight the effectiveness of data and model scaling and cross-dataset knowledge transfer. As such, we observe varying performance improvements through data scaling, indicating the need for careful evaluation and labelling. Additionally, we identify the challenges of possible negative transfer and emphasize the significance of some key components to overcome distribution shifts and potential spurious correlations and achieve positive transfer. We see improvement in the performance of the target model on the target (NMT) datasets by using the knowledge from the source dataset (TUAB) when a low amount of labelled data was available. Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
PAON: A New Neuron Model using Padé Approximants
Convolutional neural networks (CNN) are built upon the classical McCulloch-Pitts neuron model, which is essentially a linear model, where the nonlinearity is provided by a separate activation function. Several researchers have proposed enhanced neuron models, including quadratic neurons, generalized operational neurons, generative neurons, and super neurons, with stronger nonlinearity than that provided by the pointwise activation function. There has also been a proposal to use Pade approximation as a generalized activation function. In this paper, we introduce a brand new neuron model called Pade neurons (Paons), inspired by the Pade approximants, which is the best mathematical approximation of a transcendental function as a ratio of polynomials with different orders. We show that Paons are a super set of all other proposed neuron models. Hence, the basic neuron in any known CNN model can be replaced by Paons. In this paper, we extend the well-known ResNet to PadeNet (built by Paons) to demonstrate the concept. Our experiments on the single-image super-resolution task show that PadeNets can obtain better results than competing architectures.
On the Parameterization and Initialization of Diagonal State Space Models
State space models (SSM) have recently been shown to be very effective as a deep learning layer as a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version to show this potential was the S4 model, which is particularly effective on tasks involving long-range dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable mathematical mechanism for modeling long dependencies, it introduces a custom representation and algorithm that can be difficult to implement. On the other hand, a recent variant of S4 called DSS showed that restricting the state matrix to be fully diagonal can still preserve the performance of the original model when using a specific initialization based on approximating S4's matrix. This work seeks to systematically understand how to parameterize and initialize such diagonal state space models. While it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that the initialization is critical for performance. We explain why DSS works mathematically, by showing that the diagonal restriction of S4's matrix surprisingly recovers the same kernel in the limit of infinite state dimension. We also systematically describe various design choices in parameterizing and computing diagonal SSMs, and perform a controlled empirical study ablating the effects of these choices. Our final model S4D is a simple diagonal version of S4 whose kernel computation requires just 2 lines of code and performs comparably to S4 in almost all settings, with state-of-the-art results for image, audio, and medical time-series domains, and averaging 85\% on the Long Range Arena benchmark.
PyReason: Software for Open World Temporal Logic
The growing popularity of neuro symbolic reasoning has led to the adoption of various forms of differentiable (i.e., fuzzy) first order logic. We introduce PyReason, a software framework based on generalized annotated logic that both captures the current cohort of differentiable logics and temporal extensions to support inference over finite periods of time with capabilities for open world reasoning. Further, PyReason is implemented to directly support reasoning over graphical structures (e.g., knowledge graphs, social networks, biological networks, etc.), produces fully explainable traces of inference, and includes various practical features such as type checking and a memory-efficient implementation. This paper reviews various extensions of generalized annotated logic integrated into our implementation, our modern, efficient Python-based implementation that conducts exact yet scalable deductive inference, and a suite of experiments. PyReason is available at: github.com/lab-v2/pyreason.
Bayesian Bi-clustering of Neural Spiking Activity with Latent Structures
Modern neural recording techniques allow neuroscientists to obtain spiking activity of multiple neurons from different brain regions over long time periods, which requires new statistical methods to be developed for understanding structure of the large-scale data. In this paper, we develop a bi-clustering method to cluster the neural spiking activity spatially and temporally, according to their low-dimensional latent structures. The spatial (neuron) clusters are defined by the latent trajectories within each neural population, while the temporal (state) clusters are defined by (populationally) synchronous local linear dynamics shared with different periods. To flexibly extract the bi-clustering structure, we build the model non-parametrically, and develop an efficient Markov chain Monte Carlo (MCMC) algorithm to sample the posterior distributions of model parameters. Validating our proposed MCMC algorithm through simulations, we find the method can recover unknown parameters and true bi-clustering structures successfully. We then apply the proposed bi-clustering method to multi-regional neural recordings under different experiment settings, where we find that simultaneously considering latent trajectories and spatial-temporal clustering structures can provide us with a more accurate and interpretable result. Overall, the proposed method provides scientific insights for large-scale (counting) time series with elongated recording periods, and it can potentially have application beyond neuroscience.
One is All: Bridging the Gap Between Neural Radiance Fields Architectures with Progressive Volume Distillation
Neural Radiance Fields (NeRF) methods have proved effective as compact, high-quality and versatile representations for 3D scenes, and enable downstream tasks such as editing, retrieval, navigation, etc. Various neural architectures are vying for the core structure of NeRF, including the plain Multi-Layer Perceptron (MLP), sparse tensors, low-rank tensors, hashtables and their compositions. Each of these representations has its particular set of trade-offs. For example, the hashtable-based representations admit faster training and rendering but their lack of clear geometric meaning hampers downstream tasks like spatial-relation-aware editing. In this paper, we propose Progressive Volume Distillation (PVD), a systematic distillation method that allows any-to-any conversions between different architectures, including MLP, sparse or low-rank tensors, hashtables and their compositions. PVD consequently empowers downstream applications to optimally adapt the neural representations for the task at hand in a post hoc fashion. The conversions are fast, as distillation is progressively performed on different levels of volume representations, from shallower to deeper. We also employ special treatment of density to deal with its specific numerical instability problem. Empirical evidence is presented to validate our method on the NeRF-Synthetic, LLFF and TanksAndTemples datasets. For example, with PVD, an MLP-based NeRF model can be distilled from a hashtable-based Instant-NGP model at a 10X~20X faster speed than being trained the original NeRF from scratch, while achieving a superior level of synthesis quality. Code is available at https://github.com/megvii-research/AAAI2023-PVD.
Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
Hyperbolic Brain Representations
Artificial neural networks (ANN) were inspired by the architecture and functions of the human brain and have revolutionised the field of artificial intelligence (AI). Inspired by studies on the latent geometry of the brain we posit that an increase in the research and application of hyperbolic geometry in machine learning will lead to increased accuracy, improved feature space representations and more efficient models across a range of tasks. We look at the structure and functions of the human brain, highlighting the alignment between the brain's hierarchical nature and hyperbolic geometry. By examining the brain's complex network of neuron connections and its cognitive processes, we illustrate how hyperbolic geometry plays a pivotal role in human intelligence. Empirical evidence indicates that hyperbolic neural networks outperform Euclidean models for tasks including natural language processing, computer vision and complex network analysis, requiring fewer parameters and exhibiting better generalisation. Despite its nascent adoption, hyperbolic geometry holds promise for improving machine learning models and advancing the field toward AGI.
Understanding and controlling the geometry of memory organization in RNNs
Training recurrent neural networks (RNNs) is a high-dimensional process that requires updating numerous parameters. Therefore, it is often difficult to pinpoint the underlying learning mechanisms. To address this challenge, we propose to gain mechanistic insights into the phenomenon of abrupt learning by studying RNNs trained to perform diverse short-term memory tasks. In these tasks, RNN training begins with an initial search phase. Following a long period of plateau in accuracy, the values of the loss function suddenly drop, indicating abrupt learning. Analyzing the neural computation performed by these RNNs reveals geometric restructuring (GR) in their phase spaces prior to the drop. To promote these GR events, we introduce a temporal consistency regularization that accelerates (bioplausible) training, facilitates attractor formation, and enables efficient learning in strongly connected networks. Our findings offer testable predictions for neuroscientists and emphasize the need for goal-agnostic secondary mechanisms to facilitate learning in biological and artificial networks.
A Prefrontal Cortex-inspired Architecture for Planning in Large Language Models
Large language models (LLMs) demonstrate impressive performance on a wide variety of tasks, but they often struggle with tasks that require multi-step reasoning or goal-directed planning. To address this, we take inspiration from the human brain, in which planning is accomplished via the recurrent interaction of specialized modules in the prefrontal cortex (PFC). These modules perform functions such as conflict monitoring, state prediction, state evaluation, task decomposition, and task coordination. We find that LLMs are sometimes capable of carrying out these functions in isolation, but struggle to autonomously coordinate them in the service of a goal. Therefore, we propose a black box architecture with multiple LLM-based (GPT-4) modules. The architecture improves planning through the interaction of specialized PFC-inspired modules that break down a larger problem into multiple brief automated calls to the LLM. We evaluate the combined architecture on two challenging planning tasks -- graph traversal and Tower of Hanoi -- finding that it yields significant improvements over standard LLM methods (e.g., zero-shot prompting or in-context learning). These results demonstrate the benefit of utilizing knowledge from cognitive neuroscience to improve planning in LLMs.
System identification of neural systems: If we got it right, would we know?
Artificial neural networks are being proposed as models of parts of the brain. The networks are compared to recordings of biological neurons, and good performance in reproducing neural responses is considered to support the model's validity. A key question is how much this system identification approach tells us about brain computation. Does it validate one model architecture over another? We evaluate the most commonly used comparison techniques, such as a linear encoding model and centered kernel alignment, to correctly identify a model by replacing brain recordings with known ground truth models. System identification performance is quite variable; it also depends significantly on factors independent of the ground truth architecture, such as stimuli images. In addition, we show the limitations of using functional similarity scores in identifying higher-level architectural motifs.
Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity
The liquid state machine (LSM) combines low training complexity and biological plausibility, which has made it an attractive machine learning framework for edge and neuromorphic computing paradigms. Originally proposed as a model of brain computation, the LSM tunes its internal weights without backpropagation of gradients, which results in lower performance compared to multi-layer neural networks. Recent findings in neuroscience suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics, tuning brain networks to the vicinity of the computationally optimal critical phase transition between order and chaos. Inspired by this disruptive understanding of how brain networks self-tune, we propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics. Similar to its biological counterpart, the astrocyte model integrates neuronal activity and provides global feedback to spike-timing-dependent plasticity (STDP), which self-organizes NALSM dynamics around a critical branching factor that is associated with the edge-of-chaos. We demonstrate that NALSM achieves state-of-the-art accuracy versus comparable LSM methods, without the need for data-specific hand-tuning. With a top accuracy of 97.61% on MNIST, 97.51% on N-MNIST, and 85.84% on Fashion-MNIST, NALSM achieved comparable performance to current fully-connected multi-layer spiking neural networks trained via backpropagation. Our findings suggest that the further development of brain-inspired machine learning methods has the potential to reach the performance of deep learning, with the added benefits of supporting robust and energy-efficient neuromorphic computing on the edge.
EmbodiedScan: A Holistic Multi-Modal 3D Perception Suite Towards Embodied AI
In the realm of computer vision and robotics, embodied agents are expected to explore their environment and carry out human instructions. This necessitates the ability to fully understand 3D scenes given their first-person observations and contextualize them into language for interaction. However, traditional research focuses more on scene-level input and output setups from a global view. To address the gap, we introduce EmbodiedScan, a multi-modal, ego-centric 3D perception dataset and benchmark for holistic 3D scene understanding. It encompasses over 5k scans encapsulating 1M ego-centric RGB-D views, 1M language prompts, 160k 3D-oriented boxes spanning over 760 categories, some of which partially align with LVIS, and dense semantic occupancy with 80 common categories. Building upon this database, we introduce a baseline framework named Embodied Perceptron. It is capable of processing an arbitrary number of multi-modal inputs and demonstrates remarkable 3D perception capabilities, both within the two series of benchmarks we set up, i.e., fundamental 3D perception tasks and language-grounded tasks, and in the wild. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
Structurally Prune Anything: Any Architecture, Any Framework, Any Time
Neural network pruning serves as a critical technique for enhancing the efficiency of deep learning models. Unlike unstructured pruning, which only sets specific parameters to zero, structured pruning eliminates entire channels, thus yielding direct computational and storage benefits. However, the diverse patterns for coupling parameters, such as residual connections and group convolutions, the diverse deep learning frameworks, and the various time stages at which pruning can be performed make existing pruning methods less adaptable to different architectures, frameworks, and pruning criteria. To address this, we introduce Structurally Prune Anything (SPA), a versatile structured pruning framework that can prune neural networks with any architecture, from any framework, and at any stage of training. SPA leverages a standardized computational graph and ONNX representation to prune diverse neural network architectures without the need for manual intervention. SPA employs a group-level importance estimation method, which groups dependent computational operators, estimates their importance, and prunes unimportant coupled channels. This enables the transfer of various existing pruning criteria into a structured group style. As a result, SPA supports pruning at any time, either before training, after training with fine-tuning, or after training without fine-tuning. In the context of the latter, we introduce Optimal Brain SPA (OBSPA), an algorithm that achieves state-of-the-art pruning results needing neither fine-tuning nor calibration data. In extensive experiments, SPA shows competitive to state-of-the-art pruning performance across various architectures, from popular frameworks, at different pruning times.
pyvene: A Library for Understanding and Improving PyTorch Models via Interventions
Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at https://github.com/stanfordnlp/pyvene.
Multimodal Neural Databases
The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them. Multimedia Information Retrieval has filled this gap and has witnessed exciting progress in recent years. Tasks such as search and retrieval of extensive multimedia archives have undergone massive performance improvements, driven to a large extent by recent developments in multimodal deep learning. However, methods in this field remain limited in the kinds of queries they support and, in particular, their inability to answer database-like queries. For this reason, inspired by recent work on neural databases, we propose a new framework, which we name Multimodal Neural Databases (MMNDBs). MMNDBs can answer complex database-like queries that involve reasoning over different input modalities, such as text and images, at scale. In this paper, we present the first architecture able to fulfill this set of requirements and test it with several baselines, showing the limitations of currently available models. The results show the potential of these new techniques to process unstructured data coming from different modalities, paving the way for future research in the area. Code to replicate the experiments will be released at https://github.com/GiovanniTRA/MultimodalNeuralDatabases
Nonparametric Teaching of Implicit Neural Representations
We investigate the learning of implicit neural representation (INR) using an overparameterized multilayer perceptron (MLP) via a novel nonparametric teaching perspective. The latter offers an efficient example selection framework for teaching nonparametrically defined (viz. non-closed-form) target functions, such as image functions defined by 2D grids of pixels. To address the costly training of INRs, we propose a paradigm called Implicit Neural Teaching (INT) that treats INR learning as a nonparametric teaching problem, where the given signal being fitted serves as the target function. The teacher then selects signal fragments for iterative training of the MLP to achieve fast convergence. By establishing a connection between MLP evolution through parameter-based gradient descent and that of function evolution through functional gradient descent in nonparametric teaching, we show for the first time that teaching an overparameterized MLP is consistent with teaching a nonparametric learner. This new discovery readily permits a convenient drop-in of nonparametric teaching algorithms to broadly enhance INR training efficiency, demonstrating 30%+ training time savings across various input modalities.
Generative AI-based closed-loop fMRI system
While generative AI is now widespread and useful in society, there are potential risks of misuse, e.g., unconsciously influencing cognitive processes or decision-making. Although this causes a security problem in the cognitive domain, there has been no research about neural and computational mechanisms counteracting the impact of malicious generative AI in humans. We propose DecNefGAN, a novel framework that combines a generative adversarial system and a neural reinforcement model. More specifically, DecNefGAN bridges human and generative AI in a closed-loop system, with the AI creating stimuli that induce specific mental states, thus exerting external control over neural activity. The objective of the human is the opposite, to compete and reach an orthogonal mental state. This framework can contribute to elucidating how the human brain responds to and counteracts the potential influence of generative AI.
Universal Neural Functionals
A challenging problem in many modern machine learning tasks is to process weight-space features, i.e., to transform or extract information from the weights and gradients of a neural network. Recent works have developed promising weight-space models that are equivariant to the permutation symmetries of simple feedforward networks. However, they are not applicable to general architectures, since the permutation symmetries of a weight space can be complicated by recurrence or residual connections. This work proposes an algorithm that automatically constructs permutation equivariant models, which we refer to as universal neural functionals (UNFs), for any weight space. Among other applications, we demonstrate how UNFs can be substituted into existing learned optimizer designs, and find promising improvements over prior methods when optimizing small image classifiers and language models. Our results suggest that learned optimizers can benefit from considering the (symmetry) structure of the weight space they optimize. We open-source our library for constructing UNFs at https://github.com/AllanYangZhou/universal_neural_functional.
Toward reliable signals decoding for electroencephalogram: A benchmark study to EEGNeX
This study examines the efficacy of various neural network (NN) models in interpreting mental constructs via electroencephalogram (EEG) signals. Through the assessment of 16 prevalent NN models and their variants across four brain-computer interface (BCI) paradigms, we gauged their information representation capability. Rooted in comprehensive literature review findings, we proposed EEGNeX, a novel, purely ConvNet-based architecture. We pitted it against both existing cutting-edge strategies and the Mother of All BCI Benchmarks (MOABB) involving 11 distinct EEG motor imagination (MI) classification tasks and revealed that EEGNeX surpasses other state-of-the-art methods. Notably, it shows up to 2.1%-8.5% improvement in the classification accuracy in different scenarios with statistical significance (p < 0.05) compared to its competitors. This study not only provides deeper insights into designing efficient NN models for EEG data but also lays groundwork for future explorations into the relationship between bioelectric brain signals and NN architectures. For the benefit of broader scientific collaboration, we have made all benchmark models, including EEGNeX, publicly available at (https://github.com/chenxiachan/EEGNeX).
Mamba-ND: Selective State Space Modeling for Multi-Dimensional Data
In recent years, Transformers have become the de-facto architecture for sequence modeling on text and a variety of multi-dimensional data, such as images and video. However, the use of self-attention layers in a Transformer incurs prohibitive compute and memory complexity that scales quadratically w.r.t. the sequence length. A recent architecture, Mamba, based on state space models has been shown to achieve comparable performance for modeling text sequences, while scaling linearly with the sequence length. In this work, we present Mamba-ND, a generalized design extending the Mamba architecture to arbitrary multi-dimensional data. Our design alternatively unravels the input data across different dimensions following row-major orderings. We provide a systematic comparison of Mamba-ND with several other alternatives, based on prior multi-dimensional extensions such as Bi-directional LSTMs and S4ND. Empirically, we show that Mamba-ND demonstrates performance competitive with the state-of-the-art on a variety of multi-dimensional benchmarks, including ImageNet-1K classification, HMDB-51 action recognition, and ERA5 weather forecasting.
Continual Lifelong Learning with Neural Networks: A Review
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
Equivariant Architectures for Learning in Deep Weight Spaces
Designing machine learning architectures for processing neural networks in their raw weight matrix form is a newly introduced research direction. Unfortunately, the unique symmetry structure of deep weight spaces makes this design very challenging. If successful, such architectures would be capable of performing a wide range of intriguing tasks, from adapting a pre-trained network to a new domain to editing objects represented as functions (INRs or NeRFs). As a first step towards this goal, we present here a novel network architecture for learning in deep weight spaces. It takes as input a concatenation of weights and biases of a pre-trained MLP and processes it using a composition of layers that are equivariant to the natural permutation symmetry of the MLP's weights: Changing the order of neurons in intermediate layers of the MLP does not affect the function it represents. We provide a full characterization of all affine equivariant and invariant layers for these symmetries and show how these layers can be implemented using three basic operations: pooling, broadcasting, and fully connected layers applied to the input in an appropriate manner. We demonstrate the effectiveness of our architecture and its advantages over natural baselines in a variety of learning tasks.
InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions
Creating AI systems that can interact with environments over long periods, similar to human cognition, has been a longstanding research goal. Recent advancements in multimodal large language models (MLLMs) have made significant strides in open-world understanding. However, the challenge of continuous and simultaneous streaming perception, memory, and reasoning remains largely unexplored. Current MLLMs are constrained by their sequence-to-sequence architecture, which limits their ability to process inputs and generate responses simultaneously, akin to being unable to think while perceiving. Furthermore, relying on long contexts to store historical data is impractical for long-term interactions, as retaining all information becomes costly and inefficient. Therefore, rather than relying on a single foundation model to perform all functions, this project draws inspiration from the concept of the Specialized Generalist AI and introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input. The proposed framework InternLM-XComposer2.5-OmniLive (IXC2.5-OL) consists of three key modules: (1) Streaming Perception Module: Processes multimodal information in real-time, storing key details in memory and triggering reasoning in response to user queries. (2) Multi-modal Long Memory Module: Integrates short-term and long-term memory, compressing short-term memories into long-term ones for efficient retrieval and improved accuracy. (3) Reasoning Module: Responds to queries and executes reasoning tasks, coordinating with the perception and memory modules. This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Machine learning research has advanced in multiple aspects, including model structures and learning methods. The effort to automate such research, known as AutoML, has also made significant progress. However, this progress has largely focused on the architecture of neural networks, where it has relied on sophisticated expert-designed layers as building blocks---or similarly restrictive search spaces. Our goal is to show that AutoML can go further: it is possible today to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks. We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space. Despite the vastness of this space, evolutionary search can still discover two-layer neural networks trained by backpropagation. These simple neural networks can then be surpassed by evolving directly on tasks of interest, e.g. CIFAR-10 variants, where modern techniques emerge in the top algorithms, such as bilinear interactions, normalized gradients, and weight averaging. Moreover, evolution adapts algorithms to different task types: e.g., dropout-like techniques appear when little data is available. We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction for the field.
Membrane Potential Batch Normalization for Spiking Neural Networks
As one of the energy-efficient alternatives of conventional neural networks (CNNs), spiking neural networks (SNNs) have gained more and more interest recently. To train the deep models, some effective batch normalization (BN) techniques are proposed in SNNs. All these BNs are suggested to be used after the convolution layer as usually doing in CNNs. However, the spiking neuron is much more complex with the spatio-temporal dynamics. The regulated data flow after the BN layer will be disturbed again by the membrane potential updating operation before the firing function, i.e., the nonlinear activation. Therefore, we advocate adding another BN layer before the firing function to normalize the membrane potential again, called MPBN. To eliminate the induced time cost of MPBN, we also propose a training-inference-decoupled re-parameterization technique to fold the trained MPBN into the firing threshold. With the re-parameterization technique, the MPBN will not introduce any extra time burden in the inference. Furthermore, the MPBN can also adopt the element-wised form, while these BNs after the convolution layer can only use the channel-wised form. Experimental results show that the proposed MPBN performs well on both popular non-spiking static and neuromorphic datasets. Our code is open-sourced at https://github.com/yfguo91/MPBN{MPBN}.
Meta-Learning MCMC Proposals
Effective implementations of sampling-based probabilistic inference often require manually constructed, model-specific proposals. Inspired by recent progresses in meta-learning for training learning agents that can generalize to unseen environments, we propose a meta-learning approach to building effective and generalizable MCMC proposals. We parametrize the proposal as a neural network to provide fast approximations to block Gibbs conditionals. The learned neural proposals generalize to occurrences of common structural motifs across different models, allowing for the construction of a library of learned inference primitives that can accelerate inference on unseen models with no model-specific training required. We explore several applications including open-universe Gaussian mixture models, in which our learned proposals outperform a hand-tuned sampler, and a real-world named entity recognition task, in which our sampler yields higher final F1 scores than classical single-site Gibbs sampling.
Neural Network Quine
Self-replication is a key aspect of biological life that has been largely overlooked in Artificial Intelligence systems. Here we describe how to build and train self-replicating neural networks. The network replicates itself by learning to output its own weights. The network is designed using a loss function that can be optimized with either gradient-based or non-gradient-based methods. We also describe a method we call regeneration to train the network without explicit optimization, by injecting the network with predictions of its own parameters. The best solution for a self-replicating network was found by alternating between regeneration and optimization steps. Finally, we describe a design for a self-replicating neural network that can solve an auxiliary task such as MNIST image classification. We observe that there is a trade-off between the network's ability to classify images and its ability to replicate, but training is biased towards increasing its specialization at image classification at the expense of replication. This is analogous to the trade-off between reproduction and other tasks observed in nature. We suggest that a self-replication mechanism for artificial intelligence is useful because it introduces the possibility of continual improvement through natural selection.
OneFlow: Redesign the Distributed Deep Learning Framework from Scratch
Deep learning frameworks such as TensorFlow and PyTorch provide a productive interface for expressing and training a deep neural network (DNN) model on a single device or using data parallelism. Still, they may not be flexible or efficient enough in training emerging large models on distributed devices, which require more sophisticated parallelism beyond data parallelism. Plugins or wrappers have been developed to strengthen these frameworks for model or pipeline parallelism, but they complicate the usage and implementation of distributed deep learning. Aiming at a simple, neat redesign of distributed deep learning frameworks for various parallelism paradigms, we present OneFlow, a novel distributed training framework based on an SBP (split, broadcast and partial-value) abstraction and the actor model. SBP enables much easier programming of data parallelism and model parallelism than existing frameworks, and the actor model provides a succinct runtime mechanism to manage the complex dependencies imposed by resource constraints, data movement and computation in distributed deep learning. We demonstrate the general applicability and efficiency of OneFlow for training various large DNN models with case studies and extensive experiments. The results show that OneFlow outperforms many well-known customized libraries built on top of the state-of-the-art frameworks. The code of OneFlow is available at: https://github.com/Oneflow-Inc/oneflow.
Dense Hebbian neural networks: a replica symmetric picture of unsupervised learning
We consider dense, associative neural-networks trained with no supervision and we investigate their computational capabilities analytically, via a statistical-mechanics approach, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as the quality and quantity of the training dataset and the network storage, valid in the limit of large network size and structureless datasets. Moreover, we establish a bridge between macroscopic observables standardly used in statistical mechanics and loss functions typically used in the machine learning. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate neural networks in general.
A Neural Scaling Law from Lottery Ticket Ensembling
Neural scaling laws (NSL) refer to the phenomenon where model performance improves with scale. Sharma & Kaplan analyzed NSL using approximation theory and predict that MSE losses decay as N^{-alpha}, alpha=4/d, where N is the number of model parameters, and d is the intrinsic input dimension. Although their theory works well for some cases (e.g., ReLU networks), we surprisingly find that a simple 1D problem y=x^2 manifests a different scaling law (alpha=1) from their predictions (alpha=4). We opened the neural networks and found that the new scaling law originates from lottery ticket ensembling: a wider network on average has more "lottery tickets", which are ensembled to reduce the variance of outputs. We support the ensembling mechanism by mechanistically interpreting single neural networks, as well as studying them statistically. We attribute the N^{-1} scaling law to the "central limit theorem" of lottery tickets. Finally, we discuss its potential implications for large language models and statistical physics-type theories of learning.
Bridging Generative Networks with the Common Model of Cognition
This article presents a theoretical framework for adapting the Common Model of Cognition to large generative network models within the field of artificial intelligence. This can be accomplished by restructuring modules within the Common Model into shadow production systems that are peripheral to a central production system, which handles higher-level reasoning based on the shadow productions' output. Implementing this novel structure within the Common Model allows for a seamless connection between cognitive architectures and generative neural networks.
MindBigData 2023 MNIST-8B The 8 billion datapoints Multimodal Dataset of Brain Signals
MindBigData 2023 MNIST-8B is the largest, to date (June 1st 2023), brain signals open dataset created for Machine Learning, based on EEG signals from a single subject captured using a custom 128 channels device, replicating the full 70,000 digits from Yaan LeCun et all MNIST dataset. The brain signals were captured while the subject was watching the pixels of the original digits one by one on a screen and listening at the same time to the spoken number 0 to 9 from the real label. The data, collection procedures, hardware and software created are described in detail, background extra information and other related datasets can be found at our previous paper MindBigData 2022: A Large Dataset of Brain Signals.
DeepArchitect: Automatically Designing and Training Deep Architectures
In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.
TopoLM: brain-like spatio-functional organization in a topographic language model
Neurons in the brain are spatially organized such that neighbors on tissue often exhibit similar response profiles. In the human language system, experimental studies have observed clusters for syntactic and semantic categories, but the mechanisms underlying this functional organization remain unclear. Here, building on work from the vision literature, we develop TopoLM, a transformer language model with an explicit two-dimensional spatial representation of model units. By combining a next-token prediction objective with a spatial smoothness loss, representations in this model assemble into clusters that correspond to semantically interpretable groupings of text and closely match the functional organization in the brain's language system. TopoLM successfully predicts the emergence of the spatio-functional organization of a cortical language system as well as the organization of functional clusters selective for fine-grained linguistic features empirically observed in human cortex. Our results suggest that the functional organization of the human language system is driven by a unified spatial objective, and provide a functionally and spatially aligned model of language processing in the brain.
ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting
The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF). Traditional TSF foundation models rely heavily on numerical data fitting. In contrast, the human brain is inherently skilled at processing visual information, prefer predicting future trends by observing visualized sequences. From a biomimetic perspective, utilizing models to directly process numerical sequences might not be the most effective route to achieving Artificial General Intelligence (AGI). This paper proposes ViTime, a novel Visual Intelligence-based foundation model for TSF. ViTime overcomes the limitations of numerical time series data fitting by utilizing visual data processing paradigms and employs a innovative data synthesis method during training, called Real Time Series (RealTS). Experiments on a diverse set of previously unseen forecasting datasets demonstrate that ViTime achieves state-of-the-art zero-shot performance, even surpassing the best individually trained supervised models in some situations. These findings suggest that visual intelligence can significantly enhance time series analysis and forecasting, paving the way for more advanced and versatile models in the field. The code for our framework is accessible at https://github.com/IkeYang/ViTime.
Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?
Kolmogorov-Arnold networks (KANs) are a remarkable innovation consisting of learnable activation functions with the potential to capture more complex relationships from data. Although KANs are useful in finding symbolic representations and continual learning of one-dimensional functions, their effectiveness in diverse machine learning (ML) tasks, such as vision, remains questionable. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep network architectures, including advanced architectures such as vision Transformers (ViTs). In this paper, we are the first to design a general learnable Kolmogorov-Arnold Attention (KArAt) for vanilla ViTs that can operate on any choice of basis. However, the computing and memory costs of training them motivated us to propose a more modular version, and we designed particular learnable attention, called Fourier-KArAt. Fourier-KArAt and its variants either outperform their ViT counterparts or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K datasets. We dissect these architectures' performance and generalization capacity by analyzing their loss landscapes, weight distributions, optimizer path, attention visualization, and spectral behavior, and contrast them with vanilla ViTs. The goal of this paper is not to produce parameter- and compute-efficient attention, but to encourage the community to explore KANs in conjunction with more advanced architectures that require a careful understanding of learnable activations. Our open-source code and implementation details are available on: https://subhajitmaity.me/KArAt
Universal Neurons in GPT2 Language Models
A basic question within the emerging field of mechanistic interpretability is the degree to which neural networks learn the same underlying mechanisms. In other words, are neural mechanisms universal across different models? In this work, we study the universality of individual neurons across GPT2 models trained from different initial random seeds, motivated by the hypothesis that universal neurons are likely to be interpretable. In particular, we compute pairwise correlations of neuron activations over 100 million tokens for every neuron pair across five different seeds and find that 1-5\% of neurons are universal, that is, pairs of neurons which consistently activate on the same inputs. We then study these universal neurons in detail, finding that they usually have clear interpretations and taxonomize them into a small number of neuron families. We conclude by studying patterns in neuron weights to establish several universal functional roles of neurons in simple circuits: deactivating attention heads, changing the entropy of the next token distribution, and predicting the next token to (not) be within a particular set.
Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases
Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
Clinicians are often very sceptical about applying automatic image processing approaches, especially deep learning based methods, in practice. One main reason for this is the black-box nature of these approaches and the inherent problem of missing insights of the automatically derived decisions. In order to increase trust in these methods, this paper presents approaches that help to interpret and explain the results of deep learning algorithms by depicting the anatomical areas which influence the decision of the algorithm most. Moreover, this research presents a unified framework, TorchEsegeta, for applying various interpretability and explainability techniques for deep learning models and generate visual interpretations and explanations for clinicians to corroborate their clinical findings. In addition, this will aid in gaining confidence in such methods. The framework builds on existing interpretability and explainability techniques that are currently focusing on classification models, extending them to segmentation tasks. In addition, these methods have been adapted to 3D models for volumetric analysis. The proposed framework provides methods to quantitatively compare visual explanations using infidelity and sensitivity metrics. This framework can be used by data scientists to perform post-hoc interpretations and explanations of their models, develop more explainable tools and present the findings to clinicians to increase their faith in such models. The proposed framework was evaluated based on a use case scenario of vessel segmentation models trained on Time-of-fight (TOF) Magnetic Resonance Angiogram (MRA) images of the human brain. Quantitative and qualitative results of a comparative study of different models and interpretability methods are presented. Furthermore, this paper provides an extensive overview of several existing interpretability and explainability methods.
Scaling laws for language encoding models in fMRI
Representations from transformer-based unidirectional language models are known to be effective at predicting brain responses to natural language. However, most studies comparing language models to brains have used GPT-2 or similarly sized language models. Here we tested whether larger open-source models such as those from the OPT and LLaMA families are better at predicting brain responses recorded using fMRI. Mirroring scaling results from other contexts, we found that brain prediction performance scales log-linearly with model size from 125M to 30B parameter models, with ~15% increased encoding performance as measured by correlation with a held-out test set across 3 subjects. Similar log-linear behavior was observed when scaling the size of the fMRI training set. We also characterized scaling for acoustic encoding models that use HuBERT, WavLM, and Whisper, and we found comparable improvements with model size. A noise ceiling analysis of these large, high-performance encoding models showed that performance is nearing the theoretical maximum for brain areas such as the precuneus and higher auditory cortex. These results suggest that increasing scale in both models and data will yield incredibly effective models of language processing in the brain, enabling better scientific understanding as well as applications such as decoding.
Compositional Deep Learning
Neural networks have become an increasingly popular tool for solving many real-world problems. They are a general framework for differentiable optimization which includes many other machine learning approaches as special cases. In this thesis we build a category-theoretic formalism around a class of neural networks exemplified by CycleGAN. CycleGAN is a collection of neural networks, closed under composition, whose inductive bias is increased by enforcing composition invariants, i.e. cycle-consistencies. Inspired by Functorial Data Migration, we specify the interconnection of these networks using a categorical schema, and network instances as set-valued functors on this schema. We also frame neural network architectures, datasets, models, and a number of other concepts in a categorical setting and thus show a special class of functors, rather than functions, can be learned using gradient descent. We use the category-theoretic framework to conceive a novel neural network architecture whose goal is to learn the task of object insertion and object deletion in images with unpaired data. We test the architecture on three different datasets and obtain promising results.
BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity
Understanding the functional organization of higher visual cortex is a central focus in neuroscience. Past studies have primarily mapped the visual and semantic selectivity of neural populations using hand-selected stimuli, which may potentially bias results towards pre-existing hypotheses of visual cortex functionality. Moving beyond conventional approaches, we introduce a data-driven method that generates natural language descriptions for images predicted to maximally activate individual voxels of interest. Our method -- Semantic Captioning Using Brain Alignments ("BrainSCUBA") -- builds upon the rich embedding space learned by a contrastive vision-language model and utilizes a pre-trained large language model to generate interpretable captions. We validate our method through fine-grained voxel-level captioning across higher-order visual regions. We further perform text-conditioned image synthesis with the captions, and show that our images are semantically coherent and yield high predicted activations. Finally, to demonstrate how our method enables scientific discovery, we perform exploratory investigations on the distribution of "person" representations in the brain, and discover fine-grained semantic selectivity in body-selective areas. Unlike earlier studies that decode text, our method derives voxel-wise captions of semantic selectivity. Our results show that BrainSCUBA is a promising means for understanding functional preferences in the brain, and provides motivation for further hypothesis-driven investigation of visual cortex.
Digital Twin Brain: a simulation and assimilation platform for whole human brain
In this work, we present a computing platform named digital twin brain (DTB) that can simulate spiking neuronal networks of the whole human brain scale and more importantly, a personalized biological brain structure. In comparison to most brain simulations with a homogeneous global structure, we highlight that the sparseness, couplingness and heterogeneity in the sMRI, DTI and PET data of the brain has an essential impact on the efficiency of brain simulation, which is proved from the scaling experiments that the DTB of human brain simulation is communication-intensive and memory-access intensive computing systems rather than computation-intensive. We utilize a number of optimization techniques to balance and integrate the computation loads and communication traffics from the heterogeneous biological structure to the general GPU-based HPC and achieve leading simulation performance for the whole human brain-scaled spiking neuronal networks. On the other hand, the biological structure, equipped with a mesoscopic data assimilation, enables the DTB to investigate brain cognitive function by a reverse-engineering method, which is demonstrated by a digital experiment of visual evaluation on the DTB. Furthermore, we believe that the developing DTB will be a promising powerful platform for a large of research orients including brain-inspiredintelligence, rain disease medicine and brain-machine interface.
A Multi-Branched Radial Basis Network Approach to Predicting Complex Chaotic Behaviours
In this study, we propose a multi branched network approach to predict the dynamics of a physics attractor characterized by intricate and chaotic behavior. We introduce a unique neural network architecture comprised of Radial Basis Function (RBF) layers combined with an attention mechanism designed to effectively capture nonlinear inter-dependencies inherent in the attractor's temporal evolution. Our results demonstrate successful prediction of the attractor's trajectory across 100 predictions made using a real-world dataset of 36,700 time-series observations encompassing approximately 28 minutes of activity. To further illustrate the performance of our proposed technique, we provide comprehensive visualizations depicting the attractor's original and predicted behaviors alongside quantitative measures comparing observed versus estimated outcomes. Overall, this work showcases the potential of advanced machine learning algorithms in elucidating hidden structures in complex physical systems while offering practical applications in various domains requiring accurate short-term forecasting capabilities.
Structural Similarities Between Language Models and Neural Response Measurements
Large language models (LLMs) have complicated internal dynamics, but induce representations of words and phrases whose geometry we can study. Human language processing is also opaque, but neural response measurements can provide (noisy) recordings of activation during listening or reading, from which we can extract similar representations of words and phrases. Here we study the extent to which the geometries induced by these representations, share similarities in the context of brain decoding. We find that the larger neural language models get, the more their representations are structurally similar to neural response measurements from brain imaging. Code is available at https://github.com/coastalcph/brainlm.
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning
We consider the problem of model compression for deep neural networks (DNNs) in the challenging one-shot/post-training setting, in which we are given an accurate trained model, and must compress it without any retraining, based only on a small amount of calibration input data. This problem has become popular in view of the emerging software and hardware support for executing models compressed via pruning and/or quantization with speedup, and well-performing solutions have been proposed independently for both compression approaches. In this paper, we introduce a new compression framework which covers both weight pruning and quantization in a unified setting, is time- and space-efficient, and considerably improves upon the practical performance of existing post-training methods. At the technical level, our approach is based on an exact and efficient realization of the classical Optimal Brain Surgeon (OBS) framework of [LeCun, Denker, and Solla, 1990] extended to also cover weight quantization at the scale of modern DNNs. From the practical perspective, our experimental results show that it can improve significantly upon the compression-accuracy trade-offs of existing post-training methods, and that it can enable the accurate compound application of both pruning and quantization in a post-training setting.
Human Behavioral Benchmarking: Numeric Magnitude Comparison Effects in Large Language Models
Large Language Models (LLMs) do not differentially represent numbers, which are pervasive in text. In contrast, neuroscience research has identified distinct neural representations for numbers and words. In this work, we investigate how well popular LLMs capture the magnitudes of numbers (e.g., that 4 < 5) from a behavioral lens. Prior research on the representational capabilities of LLMs evaluates whether they show human-level performance, for instance, high overall accuracy on standard benchmarks. Here, we ask a different question, one inspired by cognitive science: How closely do the number representations of LLMscorrespond to those of human language users, who typically demonstrate the distance, size, and ratio effects? We depend on a linking hypothesis to map the similarities among the model embeddings of number words and digits to human response times. The results reveal surprisingly human-like representations across language models of different architectures, despite the absence of the neural circuitry that directly supports these representations in the human brain. This research shows the utility of understanding LLMs using behavioral benchmarks and points the way to future work on the number representations of LLMs and their cognitive plausibility.
MNIST-Nd: a set of naturalistic datasets to benchmark clustering across dimensions
Driven by advances in recording technology, large-scale high-dimensional datasets have emerged across many scientific disciplines. Especially in biology, clustering is often used to gain insights into the structure of such datasets, for instance to understand the organization of different cell types. However, clustering is known to scale poorly to high dimensions, even though the exact impact of dimensionality is unclear as current benchmark datasets are mostly two-dimensional. Here we propose MNIST-Nd, a set of synthetic datasets that share a key property of real-world datasets, namely that individual samples are noisy and clusters do not perfectly separate. MNIST-Nd is obtained by training mixture variational autoencoders with 2 to 64 latent dimensions on MNIST, resulting in six datasets with comparable structure but varying dimensionality. It thus offers the chance to disentangle the impact of dimensionality on clustering. Preliminary common clustering algorithm benchmarks on MNIST-Nd suggest that Leiden is the most robust for growing dimensions.
MHS-VM: Multi-Head Scanning in Parallel Subspaces for Vision Mamba
Recently, State Space Models (SSMs), with Mamba as a prime example, have shown great promise for long-range dependency modeling with linear complexity. Then, Vision Mamba and the subsequent architectures are presented successively, and they perform well on visual tasks. The crucial step of applying Mamba to visual tasks is to construct 2D visual features in sequential manners. To effectively organize and construct visual features within the 2D image space through 1D selective scan, we propose a novel Multi-Head Scan (MHS) module. The embeddings extracted from the preceding layer are projected into multiple lower-dimensional subspaces. Subsequently, within each subspace, the selective scan is performed along distinct scan routes. The resulting sub-embeddings, obtained from the multi-head scan process, are then integrated and ultimately projected back into the high-dimensional space. Moreover, we incorporate a Scan Route Attention (SRA) mechanism to enhance the module's capability to discern complex structures. To validate the efficacy of our module, we exclusively substitute the 2D-Selective-Scan (SS2D) block in VM-UNet with our proposed module, and we train our models from scratch without using any pre-trained weights. The results indicate a significant improvement in performance while reducing the parameters of the original VM-UNet. The code for this study is publicly available at https://github.com/PixDeep/MHS-VM.