Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTurning to a Teacher for Timestamp Supervised Temporal Action Segmentation
Temporal action segmentation in videos has drawn much attention recently. Timestamp supervision is a cost-effective way for this task. To obtain more information to optimize the model, the existing method generated pseudo frame-wise labels iteratively based on the output of a segmentation model and the timestamp annotations. However, this practice may introduce noise and oscillation during the training, and lead to performance degeneration. To address this problem, we propose a new framework for timestamp supervised temporal action segmentation by introducing a teacher model parallel to the segmentation model to help stabilize the process of model optimization. The teacher model can be seen as an ensemble of the segmentation model, which helps to suppress the noise and to improve the stability of pseudo labels. We further introduce a segmentally smoothing loss, which is more focused and cohesive, to enforce the smooth transition of the predicted probabilities within action instances. The experiments on three datasets show that our method outperforms the state-of-the-art method and performs comparably against the fully-supervised methods at a much lower annotation cost.
Temporal Enhanced Training of Multi-view 3D Object Detector via Historical Object Prediction
In this paper, we propose a new paradigm, named Historical Object Prediction (HoP) for multi-view 3D detection to leverage temporal information more effectively. The HoP approach is straightforward: given the current timestamp t, we generate a pseudo Bird's-Eye View (BEV) feature of timestamp t-k from its adjacent frames and utilize this feature to predict the object set at timestamp t-k. Our approach is motivated by the observation that enforcing the detector to capture both the spatial location and temporal motion of objects occurring at historical timestamps can lead to more accurate BEV feature learning. First, we elaborately design short-term and long-term temporal decoders, which can generate the pseudo BEV feature for timestamp t-k without the involvement of its corresponding camera images. Second, an additional object decoder is flexibly attached to predict the object targets using the generated pseudo BEV feature. Note that we only perform HoP during training, thus the proposed method does not introduce extra overheads during inference. As a plug-and-play approach, HoP can be easily incorporated into state-of-the-art BEV detection frameworks, including BEVFormer and BEVDet series. Furthermore, the auxiliary HoP approach is complementary to prevalent temporal modeling methods, leading to significant performance gains. Extensive experiments are conducted to evaluate the effectiveness of the proposed HoP on the nuScenes dataset. We choose the representative methods, including BEVFormer and BEVDet4D-Depth to evaluate our method. Surprisingly, HoP achieves 68.5% NDS and 62.4% mAP with ViT-L on nuScenes test, outperforming all the 3D object detectors on the leaderboard. Codes will be available at https://github.com/Sense-X/HoP.
Token-Efficient Long Video Understanding for Multimodal LLMs
Recent advances in video-based multimodal large language models (Video-LLMs) have significantly improved video understanding by processing videos as sequences of image frames. However, many existing methods treat frames independently in the vision backbone, lacking explicit temporal modeling, which limits their ability to capture dynamic patterns and efficiently handle long videos. To address these limitations, we introduce STORM (Spatiotemporal TOken Reduction for Multimodal LLMs), a novel architecture incorporating a dedicated temporal encoder between the image encoder and the LLM. Our temporal encoder leverages the Mamba State Space Model to integrate temporal information into image tokens, generating enriched representations that preserve inter-frame dynamics across the entire video sequence. This enriched encoding not only enhances video reasoning capabilities but also enables effective token reduction strategies, including test-time sampling and training-based temporal and spatial pooling, substantially reducing computational demands on the LLM without sacrificing key temporal information. By integrating these techniques, our approach simultaneously reduces training and inference latency while improving performance, enabling efficient and robust video understanding over extended temporal contexts. Extensive evaluations show that STORM achieves state-of-the-art results across various long video understanding benchmarks (more than 5\% improvement on MLVU and LongVideoBench) while reducing the computation costs by up to 8times and the decoding latency by 2.4-2.9times for the fixed numbers of input frames. Project page is available at https://research.nvidia.com/labs/lpr/storm
VTG-LLM: Integrating Timestamp Knowledge into Video LLMs for Enhanced Video Temporal Grounding
Video Temporal Grounding (VTG) focuses on accurately identifying event timestamps within a particular video based on a linguistic query, playing a vital role in downstream tasks such as video browsing and editing. While Video Large Language Models (video LLMs) have made significant progress in understanding video content, they often face challenges in accurately pinpointing timestamps within videos, which limits their performance on VTG tasks. Therefore, to improve video LLMs' ability to effectively locate timestamps, we argue that two critical aspects need to be enhanced. First, it is essential to have high-quality instructional tuning datasets that encompass mainstream VTG tasks. Second, directly incorporating timestamp knowledge into video LLMs is crucial, as it enables models to efficiently comprehend timestamp information. To address these needs, we first introduce VTG-IT-120K, a high-quality and comprehensive instruction tuning dataset that covers VTG tasks such as moment retrieval, dense video captioning, video summarization, and video highlight detection. Furthermore, we propose a specially designed video LLM model for VTG tasks, VTG-LLM, which (1) effectively integrates timestamp knowledge into visual tokens; (2) incorporates absolute-time tokens that specifically handle timestamp knowledge, thereby avoiding concept shifts; and (3) introduces a lightweight, high-performance slot-based token compression method to facilitate the sampling of more video frames. Comprehensive experiments showcase the superior performance of VTG-LLM in comparison to other video LLM methods across various VTG tasks. Our code and datasets are available at https://github.com/gyxxyg/VTG-LLM.
Enhancing Low-Cost Video Editing with Lightweight Adaptors and Temporal-Aware Inversion
Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models
We present an efficient encoder-free approach for video-language understanding that achieves competitive performance while significantly reducing computational overhead. Current video-language models typically rely on heavyweight image encoders (300M-1.1B parameters) or video encoders (1B-1.4B parameters), creating a substantial computational burden when processing multi-frame videos. Our method introduces a novel Spatio-Temporal Alignment Block (STAB) that directly processes video inputs without requiring pre-trained encoders while using only 45M parameters for visual processing - at least a 6.5times reduction compared to traditional approaches. The STAB architecture combines Local Spatio-Temporal Encoding for fine-grained feature extraction, efficient spatial downsampling through learned attention and separate mechanisms for modeling frame-level and video-level relationships. Our model achieves comparable or superior performance to encoder-based approaches for open-ended video question answering on standard benchmarks. The fine-grained video question-answering evaluation demonstrates our model's effectiveness, outperforming the encoder-based approaches Video-ChatGPT and Video-LLaVA in key aspects like correctness and temporal understanding. Extensive ablation studies validate our architectural choices and demonstrate the effectiveness of our spatio-temporal modeling approach while achieving 3-4times faster processing speeds than previous methods. Code is available at https://github.com/jh-yi/Video-Panda.
HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera
Continuous space-time video super-resolution (C-STVSR) aims to simultaneously enhance video resolution and frame rate at an arbitrary scale. Recently, implicit neural representation (INR) has been applied to video restoration, representing videos as implicit fields that can be decoded at an arbitrary scale. However, the highly ill-posed nature of C-STVSR limits the effectiveness of current INR-based methods: they assume linear motion between frames and use interpolation or feature warping to generate features at arbitrary spatiotemporal positions with two consecutive frames. This restrains C-STVSR from capturing rapid and nonlinear motion and long-term dependencies (involving more than two frames) in complex dynamic scenes. In this paper, we propose a novel C-STVSR framework, called HR-INR, which captures both holistic dependencies and regional motions based on INR. It is assisted by an event camera, a novel sensor renowned for its high temporal resolution and low latency. To fully utilize the rich temporal information from events, we design a feature extraction consisting of (1) a regional event feature extractor - taking events as inputs via the proposed event temporal pyramid representation to capture the regional nonlinear motion and (2) a holistic event-frame feature extractor for long-term dependence and continuity motion. We then propose a novel INR-based decoder with spatiotemporal embeddings to capture long-term dependencies with a larger temporal perception field. We validate the effectiveness and generalization of our method on four datasets (both simulated and real data), showing the superiority of our method.
What Can Simple Arithmetic Operations Do for Temporal Modeling?
Temporal modeling plays a crucial role in understanding video content. To tackle this problem, previous studies built complicated temporal relations through time sequence thanks to the development of computationally powerful devices. In this work, we explore the potential of four simple arithmetic operations for temporal modeling. Specifically, we first capture auxiliary temporal cues by computing addition, subtraction, multiplication, and division between pairs of extracted frame features. Then, we extract corresponding features from these cues to benefit the original temporal-irrespective domain. We term such a simple pipeline as an Arithmetic Temporal Module (ATM), which operates on the stem of a visual backbone with a plug-and-play style. We conduct comprehensive ablation studies on the instantiation of ATMs and demonstrate that this module provides powerful temporal modeling capability at a low computational cost. Moreover, the ATM is compatible with both CNNs- and ViTs-based architectures. Our results show that ATM achieves superior performance over several popular video benchmarks. Specifically, on Something-Something V1, V2 and Kinetics-400, we reach top-1 accuracy of 65.6%, 74.6%, and 89.4% respectively. The code is available at https://github.com/whwu95/ATM.
Knowing Where to Focus: Event-aware Transformer for Video Grounding
Recent DETR-based video grounding models have made the model directly predict moment timestamps without any hand-crafted components, such as a pre-defined proposal or non-maximum suppression, by learning moment queries. However, their input-agnostic moment queries inevitably overlook an intrinsic temporal structure of a video, providing limited positional information. In this paper, we formulate an event-aware dynamic moment query to enable the model to take the input-specific content and positional information of the video into account. To this end, we present two levels of reasoning: 1) Event reasoning that captures distinctive event units constituting a given video using a slot attention mechanism; and 2) moment reasoning that fuses the moment queries with a given sentence through a gated fusion transformer layer and learns interactions between the moment queries and video-sentence representations to predict moment timestamps. Extensive experiments demonstrate the effectiveness and efficiency of the event-aware dynamic moment queries, outperforming state-of-the-art approaches on several video grounding benchmarks.
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation
Effectively extracting inter-frame motion and appearance information is important for video frame interpolation (VFI). Previous works either extract both types of information in a mixed way or elaborate separate modules for each type of information, which lead to representation ambiguity and low efficiency. In this paper, we propose a novel module to explicitly extract motion and appearance information via a unifying operation. Specifically, we rethink the information process in inter-frame attention and reuse its attention map for both appearance feature enhancement and motion information extraction. Furthermore, for efficient VFI, our proposed module could be seamlessly integrated into a hybrid CNN and Transformer architecture. This hybrid pipeline can alleviate the computational complexity of inter-frame attention as well as preserve detailed low-level structure information. Experimental results demonstrate that, for both fixed- and arbitrary-timestep interpolation, our method achieves state-of-the-art performance on various datasets. Meanwhile, our approach enjoys a lighter computation overhead over models with close performance. The source code and models are available at https://github.com/MCG-NJU/EMA-VFI.
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at https://github.com/facebookresearch/SlowFast
Mind the Time: Temporally-Controlled Multi-Event Video Generation
Real-world videos consist of sequences of events. Generating such sequences with precise temporal control is infeasible with existing video generators that rely on a single paragraph of text as input. When tasked with generating multiple events described using a single prompt, such methods often ignore some of the events or fail to arrange them in the correct order. To address this limitation, we present MinT, a multi-event video generator with temporal control. Our key insight is to bind each event to a specific period in the generated video, which allows the model to focus on one event at a time. To enable time-aware interactions between event captions and video tokens, we design a time-based positional encoding method, dubbed ReRoPE. This encoding helps to guide the cross-attention operation. By fine-tuning a pre-trained video diffusion transformer on temporally grounded data, our approach produces coherent videos with smoothly connected events. For the first time in the literature, our model offers control over the timing of events in generated videos. Extensive experiments demonstrate that MinT outperforms existing open-source models by a large margin.
Large Motion Video Autoencoding with Cross-modal Video VAE
Learning a robust video Variational Autoencoder (VAE) is essential for reducing video redundancy and facilitating efficient video generation. Directly applying image VAEs to individual frames in isolation can result in temporal inconsistencies and suboptimal compression rates due to a lack of temporal compression. Existing Video VAEs have begun to address temporal compression; however, they often suffer from inadequate reconstruction performance. In this paper, we present a novel and powerful video autoencoder capable of high-fidelity video encoding. First, we observe that entangling spatial and temporal compression by merely extending the image VAE to a 3D VAE can introduce motion blur and detail distortion artifacts. Thus, we propose temporal-aware spatial compression to better encode and decode the spatial information. Additionally, we integrate a lightweight motion compression model for further temporal compression. Second, we propose to leverage the textual information inherent in text-to-video datasets and incorporate text guidance into our model. This significantly enhances reconstruction quality, particularly in terms of detail preservation and temporal stability. Third, we further improve the versatility of our model through joint training on both images and videos, which not only enhances reconstruction quality but also enables the model to perform both image and video autoencoding. Extensive evaluations against strong recent baselines demonstrate the superior performance of our method. The project website can be found at~https://yzxing87.github.io/vae/{https://yzxing87.github.io/vae/}.
LITA: Language Instructed Temporal-Localization Assistant
There has been tremendous progress in multimodal Large Language Models (LLMs). Recent works have extended these models to video input with promising instruction following capabilities. However, an important missing piece is temporal localization. These models cannot accurately answer the "When?" questions. We identify three key aspects that limit their temporal localization capabilities: (i) time representation, (ii) architecture, and (iii) data. We address these shortcomings by proposing Language Instructed Temporal-Localization Assistant (LITA) with the following features: (1) We introduce time tokens that encode timestamps relative to the video length to better represent time in videos. (2) We introduce SlowFast tokens in the architecture to capture temporal information at fine temporal resolution. (3) We emphasize temporal localization data for LITA. In addition to leveraging existing video datasets with timestamps, we propose a new task, Reasoning Temporal Localization (RTL), along with the dataset, ActivityNet-RTL, for learning and evaluating this task. Reasoning temporal localization requires both the reasoning and temporal localization of Video LLMs. LITA demonstrates strong performance on this challenging task, nearly doubling the temporal mean intersection-over-union (mIoU) of baselines. In addition, we show that our emphasis on temporal localization also substantially improves video-based text generation compared to existing Video LLMs, including a 36% relative improvement of Temporal Understanding. Code is available at: https://github.com/NVlabs/LITA
Exploring the Role of Explicit Temporal Modeling in Multimodal Large Language Models for Video Understanding
Applying Multimodal Large Language Models (MLLMs) to video understanding presents significant challenges due to the need to model temporal relations across frames. Existing approaches adopt either implicit temporal modeling, relying solely on the LLM decoder, or explicit temporal modeling, employing auxiliary temporal encoders. To investigate this debate between the two paradigms, we propose the Stackable Temporal Encoder (STE). STE enables flexible explicit temporal modeling with adjustable temporal receptive fields and token compression ratios. Using STE, we systematically compare implicit and explicit temporal modeling across dimensions such as overall performance, token compression effectiveness, and temporal-specific understanding. We also explore STE's design considerations and broader impacts as a plug-in module and in image modalities. Our findings emphasize the critical role of explicit temporal modeling, providing actionable insights to advance video MLLMs.
Frame Flexible Network
Existing video recognition algorithms always conduct different training pipelines for inputs with different frame numbers, which requires repetitive training operations and multiplying storage costs. If we evaluate the model using other frames which are not used in training, we observe the performance will drop significantly (see Fig.1), which is summarized as Temporal Frequency Deviation phenomenon. To fix this issue, we propose a general framework, named Frame Flexible Network (FFN), which not only enables the model to be evaluated at different frames to adjust its computation, but also reduces the memory costs of storing multiple models significantly. Concretely, FFN integrates several sets of training sequences, involves Multi-Frequency Alignment (MFAL) to learn temporal frequency invariant representations, and leverages Multi-Frequency Adaptation (MFAD) to further strengthen the representation abilities. Comprehensive empirical validations using various architectures and popular benchmarks solidly demonstrate the effectiveness and generalization of FFN (e.g., 7.08/5.15/2.17% performance gain at Frame 4/8/16 on Something-Something V1 dataset over Uniformer). Code is available at https://github.com/BeSpontaneous/FFN.
RIGID: Recurrent GAN Inversion and Editing of Real Face Videos
GAN inversion is indispensable for applying the powerful editability of GAN to real images. However, existing methods invert video frames individually often leading to undesired inconsistent results over time. In this paper, we propose a unified recurrent framework, named Recurrent vIdeo GAN Inversion and eDiting (RIGID), to explicitly and simultaneously enforce temporally coherent GAN inversion and facial editing of real videos. Our approach models the temporal relations between current and previous frames from three aspects. To enable a faithful real video reconstruction, we first maximize the inversion fidelity and consistency by learning a temporal compensated latent code. Second, we observe incoherent noises lie in the high-frequency domain that can be disentangled from the latent space. Third, to remove the inconsistency after attribute manipulation, we propose an in-between frame composition constraint such that the arbitrary frame must be a direct composite of its neighboring frames. Our unified framework learns the inherent coherence between input frames in an end-to-end manner, and therefore it is agnostic to a specific attribute and can be applied to arbitrary editing of the same video without re-training. Extensive experiments demonstrate that RIGID outperforms state-of-the-art methods qualitatively and quantitatively in both inversion and editing tasks. The deliverables can be found in https://cnnlstm.github.io/RIGID
Implicit Temporal Modeling with Learnable Alignment for Video Recognition
Contrastive language-image pretraining (CLIP) has demonstrated remarkable success in various image tasks. However, how to extend CLIP with effective temporal modeling is still an open and crucial problem. Existing factorized or joint spatial-temporal modeling trades off between the efficiency and performance. While modeling temporal information within straight through tube is widely adopted in literature, we find that simple frame alignment already provides enough essence without temporal attention. To this end, in this paper, we proposed a novel Implicit Learnable Alignment (ILA) method, which minimizes the temporal modeling effort while achieving incredibly high performance. Specifically, for a frame pair, an interactive point is predicted in each frame, serving as a mutual information rich region. By enhancing the features around the interactive point, two frames are implicitly aligned. The aligned features are then pooled into a single token, which is leveraged in the subsequent spatial self-attention. Our method allows eliminating the costly or insufficient temporal self-attention in video. Extensive experiments on benchmarks demonstrate the superiority and generality of our module. Particularly, the proposed ILA achieves a top-1 accuracy of 88.7% on Kinetics-400 with much fewer FLOPs compared with Swin-L and ViViT-H. Code is released at https://github.com/Francis-Rings/ILA .
Boosting Neural Representations for Videos with a Conditional Decoder
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing, showing remarkable versatility across various video tasks. However, existing methods often fail to fully leverage their representation capabilities, primarily due to inadequate alignment of intermediate features during target frame decoding. This paper introduces a universal boosting framework for current implicit video representation approaches. Specifically, we utilize a conditional decoder with a temporal-aware affine transform module, which uses the frame index as a prior condition to effectively align intermediate features with target frames. Besides, we introduce a sinusoidal NeRV-like block to generate diverse intermediate features and achieve a more balanced parameter distribution, thereby enhancing the model's capacity. With a high-frequency information-preserving reconstruction loss, our approach successfully boosts multiple baseline INRs in the reconstruction quality and convergence speed for video regression, and exhibits superior inpainting and interpolation results. Further, we integrate a consistent entropy minimization technique and develop video codecs based on these boosted INRs. Experiments on the UVG dataset confirm that our enhanced codecs significantly outperform baseline INRs and offer competitive rate-distortion performance compared to traditional and learning-based codecs.
Stochastic Latent Residual Video Prediction
Designing video prediction models that account for the inherent uncertainty of the future is challenging. Most works in the literature are based on stochastic image-autoregressive recurrent networks, which raises several performance and applicability issues. An alternative is to use fully latent temporal models which untie frame synthesis and temporal dynamics. However, no such model for stochastic video prediction has been proposed in the literature yet, due to design and training difficulties. In this paper, we overcome these difficulties by introducing a novel stochastic temporal model whose dynamics are governed in a latent space by a residual update rule. This first-order scheme is motivated by discretization schemes of differential equations. It naturally models video dynamics as it allows our simpler, more interpretable, latent model to outperform prior state-of-the-art methods on challenging datasets.
NIRVANA: Neural Implicit Representations of Videos with Adaptive Networks and Autoregressive Patch-wise Modeling
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
Progressive Temporal Feature Alignment Network for Video Inpainting
Video inpainting aims to fill spatio-temporal "corrupted" regions with plausible content. To achieve this goal, it is necessary to find correspondences from neighbouring frames to faithfully hallucinate the unknown content. Current methods achieve this goal through attention, flow-based warping, or 3D temporal convolution. However, flow-based warping can create artifacts when optical flow is not accurate, while temporal convolution may suffer from spatial misalignment. We propose 'Progressive Temporal Feature Alignment Network', which progressively enriches features extracted from the current frame with the feature warped from neighbouring frames using optical flow. Our approach corrects the spatial misalignment in the temporal feature propagation stage, greatly improving visual quality and temporal consistency of the inpainted videos. Using the proposed architecture, we achieve state-of-the-art performance on the DAVIS and FVI datasets compared to existing deep learning approaches. Code is available at https://github.com/MaureenZOU/TSAM.
FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance
Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII), Temporal Affinity Refiner (TAR), and Temporal Feature Booster (TFB) at the beginning, middle, and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Lastly, TFB boosts the temporal consistency of latent features. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our approach achieves state-of-the-art T2V generation results on the EvalCrafter benchmark and facilitates the synthesis of dynamic and consistent videos. The video show results can be available at https://fancyvideo.github.io/, and we will make our code and model weights publicly available.
Adapting Image-to-Video Diffusion Models for Large-Motion Frame Interpolation
With the development of video generation models has advanced significantly in recent years, we adopt large-scale image-to-video diffusion models for video frame interpolation. We present a conditional encoder designed to adapt an image-to-video model for large-motion frame interpolation. To enhance performance, we integrate a dual-branch feature extractor and propose a cross-frame attention mechanism that effectively captures both spatial and temporal information, enabling accurate interpolations of intermediate frames. Our approach demonstrates superior performance on the Fr\'echet Video Distance (FVD) metric when evaluated against other state-of-the-art approaches, particularly in handling large motion scenarios, highlighting advancements in generative-based methodologies.
Masked Motion Encoding for Self-Supervised Video Representation Learning
How to learn discriminative video representation from unlabeled videos is challenging but crucial for video analysis. The latest attempts seek to learn a representation model by predicting the appearance contents in the masked regions. However, simply masking and recovering appearance contents may not be sufficient to model temporal clues as the appearance contents can be easily reconstructed from a single frame. To overcome this limitation, we present Masked Motion Encoding (MME), a new pre-training paradigm that reconstructs both appearance and motion information to explore temporal clues. In MME, we focus on addressing two critical challenges to improve the representation performance: 1) how to well represent the possible long-term motion across multiple frames; and 2) how to obtain fine-grained temporal clues from sparsely sampled videos. Motivated by the fact that human is able to recognize an action by tracking objects' position changes and shape changes, we propose to reconstruct a motion trajectory that represents these two kinds of change in the masked regions. Besides, given the sparse video input, we enforce the model to reconstruct dense motion trajectories in both spatial and temporal dimensions. Pre-trained with our MME paradigm, the model is able to anticipate long-term and fine-grained motion details. Code is available at https://github.com/XinyuSun/MME.
VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
Building on the advances of language models, Large Multimodal Models (LMMs) have contributed significant improvements in video understanding. While the current video LMMs utilize advanced Large Language Models (LLMs), they rely on either image or video encoders to process visual inputs, each of which has its own limitations. Image encoders excel at capturing rich spatial details from frame sequences but lack explicit temporal context, which can be important in videos with intricate action sequences. On the other hand, video encoders provide temporal context but are often limited by computational constraints that lead to processing only sparse frames at lower resolutions, resulting in reduced contextual and spatial understanding. To this end, we introduce VideoGPT+, which combines the complementary benefits of the image encoder (for detailed spatial understanding) and the video encoder (for global temporal context modeling). The model processes videos by dividing them into smaller segments and applies an adaptive pooling strategy on features extracted by both image and video encoders. Our architecture showcases improved performance across multiple video benchmarks, including VCGBench, MVBench and Zero-shot question-answering. Further, we develop 112K video-instruction set using a novel semi-automatic annotation pipeline which further improves the model performance. Additionally, to comprehensively evaluate video LMMs, we present VCGBench-Diverse, covering 18 broad video categories such as lifestyle, sports, science, gaming, and surveillance videos. This benchmark with 4,354 question-answer pairs evaluates the generalization of existing LMMs on dense video captioning, spatial and temporal understanding, and complex reasoning, ensuring comprehensive assessment across diverse video types and dynamics. Code: https://github.com/mbzuai-oryx/VideoGPT-plus.
Dancing with Still Images: Video Distillation via Static-Dynamic Disentanglement
Recently, dataset distillation has paved the way towards efficient machine learning, especially for image datasets. However, the distillation for videos, characterized by an exclusive temporal dimension, remains an underexplored domain. In this work, we provide the first systematic study of video distillation and introduce a taxonomy to categorize temporal compression. Our investigation reveals that the temporal information is usually not well learned during distillation, and the temporal dimension of synthetic data contributes little. The observations motivate our unified framework of disentangling the dynamic and static information in the videos. It first distills the videos into still images as static memory and then compensates the dynamic and motion information with a learnable dynamic memory block. Our method achieves state-of-the-art on video datasets at different scales, with a notably smaller memory storage budget. Our code is available at https://github.com/yuz1wan/video_distillation.
LatentWarp: Consistent Diffusion Latents for Zero-Shot Video-to-Video Translation
Leveraging the generative ability of image diffusion models offers great potential for zero-shot video-to-video translation. The key lies in how to maintain temporal consistency across generated video frames by image diffusion models. Previous methods typically adopt cross-frame attention, i.e., sharing the key and value tokens across attentions of different frames, to encourage the temporal consistency. However, in those works, temporal inconsistency issue may not be thoroughly solved, rendering the fidelity of generated videos limited.%The current state of the art cross-frame attention method aims at maintaining fine-grained visual details across frames, but it is still challenged by the temporal coherence problem. In this paper, we find the bottleneck lies in the unconstrained query tokens and propose a new zero-shot video-to-video translation framework, named LatentWarp. Our approach is simple: to constrain the query tokens to be temporally consistent, we further incorporate a warping operation in the latent space to constrain the query tokens. Specifically, based on the optical flow obtained from the original video, we warp the generated latent features of last frame to align with the current frame during the denoising process. As a result, the corresponding regions across the adjacent frames can share closely-related query tokens and attention outputs, which can further improve latent-level consistency to enhance visual temporal coherence of generated videos. Extensive experiment results demonstrate the superiority of LatentWarp in achieving video-to-video translation with temporal coherence.
TIM: A Time Interval Machine for Audio-Visual Action Recognition
Diverse actions give rise to rich audio-visual signals in long videos. Recent works showcase that the two modalities of audio and video exhibit different temporal extents of events and distinct labels. We address the interplay between the two modalities in long videos by explicitly modelling the temporal extents of audio and visual events. We propose the Time Interval Machine (TIM) where a modality-specific time interval poses as a query to a transformer encoder that ingests a long video input. The encoder then attends to the specified interval, as well as the surrounding context in both modalities, in order to recognise the ongoing action. We test TIM on three long audio-visual video datasets: EPIC-KITCHENS, Perception Test, and AVE, reporting state-of-the-art (SOTA) for recognition. On EPIC-KITCHENS, we beat previous SOTA that utilises LLMs and significantly larger pre-training by 2.9% top-1 action recognition accuracy. Additionally, we show that TIM can be adapted for action detection, using dense multi-scale interval queries, outperforming SOTA on EPIC-KITCHENS-100 for most metrics, and showing strong performance on the Perception Test. Our ablations show the critical role of integrating the two modalities and modelling their time intervals in achieving this performance. Code and models at: https://github.com/JacobChalk/TIM
MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution
This work addresses continuous space-time video super-resolution (C-STVSR) that aims to up-scale an input video both spatially and temporally by any scaling factors. One key challenge of C-STVSR is to propagate information temporally among the input video frames. To this end, we introduce a space-time local implicit neural function. It has the striking feature of learning forward motion for a continuum of pixels. We motivate the use of forward motion from the perspective of learning individual motion trajectories, as opposed to learning a mixture of motion trajectories with backward motion. To ease motion interpolation, we encode sparsely sampled forward motion extracted from the input video as the contextual input. Along with a reliability-aware splatting and decoding scheme, our framework, termed MoTIF, achieves the state-of-the-art performance on C-STVSR. The source code of MoTIF is available at https://github.com/sichun233746/MoTIF.
Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos
Recent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding?
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
Clearer Frames, Anytime: Resolving Velocity Ambiguity in Video Frame Interpolation
Existing video frame interpolation (VFI) methods blindly predict where each object is at a specific timestep t ("time indexing"), which struggles to predict precise object movements. Given two images of a baseball, there are infinitely many possible trajectories: accelerating or decelerating, straight or curved. This often results in blurry frames as the method averages out these possibilities. Instead of forcing the network to learn this complicated time-to-location mapping implicitly together with predicting the frames, we provide the network with an explicit hint on how far the object has traveled between start and end frames, a novel approach termed "distance indexing". This method offers a clearer learning goal for models, reducing the uncertainty tied to object speeds. We further observed that, even with this extra guidance, objects can still be blurry especially when they are equally far from both input frames (i.e., halfway in-between), due to the directional ambiguity in long-range motion. To solve this, we propose an iterative reference-based estimation strategy that breaks down a long-range prediction into several short-range steps. When integrating our plug-and-play strategies into state-of-the-art learning-based models, they exhibit markedly sharper outputs and superior perceptual quality in arbitrary time interpolations, using a uniform distance indexing map in the same format as time indexing. Additionally, distance indexing can be specified pixel-wise, which enables temporal manipulation of each object independently, offering a novel tool for video editing tasks like re-timing.
Latent-Shift: Latent Diffusion with Temporal Shift for Efficient Text-to-Video Generation
We propose Latent-Shift -- an efficient text-to-video generation method based on a pretrained text-to-image generation model that consists of an autoencoder and a U-Net diffusion model. Learning a video diffusion model in the latent space is much more efficient than in the pixel space. The latter is often limited to first generating a low-resolution video followed by a sequence of frame interpolation and super-resolution models, which makes the entire pipeline very complex and computationally expensive. To extend a U-Net from image generation to video generation, prior work proposes to add additional modules like 1D temporal convolution and/or temporal attention layers. In contrast, we propose a parameter-free temporal shift module that can leverage the spatial U-Net as is for video generation. We achieve this by shifting two portions of the feature map channels forward and backward along the temporal dimension. The shifted features of the current frame thus receive the features from the previous and the subsequent frames, enabling motion learning without additional parameters. We show that Latent-Shift achieves comparable or better results while being significantly more efficient. Moreover, Latent-Shift can generate images despite being finetuned for T2V generation.
Generalizable Implicit Motion Modeling for Video Frame Interpolation
Motion modeling is critical in flow-based Video Frame Interpolation (VFI). Existing paradigms either consider linear combinations of bidirectional flows or directly predict bilateral flows for given timestamps without exploring favorable motion priors, thus lacking the capability of effectively modeling spatiotemporal dynamics in real-world videos. To address this limitation, in this study, we introduce Generalizable Implicit Motion Modeling (GIMM), a novel and effective approach to motion modeling for VFI. Specifically, to enable GIMM as an effective motion modeling paradigm, we design a motion encoding pipeline to model spatiotemporal motion latent from bidirectional flows extracted from pre-trained flow estimators, effectively representing input-specific motion priors. Then, we implicitly predict arbitrary-timestep optical flows within two adjacent input frames via an adaptive coordinate-based neural network, with spatiotemporal coordinates and motion latent as inputs. Our GIMM can be smoothly integrated with existing flow-based VFI works without further modifications. We show that GIMM performs better than the current state of the art on the VFI benchmarks.
VideoFactory: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation
We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.
Inflation with Diffusion: Efficient Temporal Adaptation for Text-to-Video Super-Resolution
We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach that leverages the readily learned capacity of pixel level image diffusion model to capture spatial information for video generation. To accomplish this goal, we design an efficient architecture by inflating the weightings of the text-to-image SR model into our video generation framework. Additionally, we incorporate a temporal adapter to ensure temporal coherence across video frames. We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality. Empirical evaluation, both quantitative and qualitative, on the Shutterstock video dataset, demonstrates that our approach is able to perform text-to-video SR generation with good visual quality and temporal consistency. To evaluate temporal coherence, we also present visualizations in video format in https://drive.google.com/drive/folders/1YVc-KMSJqOrEUdQWVaI-Yfu8Vsfu_1aO?usp=sharing .
Spatio-temporal Prompting Network for Robust Video Feature Extraction
Frame quality deterioration is one of the main challenges in the field of video understanding. To compensate for the information loss caused by deteriorated frames, recent approaches exploit transformer-based integration modules to obtain spatio-temporal information. However, these integration modules are heavy and complex. Furthermore, each integration module is specifically tailored for its target task, making it difficult to generalise to multiple tasks. In this paper, we present a neat and unified framework, called Spatio-Temporal Prompting Network (STPN). It can efficiently extract robust and accurate video features by dynamically adjusting the input features in the backbone network. Specifically, STPN predicts several video prompts containing spatio-temporal information of neighbour frames. Then, these video prompts are prepended to the patch embeddings of the current frame as the updated input for video feature extraction. Moreover, STPN is easy to generalise to various video tasks because it does not contain task-specific modules. Without bells and whistles, STPN achieves state-of-the-art performance on three widely-used datasets for different video understanding tasks, i.e., ImageNetVID for video object detection, YouTubeVIS for video instance segmentation, and GOT-10k for visual object tracking. Code is available at https://github.com/guanxiongsun/vfe.pytorch.
SpeedNet: Learning the Speediness in Videos
We wish to automatically predict the "speediness" of moving objects in videos---whether they move faster, at, or slower than their "natural" speed. The core component in our approach is SpeedNet---a novel deep network trained to detect if a video is playing at normal rate, or if it is sped up. SpeedNet is trained on a large corpus of natural videos in a self-supervised manner, without requiring any manual annotations. We show how this single, binary classification network can be used to detect arbitrary rates of speediness of objects. We demonstrate prediction results by SpeedNet on a wide range of videos containing complex natural motions, and examine the visual cues it utilizes for making those predictions. Importantly, we show that through predicting the speed of videos, the model learns a powerful and meaningful space-time representation that goes beyond simple motion cues. We demonstrate how those learned features can boost the performance of self-supervised action recognition, and can be used for video retrieval. Furthermore, we also apply SpeedNet for generating time-varying, adaptive video speedups, which can allow viewers to watch videos faster, but with less of the jittery, unnatural motions typical to videos that are sped up uniformly.
EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens
Masked Video Autoencoder (MVA) approaches have demonstrated their potential by significantly outperforming previous video representation learning methods. However, they waste an excessive amount of computations and memory in predicting uninformative tokens/frames due to random masking strategies. (e.g., over 16 nodes with 128 NVIDIA A100 GPUs). To resolve this issue, we exploit the unequal information density among the patches in videos and propose EVEREST, a surprisingly efficient MVA approach for video representation learning that finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning. We further present an information-intensive frame selection strategy that allows the model to focus on informative and causal frames with minimal redundancy. Our method significantly reduces the computation and memory requirements of MVA, enabling the pre-training and fine-tuning on a single machine with 8 GPUs while achieving comparable performance to computation- and memory-heavy baselines on multiple benchmarks and the uncurated Ego4D dataset. We hope that our work contributes to reducing the barrier to further research on video understanding.
Visual Representation Learning with Stochastic Frame Prediction
Self-supervised learning of image representations by predicting future frames is a promising direction but still remains a challenge. This is because of the under-determined nature of frame prediction; multiple potential futures can arise from a single current frame. To tackle this challenge, in this paper, we revisit the idea of stochastic video generation that learns to capture uncertainty in frame prediction and explore its effectiveness for representation learning. Specifically, we design a framework that trains a stochastic frame prediction model to learn temporal information between frames. Moreover, to learn dense information within each frame, we introduce an auxiliary masked image modeling objective along with a shared decoder architecture. We find this architecture allows for combining both objectives in a synergistic and compute-efficient manner. We demonstrate the effectiveness of our framework on a variety of tasks from video label propagation and vision-based robot learning domains, such as video segmentation, pose tracking, vision-based robotic locomotion, and manipulation tasks. Code is available on the project webpage: https://sites.google.com/view/2024rsp.
Is Space-Time Attention All You Need for Video Understanding?
We present a convolution-free approach to video classification built exclusively on self-attention over space and time. Our method, named "TimeSformer," adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning directly from a sequence of frame-level patches. Our experimental study compares different self-attention schemes and suggests that "divided attention," where temporal attention and spatial attention are separately applied within each block, leads to the best video classification accuracy among the design choices considered. Despite the radically new design, TimeSformer achieves state-of-the-art results on several action recognition benchmarks, including the best reported accuracy on Kinetics-400 and Kinetics-600. Finally, compared to 3D convolutional networks, our model is faster to train, it can achieve dramatically higher test efficiency (at a small drop in accuracy), and it can also be applied to much longer video clips (over one minute long). Code and models are available at: https://github.com/facebookresearch/TimeSformer.
Unsupervised Learning of Long-Term Motion Dynamics for Videos
We present an unsupervised representation learning approach that compactly encodes the motion dependencies in videos. Given a pair of images from a video clip, our framework learns to predict the long-term 3D motions. To reduce the complexity of the learning framework, we propose to describe the motion as a sequence of atomic 3D flows computed with RGB-D modality. We use a Recurrent Neural Network based Encoder-Decoder framework to predict these sequences of flows. We argue that in order for the decoder to reconstruct these sequences, the encoder must learn a robust video representation that captures long-term motion dependencies and spatial-temporal relations. We demonstrate the effectiveness of our learned temporal representations on activity classification across multiple modalities and datasets such as NTU RGB+D and MSR Daily Activity 3D. Our framework is generic to any input modality, i.e., RGB, Depth, and RGB-D videos.
A CLIP-Hitchhiker's Guide to Long Video Retrieval
Our goal in this paper is the adaptation of image-text models for long video retrieval. Recent works have demonstrated state-of-the-art performance in video retrieval by adopting CLIP, effectively hitchhiking on the image-text representation for video tasks. However, there has been limited success in learning temporal aggregation that outperform mean-pooling the image-level representations extracted per frame by CLIP. We find that the simple yet effective baseline of weighted-mean of frame embeddings via query-scoring is a significant improvement above all prior temporal modelling attempts and mean-pooling. In doing so, we provide an improved baseline for others to compare to and demonstrate state-of-the-art performance of this simple baseline on a suite of long video retrieval benchmarks.
MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators
Recent advances in Text-to-Video generation (T2V) have achieved remarkable success in synthesizing high-quality general videos from textual descriptions. A largely overlooked problem in T2V is that existing models have not adequately encoded physical knowledge of the real world, thus generated videos tend to have limited motion and poor variations. In this paper, we propose MagicTime, a metamorphic time-lapse video generation model, which learns real-world physics knowledge from time-lapse videos and implements metamorphic generation. First, we design a MagicAdapter scheme to decouple spatial and temporal training, encode more physical knowledge from metamorphic videos, and transform pre-trained T2V models to generate metamorphic videos. Second, we introduce a Dynamic Frames Extraction strategy to adapt to metamorphic time-lapse videos, which have a wider variation range and cover dramatic object metamorphic processes, thus embodying more physical knowledge than general videos. Finally, we introduce a Magic Text-Encoder to improve the understanding of metamorphic video prompts. Furthermore, we create a time-lapse video-text dataset called ChronoMagic, specifically curated to unlock the metamorphic video generation ability. Extensive experiments demonstrate the superiority and effectiveness of MagicTime for generating high-quality and dynamic metamorphic videos, suggesting time-lapse video generation is a promising path toward building metamorphic simulators of the physical world.
Scanning Only Once: An End-to-end Framework for Fast Temporal Grounding in Long Videos
Video temporal grounding aims to pinpoint a video segment that matches the query description. Despite the recent advance in short-form videos (e.g., in minutes), temporal grounding in long videos (e.g., in hours) is still at its early stage. To address this challenge, a common practice is to employ a sliding window, yet can be inefficient and inflexible due to the limited number of frames within the window. In this work, we propose an end-to-end framework for fast temporal grounding, which is able to model an hours-long video with one-time network execution. Our pipeline is formulated in a coarse-to-fine manner, where we first extract context knowledge from non-overlapped video clips (i.e., anchors), and then supplement the anchors that highly response to the query with detailed content knowledge. Besides the remarkably high pipeline efficiency, another advantage of our approach is the capability of capturing long-range temporal correlation, thanks to modeling the entire video as a whole, and hence facilitates more accurate grounding. Experimental results suggest that, on the long-form video datasets MAD and Ego4d, our method significantly outperforms state-of-the-arts, and achieves 14.6times / 102.8times higher efficiency respectively. Project can be found at https://github.com/afcedf/SOONet.git.
Phenaki: Variable Length Video Generation From Open Domain Textual Description
We present Phenaki, a model capable of realistic video synthesis, given a sequence of textual prompts. Generating videos from text is particularly challenging due to the computational cost, limited quantities of high quality text-video data and variable length of videos. To address these issues, we introduce a new model for learning video representation which compresses the video to a small representation of discrete tokens. This tokenizer uses causal attention in time, which allows it to work with variable-length videos. To generate video tokens from text we are using a bidirectional masked transformer conditioned on pre-computed text tokens. The generated video tokens are subsequently de-tokenized to create the actual video. To address data issues, we demonstrate how joint training on a large corpus of image-text pairs as well as a smaller number of video-text examples can result in generalization beyond what is available in the video datasets. Compared to the previous video generation methods, Phenaki can generate arbitrary long videos conditioned on a sequence of prompts (i.e. time variable text or a story) in open domain. To the best of our knowledge, this is the first time a paper studies generating videos from time variable prompts. In addition, compared to the per-frame baselines, the proposed video encoder-decoder computes fewer tokens per video but results in better spatio-temporal consistency.
Learning Trajectory-Word Alignments for Video-Language Tasks
In a video, an object usually appears as the trajectory, i.e., it spans over a few spatial but longer temporal patches, that contains abundant spatiotemporal contexts. However, modern Video-Language BERTs (VDL-BERTs) neglect this trajectory characteristic that they usually follow image-language BERTs (IL-BERTs) to deploy the patch-to-word (P2W) attention that may over-exploit trivial spatial contexts and neglect significant temporal contexts. To amend this, we propose a novel TW-BERT to learn Trajectory-Word alignment by a newly designed trajectory-to-word (T2W) attention for solving video-language tasks. Moreover, previous VDL-BERTs usually uniformly sample a few frames into the model while different trajectories have diverse graininess, i.e., some trajectories span longer frames and some span shorter, and using a few frames will lose certain useful temporal contexts. However, simply sampling more frames will also make pre-training infeasible due to the largely increased training burdens. To alleviate the problem, during the fine-tuning stage, we insert a novel Hierarchical Frame-Selector (HFS) module into the video encoder. HFS gradually selects the suitable frames conditioned on the text context for the later cross-modal encoder to learn better trajectory-word alignments. By the proposed T2W attention and HFS, our TW-BERT achieves SOTA performances on text-to-video retrieval tasks, and comparable performances on video question-answering tasks with some VDL-BERTs trained on much more data. The code will be available in the supplementary material.
TimeMarker: A Versatile Video-LLM for Long and Short Video Understanding with Superior Temporal Localization Ability
Rapid development of large language models (LLMs) has significantly advanced multimodal large language models (LMMs), particularly in vision-language tasks. However, existing video-language models often overlook precise temporal localization and struggle with videos of varying lengths. We introduce TimeMarker, a versatile Video-LLM designed for high-quality dialogue based on video content, emphasizing temporal localization. TimeMarker integrates Temporal Separator Tokens to enhance temporal awareness, accurately marking specific moments within videos. It employs the AnyLength mechanism for dynamic frame sampling and adaptive token merging, enabling effective handling of both short and long videos. Additionally, TimeMarker utilizes diverse datasets, including further transformed temporal-related video QA datasets, to bolster its temporal understanding capabilities. Image and interleaved data are also employed to further enhance the model's semantic perception ability. Evaluations demonstrate that TimeMarker achieves state-of-the-art performance across multiple benchmarks, excelling in both short and long video categories. Our project page is at https://github.com/TimeMarker-LLM/TimeMarker/.
Prompt Switch: Efficient CLIP Adaptation for Text-Video Retrieval
In text-video retrieval, recent works have benefited from the powerful learning capabilities of pre-trained text-image foundation models (e.g., CLIP) by adapting them to the video domain. A critical problem for them is how to effectively capture the rich semantics inside the video using the image encoder of CLIP. To tackle this, state-of-the-art methods adopt complex cross-modal modeling techniques to fuse the text information into video frame representations, which, however, incurs severe efficiency issues in large-scale retrieval systems as the video representations must be recomputed online for every text query. In this paper, we discard this problematic cross-modal fusion process and aim to learn semantically-enhanced representations purely from the video, so that the video representations can be computed offline and reused for different texts. Concretely, we first introduce a spatial-temporal "Prompt Cube" into the CLIP image encoder and iteratively switch it within the encoder layers to efficiently incorporate the global video semantics into frame representations. We then propose to apply an auxiliary video captioning objective to train the frame representations, which facilitates the learning of detailed video semantics by providing fine-grained guidance in the semantic space. With a naive temporal fusion strategy (i.e., mean-pooling) on the enhanced frame representations, we obtain state-of-the-art performances on three benchmark datasets, i.e., MSR-VTT, MSVD, and LSMDC.
Motion Inversion for Video Customization
In this research, we present a novel approach to motion customization in video generation, addressing the widespread gap in the thorough exploration of motion representation within video generative models. Recognizing the unique challenges posed by video's spatiotemporal nature, our method introduces Motion Embeddings, a set of explicit, temporally coherent one-dimensional embeddings derived from a given video. These embeddings are designed to integrate seamlessly with the temporal transformer modules of video diffusion models, modulating self-attention computations across frames without compromising spatial integrity. Our approach offers a compact and efficient solution to motion representation and enables complex manipulations of motion characteristics through vector arithmetic in the embedding space. Furthermore, we identify the Temporal Discrepancy in video generative models, which refers to variations in how different motion modules process temporal relationships between frames. We leverage this understanding to optimize the integration of our motion embeddings. Our contributions include the introduction of a tailored motion embedding for customization tasks, insights into the temporal processing differences in video models, and a demonstration of the practical advantages and effectiveness of our method through extensive experiments.
A Strong Baseline for Temporal Video-Text Alignment
In this paper, we consider the problem of temporally aligning the video and texts from instructional videos, specifically, given a long-term video, and associated text sentences, our goal is to determine their corresponding timestamps in the video. To this end, we establish a simple, yet strong model that adopts a Transformer-based architecture with all texts as queries, iteratively attending to the visual features, to infer the optimal timestamp. We conduct thorough experiments to investigate: (i) the effect of upgrading ASR systems to reduce errors from speech recognition, (ii) the effect of various visual-textual backbones, ranging from CLIP to S3D, to the more recent InternVideo, (iii) the effect of transforming noisy ASR transcripts into descriptive steps by prompting a large language model (LLM), to summarize the core activities within the ASR transcript as a new training dataset. As a result, our proposed simple model demonstrates superior performance on both narration alignment and procedural step grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.3% on HT-Step, 3.4% on HTM-Align and 4.7% on CrossTask. We believe the proposed model and dataset with descriptive steps can be treated as a strong baseline for future research in temporal video-text alignment. All codes, models, and the resulting dataset will be publicly released to the research community.
TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models
The Diffusion model, a prevalent framework for image generation, encounters significant challenges in terms of broad applicability due to its extended inference times and substantial memory requirements. Efficient Post-training Quantization (PTQ) is pivotal for addressing these issues in traditional models. Different from traditional models, diffusion models heavily depend on the time-step t to achieve satisfactory multi-round denoising. Usually, t from the finite set {1, ldots, T} is encoded to a temporal feature by a few modules totally irrespective of the sampling data. However, existing PTQ methods do not optimize these modules separately. They adopt inappropriate reconstruction targets and complex calibration methods, resulting in a severe disturbance of the temporal feature and denoising trajectory, as well as a low compression efficiency. To solve these, we propose a Temporal Feature Maintenance Quantization (TFMQ) framework building upon a Temporal Information Block which is just related to the time-step t and unrelated to the sampling data. Powered by the pioneering block design, we devise temporal information aware reconstruction (TIAR) and finite set calibration (FSC) to align the full-precision temporal features in a limited time. Equipped with the framework, we can maintain the most temporal information and ensure the end-to-end generation quality. Extensive experiments on various datasets and diffusion models prove our state-of-the-art results. Remarkably, our quantization approach, for the first time, achieves model performance nearly on par with the full-precision model under 4-bit weight quantization. Additionally, our method incurs almost no extra computational cost and accelerates quantization time by 2.0 times on LSUN-Bedrooms 256 times 256 compared to previous works.
Frame-Recurrent Video Super-Resolution
Recent advances in video super-resolution have shown that convolutional neural networks combined with motion compensation are able to merge information from multiple low-resolution (LR) frames to generate high-quality images. Current state-of-the-art methods process a batch of LR frames to generate a single high-resolution (HR) frame and run this scheme in a sliding window fashion over the entire video, effectively treating the problem as a large number of separate multi-frame super-resolution tasks. This approach has two main weaknesses: 1) Each input frame is processed and warped multiple times, increasing the computational cost, and 2) each output frame is estimated independently conditioned on the input frames, limiting the system's ability to produce temporally consistent results. In this work, we propose an end-to-end trainable frame-recurrent video super-resolution framework that uses the previously inferred HR estimate to super-resolve the subsequent frame. This naturally encourages temporally consistent results and reduces the computational cost by warping only one image in each step. Furthermore, due to its recurrent nature, the proposed method has the ability to assimilate a large number of previous frames without increased computational demands. Extensive evaluations and comparisons with previous methods validate the strengths of our approach and demonstrate that the proposed framework is able to significantly outperform the current state of the art.
CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring
Video deblurring aims to enhance the quality of restored results in motion-blurred videos by effectively gathering information from adjacent video frames to compensate for the insufficient data in a single blurred frame. However, when faced with consecutively severe motion blur situations, frame-based video deblurring methods often fail to find accurate temporal correspondence among neighboring video frames, leading to diminished performance. To address this limitation, we aim to solve the video deblurring task by leveraging an event camera with micro-second temporal resolution. To fully exploit the dense temporal resolution of the event camera, we propose two modules: 1) Intra-frame feature enhancement operates within the exposure time of a single blurred frame, iteratively enhancing cross-modality features in a recurrent manner to better utilize the rich temporal information of events, 2) Inter-frame temporal feature alignment gathers valuable long-range temporal information to target frames, aggregating sharp features leveraging the advantages of the events. In addition, we present a novel dataset composed of real-world blurred RGB videos, corresponding sharp videos, and event data. This dataset serves as a valuable resource for evaluating event-guided deblurring methods. We demonstrate that our proposed methods outperform state-of-the-art frame-based and event-based motion deblurring methods through extensive experiments conducted on both synthetic and real-world deblurring datasets. The code and dataset are available at https://github.com/intelpro/CMTA.
DiffPose: SpatioTemporal Diffusion Model for Video-Based Human Pose Estimation
Denoising diffusion probabilistic models that were initially proposed for realistic image generation have recently shown success in various perception tasks (e.g., object detection and image segmentation) and are increasingly gaining attention in computer vision. However, extending such models to multi-frame human pose estimation is non-trivial due to the presence of the additional temporal dimension in videos. More importantly, learning representations that focus on keypoint regions is crucial for accurate localization of human joints. Nevertheless, the adaptation of the diffusion-based methods remains unclear on how to achieve such objective. In this paper, we present DiffPose, a novel diffusion architecture that formulates video-based human pose estimation as a conditional heatmap generation problem. First, to better leverage temporal information, we propose SpatioTemporal Representation Learner which aggregates visual evidences across frames and uses the resulting features in each denoising step as a condition. In addition, we present a mechanism called Lookup-based MultiScale Feature Interaction that determines the correlations between local joints and global contexts across multiple scales. This mechanism generates delicate representations that focus on keypoint regions. Altogether, by extending diffusion models, we show two unique characteristics from DiffPose on pose estimation task: (i) the ability to combine multiple sets of pose estimates to improve prediction accuracy, particularly for challenging joints, and (ii) the ability to adjust the number of iterative steps for feature refinement without retraining the model. DiffPose sets new state-of-the-art results on three benchmarks: PoseTrack2017, PoseTrack2018, and PoseTrack21.
All in One: Exploring Unified Video-Language Pre-training
Mainstream Video-Language Pre-training models actbert,clipbert,violet consist of three parts, a video encoder, a text encoder, and a video-text fusion Transformer. They pursue better performance via utilizing heavier unimodal encoders or multimodal fusion Transformers, resulting in increased parameters with lower efficiency in downstream tasks. In this work, we for the first time introduce an end-to-end video-language model, namely all-in-one Transformer, that embeds raw video and textual signals into joint representations using a unified backbone architecture. We argue that the unique temporal information of video data turns out to be a key barrier hindering the design of a modality-agnostic Transformer. To overcome the challenge, we introduce a novel and effective token rolling operation to encode temporal representations from video clips in a non-parametric manner. The careful design enables the representation learning of both video-text multimodal inputs and unimodal inputs using a unified backbone model. Our pre-trained all-in-one Transformer is transferred to various downstream video-text tasks after fine-tuning, including text-video retrieval, video-question answering, multiple choice and visual commonsense reasoning. State-of-the-art performances with the minimal model FLOPs on nine datasets demonstrate the superiority of our method compared to the competitive counterparts. The code and pretrained model have been released in https://github.com/showlab/all-in-one.
Human Video Translation via Query Warping
In this paper, we present QueryWarp, a novel framework for temporally coherent human motion video translation. Existing diffusion-based video editing approaches that rely solely on key and value tokens to ensure temporal consistency, which scarifies the preservation of local and structural regions. In contrast, we aim to consider complementary query priors by constructing the temporal correlations among query tokens from different frames. Initially, we extract appearance flows from source poses to capture continuous human foreground motion. Subsequently, during the denoising process of the diffusion model, we employ appearance flows to warp the previous frame's query token, aligning it with the current frame's query. This query warping imposes explicit constraints on the outputs of self-attention layers, effectively guaranteeing temporally coherent translation. We perform experiments on various human motion video translation tasks, and the results demonstrate that our QueryWarp framework surpasses state-of-the-art methods both qualitatively and quantitatively.
Video Representation Learning by Recognizing Temporal Transformations
We introduce a novel self-supervised learning approach to learn representations of videos that are responsive to changes in the motion dynamics. Our representations can be learned from data without human annotation and provide a substantial boost to the training of neural networks on small labeled data sets for tasks such as action recognition, which require to accurately distinguish the motion of objects. We promote an accurate learning of motion without human annotation by training a neural network to discriminate a video sequence from its temporally transformed versions. To learn to distinguish non-trivial motions, the design of the transformations is based on two principles: 1) To define clusters of motions based on time warps of different magnitude; 2) To ensure that the discrimination is feasible only by observing and analyzing as many image frames as possible. Thus, we introduce the following transformations: forward-backward playback, random frame skipping, and uniform frame skipping. Our experiments show that networks trained with the proposed method yield representations with improved transfer performance for action recognition on UCF101 and HMDB51.
Learnable Gated Temporal Shift Module for Deep Video Inpainting
How to efficiently utilize temporal information to recover videos in a consistent way is the main issue for video inpainting problems. Conventional 2D CNNs have achieved good performance on image inpainting but often lead to temporally inconsistent results where frames will flicker when applied to videos (see https://www.youtube.com/watch?v=87Vh1HDBjD0&list=PLPoVtv-xp_dL5uckIzz1PKwNjg1yI0I94&index=1); 3D CNNs can capture temporal information but are computationally intensive and hard to train. In this paper, we present a novel component termed Learnable Gated Temporal Shift Module (LGTSM) for video inpainting models that could effectively tackle arbitrary video masks without additional parameters from 3D convolutions. LGTSM is designed to let 2D convolutions make use of neighboring frames more efficiently, which is crucial for video inpainting. Specifically, in each layer, LGTSM learns to shift some channels to its temporal neighbors so that 2D convolutions could be enhanced to handle temporal information. Meanwhile, a gated convolution is applied to the layer to identify the masked areas that are poisoning for conventional convolutions. On the FaceForensics and Free-form Video Inpainting (FVI) dataset, our model achieves state-of-the-art results with simply 33% of parameters and inference time.
Generating Long Videos of Dynamic Scenes
We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. To this end, we leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.
VidTwin: Video VAE with Decoupled Structure and Dynamics
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Our code has been released at https://github.com/microsoft/VidTok/tree/main/vidtwin.
Real-Time Intermediate Flow Estimation for Video Frame Interpolation
Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4--27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. The code is available at https://github.com/megvii-research/ECCV2022-RIFE.
TempMe: Video Temporal Token Merging for Efficient Text-Video Retrieval
Most text-video retrieval methods utilize the text-image pre-trained models like CLIP as a backbone. These methods process each sampled frame independently by the image encoder, resulting in high computational overhead and limiting practical deployment. Addressing this, we focus on efficient text-video retrieval by tackling two key challenges: 1. From the perspective of trainable parameters, current parameter-efficient fine-tuning methods incur high inference costs; 2. From the perspective of model complexity, current token compression methods are mainly designed for images to reduce spatial redundancy but overlook temporal redundancy in consecutive frames of a video. To tackle these challenges, we propose Temporal Token Merging (TempMe), a parameter-efficient and training-inference efficient text-video retrieval architecture that minimizes trainable parameters and model complexity. Specifically, we introduce a progressive multi-granularity framework. By gradually combining neighboring clips, we reduce spatio-temporal redundancy and enhance temporal modeling across different frames, leading to improved efficiency and performance. Extensive experiments validate the superiority of our TempMe. Compared to previous parameter-efficient text-video retrieval methods, TempMe achieves superior performance with just 0.50M trainable parameters. It significantly reduces output tokens by 95% and GFLOPs by 51%, while achieving a 1.8X speedup and a 4.4% R-Sum improvement. With full fine-tuning, TempMe achieves a significant 7.9% R-Sum improvement, trains 1.57X faster, and utilizes 75.2% GPU memory usage. The code is available at https://github.com/LunarShen/TempMe.
Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model
As a fundamental backbone for video generation, diffusion models are challenged by low inference speed due to the sequential nature of denoising. Previous methods speed up the models by caching and reusing model outputs at uniformly selected timesteps. However, such a strategy neglects the fact that differences among model outputs are not uniform across timesteps, which hinders selecting the appropriate model outputs to cache, leading to a poor balance between inference efficiency and visual quality. In this study, we introduce Timestep Embedding Aware Cache (TeaCache), a training-free caching approach that estimates and leverages the fluctuating differences among model outputs across timesteps. Rather than directly using the time-consuming model outputs, TeaCache focuses on model inputs, which have a strong correlation with the modeloutputs while incurring negligible computational cost. TeaCache first modulates the noisy inputs using the timestep embeddings to ensure their differences better approximating those of model outputs. TeaCache then introduces a rescaling strategy to refine the estimated differences and utilizes them to indicate output caching. Experiments show that TeaCache achieves up to 4.41x acceleration over Open-Sora-Plan with negligible (-0.07% Vbench score) degradation of visual quality.
Task Agnostic Restoration of Natural Video Dynamics
In many video restoration/translation tasks, image processing operations are na\"ively extended to the video domain by processing each frame independently, disregarding the temporal connection of the video frames. This disregard for the temporal connection often leads to severe temporal inconsistencies. State-Of-The-Art (SOTA) techniques that address these inconsistencies rely on the availability of unprocessed videos to implicitly siphon and utilize consistent video dynamics to restore the temporal consistency of frame-wise processed videos which often jeopardizes the translation effect. We propose a general framework for this task that learns to infer and utilize consistent motion dynamics from inconsistent videos to mitigate the temporal flicker while preserving the perceptual quality for both the temporally neighboring and relatively distant frames without requiring the raw videos at test time. The proposed framework produces SOTA results on two benchmark datasets, DAVIS and videvo.net, processed by numerous image processing applications. The code and the trained models are available at https://github.com/MKashifAli/TARONVD.
Spatiotemporal Entropy Model is All You Need for Learned Video Compression
The framework of dominant learned video compression methods is usually composed of motion prediction modules as well as motion vector and residual image compression modules, suffering from its complex structure and error propagation problem. Approaches have been proposed to reduce the complexity by replacing motion prediction modules with implicit flow networks. Error propagation aware training strategy is also proposed to alleviate incremental reconstruction errors from previously decoded frames. Although these methods have brought some improvement, little attention has been paid to the framework itself. Inspired by the success of learned image compression through simplifying the framework with a single deep neural network, it is natural to expect a better performance in video compression via a simple yet appropriate framework. Therefore, we propose a framework to directly compress raw-pixel frames (rather than residual images), where no extra motion prediction module is required. Instead, an entropy model is used to estimate the spatiotemporal redundancy in a latent space rather than pixel level, which significantly reduces the complexity of the framework. Specifically, the whole framework is a compression module, consisting of a unified auto-encoder which produces identically distributed latents for all frames, and a spatiotemporal entropy estimation model to minimize the entropy of these latents. Experiments showed that the proposed method outperforms state-of-the-art (SOTA) performance under the metric of multiscale structural similarity (MS-SSIM) and achieves competitive results under the metric of PSNR.
Unsupervised Representation Learning by Sorting Sequences
We present an unsupervised representation learning approach using videos without semantic labels. We leverage the temporal coherence as a supervisory signal by formulating representation learning as a sequence sorting task. We take temporally shuffled frames (i.e., in non-chronological order) as inputs and train a convolutional neural network to sort the shuffled sequences. Similar to comparison-based sorting algorithms, we propose to extract features from all frame pairs and aggregate them to predict the correct order. As sorting shuffled image sequence requires an understanding of the statistical temporal structure of images, training with such a proxy task allows us to learn rich and generalizable visual representation. We validate the effectiveness of the learned representation using our method as pre-training on high-level recognition problems. The experimental results show that our method compares favorably against state-of-the-art methods on action recognition, image classification and object detection tasks.
StreamFlow: Streamlined Multi-Frame Optical Flow Estimation for Video Sequences
Occlusions between consecutive frames have long posed a significant challenge in optical flow estimation. The inherent ambiguity introduced by occlusions directly violates the brightness constancy constraint and considerably hinders pixel-to-pixel matching. To address this issue, multi-frame optical flow methods leverage adjacent frames to mitigate the local ambiguity. Nevertheless, prior multi-frame methods predominantly adopt recursive flow estimation, resulting in a considerable computational overlap. In contrast, we propose a streamlined in-batch framework that eliminates the need for extensive redundant recursive computations while concurrently developing effective spatio-temporal modeling approaches under in-batch estimation constraints. Specifically, we present a Streamlined In-batch Multi-frame (SIM) pipeline tailored to video input, attaining a similar level of time efficiency to two-frame networks. Furthermore, we introduce an efficient Integrative Spatio-temporal Coherence (ISC) modeling method for effective spatio-temporal modeling during the encoding phase, which introduces no additional parameter overhead. Additionally, we devise a Global Temporal Regressor (GTR) that effectively explores temporal relations during decoding. Benefiting from the efficient SIM pipeline and effective modules, StreamFlow not only excels in terms of performance on the challenging KITTI and Sintel datasets, with particular improvement in occluded areas but also attains a remarkable 63.82% enhancement in speed compared with previous multi-frame methods. The code will be available soon at https://github.com/littlespray/StreamFlow.
Learning Truncated Causal History Model for Video Restoration
One key challenge to video restoration is to model the transition dynamics of video frames governed by motion. In this work, we propose TURTLE to learn the truncated causal history model for efficient and high-performing video restoration. Unlike traditional methods that process a range of contextual frames in parallel, TURTLE enhances efficiency by storing and summarizing a truncated history of the input frame latent representation into an evolving historical state. This is achieved through a sophisticated similarity-based retrieval mechanism that implicitly accounts for inter-frame motion and alignment. The causal design in TURTLE enables recurrence in inference through state-memorized historical features while allowing parallel training by sampling truncated video clips. We report new state-of-the-art results on a multitude of video restoration benchmark tasks, including video desnowing, nighttime video deraining, video raindrops and rain streak removal, video super-resolution, real-world and synthetic video deblurring, and blind video denoising while reducing the computational cost compared to existing best contextual methods on all these tasks.
Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection
Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this problem, few of them can capture the normal spatio-temporal patterns effectively and efficiently. Moreover, existing works seldom explicitly consider the local consistency at frame level and global coherence of temporal dynamics in video sequences. To this end, we propose Convolutional Transformer based Dual Discriminator Generative Adversarial Networks (CT-D2GAN) to perform unsupervised video anomaly detection. Specifically, we first present a convolutional transformer to perform future frame prediction. It contains three key components, i.e., a convolutional encoder to capture the spatial information of the input video clips, a temporal self-attention module to encode the temporal dynamics, and a convolutional decoder to integrate spatio-temporal features and predict the future frame. Next, a dual discriminator based adversarial training procedure, which jointly considers an image discriminator that can maintain the local consistency at frame-level and a video discriminator that can enforce the global coherence of temporal dynamics, is employed to enhance the future frame prediction. Finally, the prediction error is used to identify abnormal video frames. Thoroughly empirical studies on three public video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the effectiveness of the proposed adversarial spatio-temporal modeling framework.
FusionFrames: Efficient Architectural Aspects for Text-to-Video Generation Pipeline
Multimedia generation approaches occupy a prominent place in artificial intelligence research. Text-to-image models achieved high-quality results over the last few years. However, video synthesis methods recently started to develop. This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model. The first stage concerns keyframes synthesis to figure the storyline of a video, while the second one is devoted to interpolation frames generation to make movements of the scene and objects smooth. We compare several temporal conditioning approaches for keyframes generation. The results show the advantage of using separate temporal blocks over temporal layers in terms of metrics reflecting video generation quality aspects and human preference. The design of our interpolation model significantly reduces computational costs compared to other masked frame interpolation approaches. Furthermore, we evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores. Finally, we compare our pipeline with existing solutions and achieve top-2 scores overall and top-1 among open-source solutions: CLIPSIM = 0.2976 and FVD = 433.054. Project page: https://ai-forever.github.io/kandinsky-video/
FILM: Frame Interpolation for Large Motion
We present a frame interpolation algorithm that synthesizes multiple intermediate frames from two input images with large in-between motion. Recent methods use multiple networks to estimate optical flow or depth and a separate network dedicated to frame synthesis. This is often complex and requires scarce optical flow or depth ground-truth. In this work, we present a single unified network, distinguished by a multi-scale feature extractor that shares weights at all scales, and is trainable from frames alone. To synthesize crisp and pleasing frames, we propose to optimize our network with the Gram matrix loss that measures the correlation difference between feature maps. Our approach outperforms state-of-the-art methods on the Xiph large motion benchmark. We also achieve higher scores on Vimeo-90K, Middlebury and UCF101, when comparing to methods that use perceptual losses. We study the effect of weight sharing and of training with datasets of increasing motion range. Finally, we demonstrate our model's effectiveness in synthesizing high quality and temporally coherent videos on a challenging near-duplicate photos dataset. Codes and pre-trained models are available at https://film-net.github.io.
AdaFuse: Adaptive Temporal Fusion Network for Efficient Action Recognition
Temporal modelling is the key for efficient video action recognition. While understanding temporal information can improve recognition accuracy for dynamic actions, removing temporal redundancy and reusing past features can significantly save computation leading to efficient action recognition. In this paper, we introduce an adaptive temporal fusion network, called AdaFuse, that dynamically fuses channels from current and past feature maps for strong temporal modelling. Specifically, the necessary information from the historical convolution feature maps is fused with current pruned feature maps with the goal of improving both recognition accuracy and efficiency. In addition, we use a skipping operation to further reduce the computation cost of action recognition. Extensive experiments on Something V1 & V2, Jester and Mini-Kinetics show that our approach can achieve about 40% computation savings with comparable accuracy to state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AdaFuse/
Disentangling Spatial and Temporal Learning for Efficient Image-to-Video Transfer Learning
Recently, large-scale pre-trained language-image models like CLIP have shown extraordinary capabilities for understanding spatial contents, but naively transferring such models to video recognition still suffers from unsatisfactory temporal modeling capabilities. Existing methods insert tunable structures into or in parallel with the pre-trained model, which either requires back-propagation through the whole pre-trained model and is thus resource-demanding, or is limited by the temporal reasoning capability of the pre-trained structure. In this work, we present DiST, which disentangles the learning of spatial and temporal aspects of videos. Specifically, DiST uses a dual-encoder structure, where a pre-trained foundation model acts as the spatial encoder, and a lightweight network is introduced as the temporal encoder. An integration branch is inserted between the encoders to fuse spatio-temporal information. The disentangled spatial and temporal learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters. Meanwhile, we empirically show that disentangled learning with an extra network for integration benefits both spatial and temporal understanding. Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps. When pre-training on the large-scale Kinetics-710, we achieve 89.7% on Kinetics-400 with a frozen ViT-L model, which verifies the scalability of DiST. Codes and models can be found in https://github.com/alibaba-mmai-research/DiST.
Text2AC-Zero: Consistent Synthesis of Animated Characters using 2D Diffusion
We propose a zero-shot approach for consistent Text-to-Animated-Characters synthesis based on pre-trained Text-to-Image (T2I) diffusion models. Existing Text-to-Video (T2V) methods are expensive to train and require large-scale video datasets to produce diverse characters and motions. At the same time, their zero-shot alternatives fail to produce temporally consistent videos. We strive to bridge this gap, and we introduce a zero-shot approach that produces temporally consistent videos of animated characters and requires no training or fine-tuning. We leverage existing text-based motion diffusion models to generate diverse motions that we utilize to guide a T2I model. To achieve temporal consistency, we introduce the Spatial Latent Alignment module that exploits cross-frame dense correspondences that we compute to align the latents of the video frames. Furthermore, we propose Pixel-Wise Guidance to steer the diffusion process in a direction that minimizes visual discrepancies. Our proposed approach generates temporally consistent videos with diverse motions and styles, outperforming existing zero-shot T2V approaches in terms of pixel-wise consistency and user preference.
Temporal Flow Mask Attention for Open-Set Long-Tailed Recognition of Wild Animals in Camera-Trap Images
Camera traps, unmanned observation devices, and deep learning-based image recognition systems have greatly reduced human effort in collecting and analyzing wildlife images. However, data collected via above apparatus exhibits 1) long-tailed and 2) open-ended distribution problems. To tackle the open-set long-tailed recognition problem, we propose the Temporal Flow Mask Attention Network that comprises three key building blocks: 1) an optical flow module, 2) an attention residual module, and 3) a meta-embedding classifier. We extract temporal features of sequential frames using the optical flow module and learn informative representation using attention residual blocks. Moreover, we show that applying the meta-embedding technique boosts the performance of the method in open-set long-tailed recognition. We apply this method on a Korean Demilitarized Zone (DMZ) dataset. We conduct extensive experiments, and quantitative and qualitative analyses to prove that our method effectively tackles the open-set long-tailed recognition problem while being robust to unknown classes.
BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
DiffVSR: Enhancing Real-World Video Super-Resolution with Diffusion Models for Advanced Visual Quality and Temporal Consistency
Diffusion models have demonstrated exceptional capabilities in image generation and restoration, yet their application to video super-resolution faces significant challenges in maintaining both high fidelity and temporal consistency. We present DiffVSR, a diffusion-based framework for real-world video super-resolution that effectively addresses these challenges through key innovations. For intra-sequence coherence, we develop a multi-scale temporal attention module and temporal-enhanced VAE decoder that capture fine-grained motion details. To ensure inter-sequence stability, we introduce a noise rescheduling mechanism with an interweaved latent transition approach, which enhances temporal consistency without additional training overhead. We propose a progressive learning strategy that transitions from simple to complex degradations, enabling robust optimization despite limited high-quality video data. Extensive experiments demonstrate that DiffVSR delivers superior results in both visual quality and temporal consistency, setting a new performance standard in real-world video super-resolution.
Time Does Tell: Self-Supervised Time-Tuning of Dense Image Representations
Spatially dense self-supervised learning is a rapidly growing problem domain with promising applications for unsupervised segmentation and pretraining for dense downstream tasks. Despite the abundance of temporal data in the form of videos, this information-rich source has been largely overlooked. Our paper aims to address this gap by proposing a novel approach that incorporates temporal consistency in dense self-supervised learning. While methods designed solely for images face difficulties in achieving even the same performance on videos, our method improves not only the representation quality for videos-but also images. Our approach, which we call time-tuning, starts from image-pretrained models and fine-tunes them with a novel self-supervised temporal-alignment clustering loss on unlabeled videos. This effectively facilitates the transfer of high-level information from videos to image representations. Time-tuning improves the state-of-the-art by 8-10% for unsupervised semantic segmentation on videos and matches it for images. We believe this method paves the way for further self-supervised scaling by leveraging the abundant availability of videos. The implementation can be found here : https://github.com/SMSD75/Timetuning
Exploring Recurrent Long-term Temporal Fusion for Multi-view 3D Perception
Long-term temporal fusion is a crucial but often overlooked technique in camera-based Bird's-Eye-View (BEV) 3D perception. Existing methods are mostly in a parallel manner. While parallel fusion can benefit from long-term information, it suffers from increasing computational and memory overheads as the fusion window size grows. Alternatively, BEVFormer adopts a recurrent fusion pipeline so that history information can be efficiently integrated, yet it fails to benefit from longer temporal frames. In this paper, we explore an embarrassingly simple long-term recurrent fusion strategy built upon the LSS-based methods and find it already able to enjoy the merits from both sides, i.e., rich long-term information and efficient fusion pipeline. A temporal embedding module is further proposed to improve the model's robustness against occasionally missed frames in practical scenarios. We name this simple but effective fusing pipeline VideoBEV. Experimental results on the nuScenes benchmark show that VideoBEV obtains leading performance on various camera-based 3D perception tasks, including object detection (55.4% mAP and 62.9% NDS), segmentation (48.6% vehicle mIoU), tracking (54.8% AMOTA), and motion prediction (0.80m minADE and 0.463 EPA). Code will be available.
WALDO: Future Video Synthesis using Object Layer Decomposition and Parametric Flow Prediction
This paper presents WALDO (WArping Layer-Decomposed Objects), a novel approach to the prediction of future video frames from past ones. Individual images are decomposed into multiple layers combining object masks and a small set of control points. The layer structure is shared across all frames in each video to build dense inter-frame connections. Complex scene motions are modeled by combining parametric geometric transformations associated with individual layers, and video synthesis is broken down into discovering the layers associated with past frames, predicting the corresponding transformations for upcoming ones and warping the associated object regions accordingly, and filling in the remaining image parts. Extensive experiments on multiple benchmarks including urban videos (Cityscapes and KITTI) and videos featuring nonrigid motions (UCF-Sports and H3.6M), show that our method consistently outperforms the state of the art by a significant margin in every case. Code, pretrained models, and video samples synthesized by our approach can be found in the project webpage https://16lemoing.github.io/waldo.
Scene Matters: Model-based Deep Video Compression
Video compression has always been a popular research area, where many traditional and deep video compression methods have been proposed. These methods typically rely on signal prediction theory to enhance compression performance by designing high efficient intra and inter prediction strategies and compressing video frames one by one. In this paper, we propose a novel model-based video compression (MVC) framework that regards scenes as the fundamental units for video sequences. Our proposed MVC directly models the intensity variation of the entire video sequence in one scene, seeking non-redundant representations instead of reducing redundancy through spatio-temporal predictions. To achieve this, we employ implicit neural representation as our basic modeling architecture. To improve the efficiency of video modeling, we first propose context-related spatial positional embedding and frequency domain supervision in spatial context enhancement. For temporal correlation capturing, we design the scene flow constrain mechanism and temporal contrastive loss. Extensive experimental results demonstrate that our method achieves up to a 20\% bitrate reduction compared to the latest video coding standard H.266 and is more efficient in decoding than existing video coding strategies.
R^2-Tuning: Efficient Image-to-Video Transfer Learning for Video Temporal Grounding
Video temporal grounding (VTG) is a fine-grained video understanding problem that aims to ground relevant clips in untrimmed videos given natural language queries. Most existing VTG models are built upon frame-wise final-layer CLIP features, aided by additional temporal backbones (e.g., SlowFast) with sophisticated temporal reasoning mechanisms. In this work, we claim that CLIP itself already shows great potential for fine-grained spatial-temporal modeling, as each layer offers distinct yet useful information under different granularity levels. Motivated by this, we propose Reversed Recurrent Tuning (R^2-Tuning), a parameter- and memory-efficient transfer learning framework for video temporal grounding. Our method learns a lightweight R^2 Block containing only 1.5% of the total parameters to perform progressive spatial-temporal modeling. Starting from the last layer of CLIP, R^2 Block recurrently aggregates spatial features from earlier layers, then refines temporal correlation conditioning on the given query, resulting in a coarse-to-fine scheme. R^2-Tuning achieves state-of-the-art performance across three VTG tasks (i.e., moment retrieval, highlight detection, and video summarization) on six public benchmarks (i.e., QVHighlights, Charades-STA, Ego4D-NLQ, TACoS, YouTube Highlights, and TVSum) even without the additional backbone, demonstrating the significance and effectiveness of the proposed scheme. Our code is available at https://github.com/yeliudev/R2-Tuning.
TubeDETR: Spatio-Temporal Video Grounding with Transformers
We consider the problem of localizing a spatio-temporal tube in a video corresponding to a given text query. This is a challenging task that requires the joint and efficient modeling of temporal, spatial and multi-modal interactions. To address this task, we propose TubeDETR, a transformer-based architecture inspired by the recent success of such models for text-conditioned object detection. Our model notably includes: (i) an efficient video and text encoder that models spatial multi-modal interactions over sparsely sampled frames and (ii) a space-time decoder that jointly performs spatio-temporal localization. We demonstrate the advantage of our proposed components through an extensive ablation study. We also evaluate our full approach on the spatio-temporal video grounding task and demonstrate improvements over the state of the art on the challenging VidSTG and HC-STVG benchmarks. Code and trained models are publicly available at https://antoyang.github.io/tubedetr.html.
Delay-penalized CTC implemented based on Finite State Transducer
Connectionist Temporal Classification (CTC) suffers from the latency problem when applied to streaming models. We argue that in CTC lattice, the alignments that can access more future context are preferred during training, thereby leading to higher symbol delay. In this work we propose the delay-penalized CTC which is augmented with latency penalty regularization. We devise a flexible and efficient implementation based on the differentiable Finite State Transducer (FST). Specifically, by attaching a binary attribute to CTC topology, we can locate the frames that firstly emit non-blank tokens on the resulting CTC lattice, and add the frame offsets to the log-probabilities. Experimental results demonstrate the effectiveness of our proposed delay-penalized CTC, which is able to balance the delay-accuracy trade-off. Furthermore, combining the delay-penalized transducer enables the CTC model to achieve better performance and lower latency. Our work is open-sourced and publicly available https://github.com/k2-fsa/k2.
Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models
Video Large Language Models (Video-LLMs) have demonstrated remarkable capabilities in coarse-grained video understanding, however, they struggle with fine-grained temporal grounding. In this paper, we introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner. We identify that current Video-LLMs have limitations for fine-grained video understanding since they lack effective temporal modeling and timestamp representation. In light of this, we sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge to represent timestamps. To optimize the training of Grounded-VideoLLM, we employ a multi-stage training scheme, beginning with simple video-captioning tasks and progressively introducing video temporal grounding tasks of increasing complexity. To further enhance Grounded-VideoLLM's temporal reasoning capability, we also curate a grounded VideoQA dataset by an automatic annotation pipeline. Extensive experiments demonstrate that Grounded-VideoLLM not only excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA, but also shows great potential as a versatile video assistant for general video understanding.
LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation
With the impressive progress in diffusion-based text-to-image generation, extending such powerful generative ability to text-to-video raises enormous attention. Existing methods either require large-scale text-video pairs and a large number of training resources or learn motions that are precisely aligned with template videos. It is non-trivial to balance a trade-off between the degree of generation freedom and the resource costs for video generation. In our study, we present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 8~16 videos on a single GPU. Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation so that our tuned video diffusion model mainly focuses on motion learning. The well-developed text-to-image techniques can provide visually pleasing and diverse content as generation conditions, which highly improves video quality and generation freedom. To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers and modify the attention blocks to the temporal level. Additionally, we develop an effective inference trick, shared-noise sampling, which can improve the stability of videos with computational costs. Our method can also be flexibly applied to other tasks, e.g. real-world image animation and video editing. Extensive experiments demonstrate that LAMP can effectively learn the motion pattern on limited data and generate high-quality videos. The code and models are available at https://rq-wu.github.io/projects/LAMP.
Learning Temporally Consistent Video Depth from Video Diffusion Priors
This work addresses the challenge of video depth estimation, which expects not only per-frame accuracy but, more importantly, cross-frame consistency. Instead of directly developing a depth estimator from scratch, we reformulate the prediction task into a conditional generation problem. This allows us to leverage the prior knowledge embedded in existing video generation models, thereby reducing learn- ing difficulty and enhancing generalizability. Concretely, we study how to tame the public Stable Video Diffusion (SVD) to predict reliable depth from input videos using a mixture of image depth and video depth datasets. We empirically confirm that a procedural training strategy - first optimizing the spatial layers of SVD and then optimizing the temporal layers while keeping the spatial layers frozen - yields the best results in terms of both spatial accuracy and temporal consistency. We further examine the sliding window strategy for inference on arbitrarily long videos. Our observations indicate a trade-off between efficiency and performance, with a one-frame overlap already producing favorable results. Extensive experimental results demonstrate the superiority of our approach, termed ChronoDepth, over existing alternatives, particularly in terms of the temporal consistency of the estimated depth. Additionally, we highlight the benefits of more consistent video depth in two practical applications: depth-conditioned video generation and novel view synthesis. Our project page is available at https://jhaoshao.github.io/ChronoDepth/{this http URL}.
Reuse and Diffuse: Iterative Denoising for Text-to-Video Generation
Inspired by the remarkable success of Latent Diffusion Models (LDMs) for image synthesis, we study LDM for text-to-video generation, which is a formidable challenge due to the computational and memory constraints during both model training and inference. A single LDM is usually only capable of generating a very limited number of video frames. Some existing works focus on separate prediction models for generating more video frames, which suffer from additional training cost and frame-level jittering, however. In this paper, we propose a framework called "Reuse and Diffuse" dubbed VidRD to produce more frames following the frames already generated by an LDM. Conditioned on an initial video clip with a small number of frames, additional frames are iteratively generated by reusing the original latent features and following the previous diffusion process. Besides, for the autoencoder used for translation between pixel space and latent space, we inject temporal layers into its decoder and fine-tune these layers for higher temporal consistency. We also propose a set of strategies for composing video-text data that involve diverse content from multiple existing datasets including video datasets for action recognition and image-text datasets. Extensive experiments show that our method achieves good results in both quantitative and qualitative evaluations. Our project page is available https://anonymous0x233.github.io/ReuseAndDiffuse/{here}.
ShareGPT4Video: Improving Video Understanding and Generation with Better Captions
We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. The series comprises: 1) ShareGPT4Video, 40K GPT4V annotated dense captions of videos with various lengths and sources, developed through carefully designed data filtering and annotating strategy. 2) ShareCaptioner-Video, an efficient and capable captioning model for arbitrary videos, with 4.8M high-quality aesthetic videos annotated by it. 3) ShareGPT4Video-8B, a simple yet superb LVLM that reached SOTA performance on three advancing video benchmarks. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding. 2) Intra-frame detailed content description. 3) Frame-number scalability for arbitrary-length videos. To this end, we meticulously designed a differential video captioning strategy, which is stable, scalable, and efficient for generating captions for videos with arbitrary resolution, aspect ratios, and length. Based on it, we construct ShareGPT4Video, which contains 40K high-quality videos spanning a wide range of categories, and the resulting captions encompass rich world knowledge, object attributes, camera movements, and crucially, detailed and precise temporal descriptions of events. Based on ShareGPT4Video, we further develop ShareCaptioner-Video, a superior captioner capable of efficiently generating high-quality captions for arbitrary videos...
Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation
Our work explores temporal self-supervision for GAN-based video generation tasks. While adversarial training successfully yields generative models for a variety of areas, temporal relationships in the generated data are much less explored. Natural temporal changes are crucial for sequential generation tasks, e.g. video super-resolution and unpaired video translation. For the former, state-of-the-art methods often favor simpler norm losses such as L^2 over adversarial training. However, their averaging nature easily leads to temporally smooth results with an undesirable lack of spatial detail. For unpaired video translation, existing approaches modify the generator networks to form spatio-temporal cycle consistencies. In contrast, we focus on improving learning objectives and propose a temporally self-supervised algorithm. For both tasks, we show that temporal adversarial learning is key to achieving temporally coherent solutions without sacrificing spatial detail. We also propose a novel Ping-Pong loss to improve the long-term temporal consistency. It effectively prevents recurrent networks from accumulating artifacts temporally without depressing detailed features. Additionally, we propose a first set of metrics to quantitatively evaluate the accuracy as well as the perceptual quality of the temporal evolution. A series of user studies confirm the rankings computed with these metrics. Code, data, models, and results are provided at https://github.com/thunil/TecoGAN. The project page https://ge.in.tum.de/publications/2019-tecogan-chu/ contains supplemental materials.
Autoregressive Video Generation without Vector Quantization
This paper presents a novel approach that enables autoregressive video generation with high efficiency. We propose to reformulate the video generation problem as a non-quantized autoregressive modeling of temporal frame-by-frame prediction and spatial set-by-set prediction. Unlike raster-scan prediction in prior autoregressive models or joint distribution modeling of fixed-length tokens in diffusion models, our approach maintains the causal property of GPT-style models for flexible in-context capabilities, while leveraging bidirectional modeling within individual frames for efficiency. With the proposed approach, we train a novel video autoregressive model without vector quantization, termed NOVA. Our results demonstrate that NOVA surpasses prior autoregressive video models in data efficiency, inference speed, visual fidelity, and video fluency, even with a much smaller model capacity, i.e., 0.6B parameters. NOVA also outperforms state-of-the-art image diffusion models in text-to-image generation tasks, with a significantly lower training cost. Additionally, NOVA generalizes well across extended video durations and enables diverse zero-shot applications in one unified model. Code and models are publicly available at https://github.com/baaivision/NOVA.
Towards Neuro-Symbolic Video Understanding
The unprecedented surge in video data production in recent years necessitates efficient tools to extract meaningful frames from videos for downstream tasks. Long-term temporal reasoning is a key desideratum for frame retrieval systems. While state-of-the-art foundation models, like VideoLLaMA and ViCLIP, are proficient in short-term semantic understanding, they surprisingly fail at long-term reasoning across frames. A key reason for this failure is that they intertwine per-frame perception and temporal reasoning into a single deep network. Hence, decoupling but co-designing semantic understanding and temporal reasoning is essential for efficient scene identification. We propose a system that leverages vision-language models for semantic understanding of individual frames but effectively reasons about the long-term evolution of events using state machines and temporal logic (TL) formulae that inherently capture memory. Our TL-based reasoning improves the F1 score of complex event identification by 9-15% compared to benchmarks that use GPT4 for reasoning on state-of-the-art self-driving datasets such as Waymo and NuScenes.
Masked Autoencoders As Spatiotemporal Learners
This paper studies a conceptually simple extension of Masked Autoencoders (MAE) to spatiotemporal representation learning from videos. We randomly mask out spacetime patches in videos and learn an autoencoder to reconstruct them in pixels. Interestingly, we show that our MAE method can learn strong representations with almost no inductive bias on spacetime (only except for patch and positional embeddings), and spacetime-agnostic random masking performs the best. We observe that the optimal masking ratio is as high as 90% (vs. 75% on images), supporting the hypothesis that this ratio is related to information redundancy of the data. A high masking ratio leads to a large speedup, e.g., > 4x in wall-clock time or even more. We report competitive results on several challenging video datasets using vanilla Vision Transformers. We observe that MAE can outperform supervised pre-training by large margins. We further report encouraging results of training on real-world, uncurated Instagram data. Our study suggests that the general framework of masked autoencoding (BERT, MAE, etc.) can be a unified methodology for representation learning with minimal domain knowledge.
TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation
Video generation has many unique challenges beyond those of image generation. The temporal dimension introduces extensive possible variations across frames, over which consistency and continuity may be violated. In this study, we move beyond evaluating simple actions and argue that generated videos should incorporate the emergence of new concepts and their relation transitions like in real-world videos as time progresses. To assess the Temporal Compositionality of video generation models, we propose TC-Bench, a benchmark of meticulously crafted text prompts, corresponding ground truth videos, and robust evaluation metrics. The prompts articulate the initial and final states of scenes, effectively reducing ambiguities for frame development and simplifying the assessment of transition completion. In addition, by collecting aligned real-world videos corresponding to the prompts, we expand TC-Bench's applicability from text-conditional models to image-conditional ones that can perform generative frame interpolation. We also develop new metrics to measure the completeness of component transitions in generated videos, which demonstrate significantly higher correlations with human judgments than existing metrics. Our comprehensive experimental results reveal that most video generators achieve less than 20% of the compositional changes, highlighting enormous space for future improvement. Our analysis indicates that current video generation models struggle to interpret descriptions of compositional changes and synthesize various components across different time steps.
FramePainter: Endowing Interactive Image Editing with Video Diffusion Priors
Interactive image editing allows users to modify images through visual interaction operations such as drawing, clicking, and dragging. Existing methods construct such supervision signals from videos, as they capture how objects change with various physical interactions. However, these models are usually built upon text-to-image diffusion models, so necessitate (i) massive training samples and (ii) an additional reference encoder to learn real-world dynamics and visual consistency. In this paper, we reformulate this task as an image-to-video generation problem, so that inherit powerful video diffusion priors to reduce training costs and ensure temporal consistency. Specifically, we introduce FramePainter as an efficient instantiation of this formulation. Initialized with Stable Video Diffusion, it only uses a lightweight sparse control encoder to inject editing signals. Considering the limitations of temporal attention in handling large motion between two frames, we further propose matching attention to enlarge the receptive field while encouraging dense correspondence between edited and source image tokens. We highlight the effectiveness and efficiency of FramePainter across various of editing signals: it domainantly outperforms previous state-of-the-art methods with far less training data, achieving highly seamless and coherent editing of images, \eg, automatically adjust the reflection of the cup. Moreover, FramePainter also exhibits exceptional generalization in scenarios not present in real-world videos, \eg, transform the clownfish into shark-like shape. Our code will be available at https://github.com/YBYBZhang/FramePainter.
VFIMamba: Video Frame Interpolation with State Space Models
Inter-frame modeling is pivotal in generating intermediate frames for video frame interpolation (VFI). Current approaches predominantly rely on convolution or attention-based models, which often either lack sufficient receptive fields or entail significant computational overheads. Recently, Selective State Space Models (S6) have emerged, tailored specifically for long sequence modeling, offering both linear complexity and data-dependent modeling capabilities. In this paper, we propose VFIMamba, a novel frame interpolation method for efficient and dynamic inter-frame modeling by harnessing the S6 model. Our approach introduces the Mixed-SSM Block (MSB), which initially rearranges tokens from adjacent frames in an interleaved fashion and subsequently applies multi-directional S6 modeling. This design facilitates the efficient transmission of information across frames while upholding linear complexity. Furthermore, we introduce a novel curriculum learning strategy that progressively cultivates proficiency in modeling inter-frame dynamics across varying motion magnitudes, fully unleashing the potential of the S6 model. Experimental findings showcase that our method attains state-of-the-art performance across diverse benchmarks, particularly excelling in high-resolution scenarios. In particular, on the X-TEST dataset, VFIMamba demonstrates a noteworthy improvement of 0.80 dB for 4K frames and 0.96 dB for 2K frames.
Video Inpainting by Jointly Learning Temporal Structure and Spatial Details
We present a new data-driven video inpainting method for recovering missing regions of video frames. A novel deep learning architecture is proposed which contains two sub-networks: a temporal structure inference network and a spatial detail recovering network. The temporal structure inference network is built upon a 3D fully convolutional architecture: it only learns to complete a low-resolution video volume given the expensive computational cost of 3D convolution. The low resolution result provides temporal guidance to the spatial detail recovering network, which performs image-based inpainting with a 2D fully convolutional network to produce recovered video frames in their original resolution. Such two-step network design ensures both the spatial quality of each frame and the temporal coherence across frames. Our method jointly trains both sub-networks in an end-to-end manner. We provide qualitative and quantitative evaluation on three datasets, demonstrating that our method outperforms previous learning-based video inpainting methods.
Video Editing for Video Retrieval
Though pre-training vision-language models have demonstrated significant benefits in boosting video-text retrieval performance from large-scale web videos, fine-tuning still plays a critical role with manually annotated clips with start and end times, which requires considerable human effort. To address this issue, we explore an alternative cheaper source of annotations, single timestamps, for video-text retrieval. We initialise clips from timestamps in a heuristic way to warm up a retrieval model. Then a video clip editing method is proposed to refine the initial rough boundaries to improve retrieval performance. A student-teacher network is introduced for video clip editing. The teacher model is employed to edit the clips in the training set whereas the student model trains on the edited clips. The teacher weights are updated from the student's after the student's performance increases. Our method is model agnostic and applicable to any retrieval models. We conduct experiments based on three state-of-the-art retrieval models, COOT, VideoCLIP and CLIP4Clip. Experiments conducted on three video retrieval datasets, YouCook2, DiDeMo and ActivityNet-Captions show that our edited clips consistently improve retrieval performance over initial clips across all the three retrieval models.
Unsupervised Learning of Video Representations using LSTMs
We use multilayer Long Short Term Memory (LSTM) networks to learn representations of video sequences. Our model uses an encoder LSTM to map an input sequence into a fixed length representation. This representation is decoded using single or multiple decoder LSTMs to perform different tasks, such as reconstructing the input sequence, or predicting the future sequence. We experiment with two kinds of input sequences - patches of image pixels and high-level representations ("percepts") of video frames extracted using a pretrained convolutional net. We explore different design choices such as whether the decoder LSTMs should condition on the generated output. We analyze the outputs of the model qualitatively to see how well the model can extrapolate the learned video representation into the future and into the past. We try to visualize and interpret the learned features. We stress test the model by running it on longer time scales and on out-of-domain data. We further evaluate the representations by finetuning them for a supervised learning problem - human action recognition on the UCF-101 and HMDB-51 datasets. We show that the representations help improve classification accuracy, especially when there are only a few training examples. Even models pretrained on unrelated datasets (300 hours of YouTube videos) can help action recognition performance.
B-VLLM: A Vision Large Language Model with Balanced Spatio-Temporal Tokens
Recently, Vision Large Language Models (VLLMs) integrated with vision encoders have shown promising performance in vision understanding. The key of VLLMs is to encode visual content into sequences of visual tokens, enabling VLLMs to simultaneously process both visual and textual content. However, understanding videos, especially long videos, remain a challenge to VLLMs as the number of visual tokens grows rapidly when encoding videos, resulting in the risk of exceeding the context window of VLLMs and introducing heavy computation burden. To restrict the number of visual tokens, existing VLLMs either: (1) uniformly downsample videos into a fixed number of frames or (2) reducing the number of visual tokens encoded from each frame. We argue the former solution neglects the rich temporal cue in videos and the later overlooks the spatial details in each frame. In this work, we present Balanced-VLLM (B-VLLM): a novel VLLM framework that aims to effectively leverage task relevant spatio-temporal cues while restricting the number of visual tokens under the VLLM context window length. At the core of our method, we devise a text-conditioned adaptive frame selection module to identify frames relevant to the visual understanding task. The selected frames are then de-duplicated using a temporal frame token merging technique. The visual tokens of the selected frames are processed through a spatial token sampling module and an optional spatial token merging strategy to achieve precise control over the token count. Experimental results show that B-VLLM is effective in balancing the number of frames and visual tokens in video understanding, yielding superior performance on various video understanding benchmarks. Our code is available at https://github.com/zhuqiangLu/B-VLLM.
VidToMe: Video Token Merging for Zero-Shot Video Editing
Diffusion models have made significant advances in generating high-quality images, but their application to video generation has remained challenging due to the complexity of temporal motion. Zero-shot video editing offers a solution by utilizing pre-trained image diffusion models to translate source videos into new ones. Nevertheless, existing methods struggle to maintain strict temporal consistency and efficient memory consumption. In this work, we propose a novel approach to enhance temporal consistency in generated videos by merging self-attention tokens across frames. By aligning and compressing temporally redundant tokens across frames, our method improves temporal coherence and reduces memory consumption in self-attention computations. The merging strategy matches and aligns tokens according to the temporal correspondence between frames, facilitating natural temporal consistency in generated video frames. To manage the complexity of video processing, we divide videos into chunks and develop intra-chunk local token merging and inter-chunk global token merging, ensuring both short-term video continuity and long-term content consistency. Our video editing approach seamlessly extends the advancements in image editing to video editing, rendering favorable results in temporal consistency over state-of-the-art methods.
Multi-granularity Correspondence Learning from Long-term Noisy Videos
Existing video-language studies mainly focus on learning short video clips, leaving long-term temporal dependencies rarely explored due to over-high computational cost of modeling long videos. To address this issue, one feasible solution is learning the correspondence between video clips and captions, which however inevitably encounters the multi-granularity noisy correspondence (MNC) problem. To be specific, MNC refers to the clip-caption misalignment (coarse-grained) and frame-word misalignment (fine-grained), hindering temporal learning and video understanding. In this paper, we propose NOise Robust Temporal Optimal traNsport (Norton) that addresses MNC in a unified optimal transport (OT) framework. In brief, Norton employs video-paragraph and clip-caption contrastive losses to capture long-term dependencies based on OT. To address coarse-grained misalignment in video-paragraph contrast, Norton filters out the irrelevant clips and captions through an alignable prompt bucket and realigns asynchronous clip-caption pairs based on transport distance. To address the fine-grained misalignment, Norton incorporates a soft-maximum operator to identify crucial words and key frames. Additionally, Norton exploits the potential faulty negative samples in clip-caption contrast by rectifying the alignment target with OT assignment to ensure precise temporal modeling. Extensive experiments on video retrieval, videoQA, and action segmentation verify the effectiveness of our method. Code is available at https://lin-yijie.github.io/projects/Norton.
HNeRV: A Hybrid Neural Representation for Videos
Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality (+4.7 PSNR) and convergence speed (16times faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV
TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models
Understanding fine-grained temporal dynamics is crucial for multimodal video comprehension and generation. Due to the lack of fine-grained temporal annotations, existing video benchmarks mostly resemble static image benchmarks and are incompetent at evaluating models for temporal understanding. In this paper, we introduce TemporalBench, a new benchmark dedicated to evaluating fine-grained temporal understanding in videos. TemporalBench consists of ~10K video question-answer pairs, derived from ~2K high-quality human annotations detailing the temporal dynamics in video clips. As a result, our benchmark provides a unique testbed for evaluating various temporal understanding and reasoning abilities such as action frequency, motion magnitude, event order, etc. Moreover, it enables evaluations on various tasks like both video question answering and captioning, both short and long video understanding, as well as different models such as multimodal video embedding models and text generation models. Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench, demonstrating a significant gap (~30%) between humans and AI in temporal understanding. Furthermore, we notice a critical pitfall for multi-choice QA where LLMs can detect the subtle changes in negative captions and find a centralized description as a cue for its prediction, where we propose Multiple Binary Accuracy (MBA) to correct such bias. We hope that TemporalBench can foster research on improving models' temporal reasoning capabilities. Both dataset and evaluation code will be made available.
Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition
Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements. This is because current video diffusion models often attempt to process high-dimensional videos directly. To tackle this issue, we propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation. Specifically, we propose an autoencoder that succinctly encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation. The former represents the common content, and the latter represents the underlying motion in the video, respectively. We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model. A key innovation here is the design of a compact latent space that can directly utilizes a pretrained image diffusion model, which has not been done in previous latent video diffusion models. This leads to considerably better quality generation and reduced computational costs. For instance, CMD can sample a video 7.7times faster than prior approaches by generating a video of 512times1024 resolution and length 16 in 3.1 seconds. Moreover, CMD achieves an FVD score of 212.7 on WebVid-10M, 27.3% better than the previous state-of-the-art of 292.4.
Space-Time Video Super-resolution with Neural Operator
This paper addresses the task of space-time video super-resolution (ST-VSR). Existing methods generally suffer from inaccurate motion estimation and motion compensation (MEMC) problems for large motions. Inspired by recent progress in physics-informed neural networks, we model the challenges of MEMC in ST-VSR as a mapping between two continuous function spaces. Specifically, our approach transforms independent low-resolution representations in the coarse-grained continuous function space into refined representations with enriched spatiotemporal details in the fine-grained continuous function space. To achieve efficient and accurate MEMC, we design a Galerkin-type attention function to perform frame alignment and temporal interpolation. Due to the linear complexity of the Galerkin-type attention mechanism, our model avoids patch partitioning and offers global receptive fields, enabling precise estimation of large motions. The experimental results show that the proposed method surpasses state-of-the-art techniques in both fixed-size and continuous space-time video super-resolution tasks.
Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators
Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain. Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object. Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing. As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data. Our code will be open sourced at: https://github.com/Picsart-AI-Research/Text2Video-Zero .
ResQ: Residual Quantization for Video Perception
This paper accelerates video perception, such as semantic segmentation and human pose estimation, by levering cross-frame redundancies. Unlike the existing approaches, which avoid redundant computations by warping the past features using optical-flow or by performing sparse convolutions on frame differences, we approach the problem from a new perspective: low-bit quantization. We observe that residuals, as the difference in network activations between two neighboring frames, exhibit properties that make them highly quantizable. Based on this observation, we propose a novel quantization scheme for video networks coined as Residual Quantization. ResQ extends the standard, frame-by-frame, quantization scheme by incorporating temporal dependencies that lead to better performance in terms of accuracy vs. bit-width. Furthermore, we extend our model to dynamically adjust the bit-width proportional to the amount of changes in the video. We demonstrate the superiority of our model, against the standard quantization and existing efficient video perception models, using various architectures on semantic segmentation and human pose estimation benchmarks.
MGMAE: Motion Guided Masking for Video Masked Autoencoding
Masked autoencoding has shown excellent performance on self-supervised video representation learning. Temporal redundancy has led to a high masking ratio and customized masking strategy in VideoMAE. In this paper, we aim to further improve the performance of video masked autoencoding by introducing a motion guided masking strategy. Our key insight is that motion is a general and unique prior in video, which should be taken into account during masked pre-training. Our motion guided masking explicitly incorporates motion information to build temporal consistent masking volume. Based on this masking volume, we can track the unmasked tokens in time and sample a set of temporal consistent cubes from videos. These temporal aligned unmasked tokens will further relieve the information leakage issue in time and encourage the MGMAE to learn more useful structure information. We implement our MGMAE with an online efficient optical flow estimator and backward masking map warping strategy. We perform experiments on the datasets of Something-Something V2 and Kinetics-400, demonstrating the superior performance of our MGMAE to the original VideoMAE. In addition, we provide the visualization analysis to illustrate that our MGMAE can sample temporal consistent cubes in a motion-adaptive manner for more effective video pre-training.
Describing Videos by Exploiting Temporal Structure
Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. First, our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN) representation of the short temporal dynamics. The 3-D CNN representation is trained on video action recognition tasks, so as to produce a representation that is tuned to human motion and behavior. Second we propose a temporal attention mechanism that allows to go beyond local temporal modeling and learns to automatically select the most relevant temporal segments given the text-generating RNN. Our approach exceeds the current state-of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present results on a new, larger and more challenging dataset of paired video and natural language descriptions.
M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action Recognition
Recently, the rise of large-scale vision-language pretrained models like CLIP, coupled with the technology of Parameter-Efficient FineTuning (PEFT), has captured substantial attraction in video action recognition. Nevertheless, prevailing approaches tend to prioritize strong supervised performance at the expense of compromising the models' generalization capabilities during transfer. In this paper, we introduce a novel Multimodal, Multi-task CLIP adapting framework named \name to address these challenges, preserving both high supervised performance and robust transferability. Firstly, to enhance the individual modality architectures, we introduce multimodal adapters to both the visual and text branches. Specifically, we design a novel visual TED-Adapter, that performs global Temporal Enhancement and local temporal Difference modeling to improve the temporal representation capabilities of the visual encoder. Moreover, we adopt text encoder adapters to strengthen the learning of semantic label information. Secondly, we design a multi-task decoder with a rich set of supervisory signals to adeptly satisfy the need for strong supervised performance and generalization within a multimodal framework. Experimental results validate the efficacy of our approach, demonstrating exceptional performance in supervised learning while maintaining strong generalization in zero-shot scenarios.
Learning Transferable Spatiotemporal Representations from Natural Script Knowledge
Pre-training on large-scale video data has become a common recipe for learning transferable spatiotemporal representations in recent years. Despite some progress, existing methods are mostly limited to highly curated datasets (e.g., K400) and exhibit unsatisfactory out-of-the-box representations. We argue that it is due to the fact that they only capture pixel-level knowledge rather than spatiotemporal semantics, which hinders further progress in video understanding. Inspired by the great success of image-text pre-training (e.g., CLIP), we take the first step to exploit language semantics to boost transferable spatiotemporal representation learning. We introduce a new pretext task, Turning to Video for Transcript Sorting (TVTS), which sorts shuffled ASR scripts by attending to learned video representations. We do not rely on descriptive captions and learn purely from video, i.e., leveraging the natural transcribed speech knowledge to provide noisy but useful semantics over time. Our method enforces the vision model to contextualize what is happening over time so that it can re-organize the narrative transcripts, and can seamlessly apply to large-scale uncurated video data in the real world. Our method demonstrates strong out-of-the-box spatiotemporal representations on diverse benchmarks, e.g., +13.6% gains over VideoMAE on SSV2 via linear probing. The code is available at https://github.com/TencentARC/TVTS.
Event-based Temporally Dense Optical Flow Estimation with Sequential Neural Networks
Prior works on event-based optical flow estimation have investigated several gradient-based learning methods to train neural networks for predicting optical flow. However, they do not utilize the fast data rate of event data streams and rely on a spatio-temporal representation constructed from a collection of events over a fixed period of time (often between two grayscale frames). As a result, optical flow is only evaluated at a frequency much lower than the rate data is produced by an event-based camera, leading to a temporally sparse optical flow estimation. To predict temporally dense optical flow, we cast the problem as a sequential learning task and propose a training methodology to train sequential networks for continuous prediction on an event stream. We propose two types of networks: one focused on performance and another focused on compute efficiency. We first train long-short term memory networks (LSTMs) on the DSEC dataset and demonstrated 10x temporally dense optical flow estimation over existing flow estimation approaches. The additional benefit of having a memory to draw long temporal correlations back in time results in a 19.7% improvement in flow prediction accuracy of LSTMs over similar networks with no memory elements. We subsequently show that the inherent recurrence of spiking neural networks (SNNs) enables them to learn and estimate temporally dense optical flow with 31.8% lesser parameters than LSTM, but with a slightly increased error. This demonstrates potential for energy-efficient implementation of fast optical flow prediction using SNNs.
VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges
Recent advancements in large-scale video-language models have shown significant potential for real-time planning and detailed interactions. However, their high computational demands and the scarcity of annotated datasets limit their practicality for academic researchers. In this work, we introduce VideoLLaMB, a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences alongside historical visual data, effectively preserving semantic continuity and enhancing model performance across various tasks. This approach includes recurrent memory tokens and a SceneTilling algorithm, which segments videos into independent semantic units to preserve semantic integrity. Empirically, VideoLLaMB significantly outstrips existing video-language models, demonstrating a 5.5 points improvement over its competitors across three VideoQA benchmarks, and 2.06 points on egocentric planning. Comprehensive results on the MVBench show that VideoLLaMB-7B achieves markedly better results than previous 7B models of same LLM. Remarkably, it maintains robust performance as PLLaVA even as video length increases up to 8 times. Besides, the frame retrieval results on our specialized Needle in a Video Haystack (NIAVH) benchmark, further validate VideoLLaMB's prowess in accurately identifying specific frames within lengthy videos. Our SceneTilling algorithm also enables the generation of streaming video captions directly, without necessitating additional training. In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU with linear GPU memory scaling, ensuring both high performance and cost-effectiveness, thereby setting a new foundation for long-form video-language models in both academic and practical applications.
Temporal Residual Guided Diffusion Framework for Event-Driven Video Reconstruction
Event-based video reconstruction has garnered increasing attention due to its advantages, such as high dynamic range and rapid motion capture capabilities. However, current methods often prioritize the extraction of temporal information from continuous event flow, leading to an overemphasis on low-frequency texture features in the scene, resulting in over-smoothing and blurry artifacts. Addressing this challenge necessitates the integration of conditional information, encompassing temporal features, low-frequency texture, and high-frequency events, to guide the Denoising Diffusion Probabilistic Model (DDPM) in producing accurate and natural outputs. To tackle this issue, we introduce a novel approach, the Temporal Residual Guided Diffusion Framework, which effectively leverages both temporal and frequency-based event priors. Our framework incorporates three key conditioning modules: a pre-trained low-frequency intensity estimation module, a temporal recurrent encoder module, and an attention-based high-frequency prior enhancement module. In order to capture temporal scene variations from the events at the current moment, we employ a temporal-domain residual image as the target for the diffusion model. Through the combination of these three conditioning paths and the temporal residual framework, our framework excels in reconstructing high-quality videos from event flow, mitigating issues such as artifacts and over-smoothing commonly observed in previous approaches. Extensive experiments conducted on multiple benchmark datasets validate the superior performance of our framework compared to prior event-based reconstruction methods.
FreeNoise: Tuning-Free Longer Video Diffusion Via Noise Rescheduling
With the availability of large-scale video datasets and the advances of diffusion models, text-driven video generation has achieved substantial progress. However, existing video generation models are typically trained on a limited number of frames, resulting in the inability to generate high-fidelity long videos during inference. Furthermore, these models only support single-text conditions, whereas real-life scenarios often require multi-text conditions as the video content changes over time. To tackle these challenges, this study explores the potential of extending the text-driven capability to generate longer videos conditioned on multiple texts. 1) We first analyze the impact of initial noise in video diffusion models. Then building upon the observation of noise, we propose FreeNoise, a tuning-free and time-efficient paradigm to enhance the generative capabilities of pretrained video diffusion models while preserving content consistency. Specifically, instead of initializing noises for all frames, we reschedule a sequence of noises for long-range correlation and perform temporal attention over them by window-based function. 2) Additionally, we design a novel motion injection method to support the generation of videos conditioned on multiple text prompts. Extensive experiments validate the superiority of our paradigm in extending the generative capabilities of video diffusion models. It is noteworthy that compared with the previous best-performing method which brought about 255% extra time cost, our method incurs only negligible time cost of approximately 17%. Generated video samples are available at our website: http://haonanqiu.com/projects/FreeNoise.html.
Framer: Interactive Frame Interpolation
We propose Framer for interactive frame interpolation, which targets producing smoothly transitioning frames between two images as per user creativity. Concretely, besides taking the start and end frames as inputs, our approach supports customizing the transition process by tailoring the trajectory of some selected keypoints. Such a design enjoys two clear benefits. First, incorporating human interaction mitigates the issue arising from numerous possibilities of transforming one image to another, and in turn enables finer control of local motions. Second, as the most basic form of interaction, keypoints help establish the correspondence across frames, enhancing the model to handle challenging cases (e.g., objects on the start and end frames are of different shapes and styles). It is noteworthy that our system also offers an "autopilot" mode, where we introduce a module to estimate the keypoints and refine the trajectory automatically, to simplify the usage in practice. Extensive experimental results demonstrate the appealing performance of Framer on various applications, such as image morphing, time-lapse video generation, cartoon interpolation, etc. The code, the model, and the interface will be released to facilitate further research.
Tarsier: Recipes for Training and Evaluating Large Video Description Models
Generating fine-grained video descriptions is a fundamental challenge in video understanding. In this work, we introduce Tarsier, a family of large-scale video-language models designed to generate high-quality video descriptions. Tarsier employs CLIP-ViT to encode frames separately and then uses an LLM to model temporal relationships. Despite its simple architecture, we demonstrate that with a meticulously designed two-stage training procedure, the Tarsier models exhibit substantially stronger video description capabilities than any existing open-source model, showing a +51.4% advantage in human side-by-side evaluation over the strongest model. Additionally, they are comparable to state-of-the-art proprietary models, with a +12.3% advantage against GPT-4V and a -6.7% disadvantage against Gemini 1.5 Pro. Besides video description, Tarsier proves to be a versatile generalist model, achieving new state-of-the-art results across nine public benchmarks, including multi-choice VQA, open-ended VQA, and zero-shot video captioning. Our second contribution is the introduction of a new benchmark for evaluating video description models, consisting of a new challenging dataset featuring videos from diverse sources and varying complexity, along with an automatic method specifically designed to assess the quality of fine-grained video descriptions. We make our models and evaluation benchmark publicly available at https://github.com/bytedance/tarsier.
Ev-TTA: Test-Time Adaptation for Event-Based Object Recognition
We introduce Ev-TTA, a simple, effective test-time adaptation algorithm for event-based object recognition. While event cameras are proposed to provide measurements of scenes with fast motions or drastic illumination changes, many existing event-based recognition algorithms suffer from performance deterioration under extreme conditions due to significant domain shifts. Ev-TTA mitigates the severe domain gaps by fine-tuning the pre-trained classifiers during the test phase using loss functions inspired by the spatio-temporal characteristics of events. Since the event data is a temporal stream of measurements, our loss function enforces similar predictions for adjacent events to quickly adapt to the changed environment online. Also, we utilize the spatial correlations between two polarities of events to handle noise under extreme illumination, where different polarities of events exhibit distinctive noise distributions. Ev-TTA demonstrates a large amount of performance gain on a wide range of event-based object recognition tasks without extensive additional training. Our formulation can be successfully applied regardless of input representations and further extended into regression tasks. We expect Ev-TTA to provide the key technique to deploy event-based vision algorithms in challenging real-world applications where significant domain shift is inevitable.
No Time to Waste: Squeeze Time into Channel for Mobile Video Understanding
Current architectures for video understanding mainly build upon 3D convolutional blocks or 2D convolutions with additional operations for temporal modeling. However, these methods all regard the temporal axis as a separate dimension of the video sequence, which requires large computation and memory budgets and thus limits their usage on mobile devices. In this paper, we propose to squeeze the time axis of a video sequence into the channel dimension and present a lightweight video recognition network, term as SqueezeTime, for mobile video understanding. To enhance the temporal modeling capability of the proposed network, we design a Channel-Time Learning (CTL) Block to capture temporal dynamics of the sequence. This module has two complementary branches, in which one branch is for temporal importance learning and another branch with temporal position restoring capability is to enhance inter-temporal object modeling ability. The proposed SqueezeTime is much lightweight and fast with high accuracies for mobile video understanding. Extensive experiments on various video recognition and action detection benchmarks, i.e., Kinetics400, Kinetics600, HMDB51, AVA2.1 and THUMOS14, demonstrate the superiority of our model. For example, our SqueezeTime achieves +1.2% accuracy and +80% GPU throughput gain on Kinetics400 than prior methods. Codes are publicly available at https://github.com/xinghaochen/SqueezeTime and https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/SqueezeTime.
TMA: Temporal Motion Aggregation for Event-based Optical Flow
Event cameras have the ability to record continuous and detailed trajectories of objects with high temporal resolution, thereby providing intuitive motion cues for optical flow estimation. Nevertheless, most existing learning-based approaches for event optical flow estimation directly remould the paradigm of conventional images by representing the consecutive event stream as static frames, ignoring the inherent temporal continuity of event data. In this paper, we argue that temporal continuity is a vital element of event-based optical flow and propose a novel Temporal Motion Aggregation (TMA) approach to unlock its potential. Technically, TMA comprises three components: an event splitting strategy to incorporate intermediate motion information underlying the temporal context, a linear lookup strategy to align temporally fine-grained motion features and a novel motion pattern aggregation module to emphasize consistent patterns for motion feature enhancement. By incorporating temporally fine-grained motion information, TMA can derive better flow estimates than existing methods at early stages, which not only enables TMA to obtain more accurate final predictions, but also greatly reduces the demand for a number of refinements. Extensive experiments on DSEC-Flow and MVSEC datasets verify the effectiveness and superiority of our TMA. Remarkably, compared to E-RAFT, TMA achieves a 6\% improvement in accuracy and a 40\% reduction in inference time on DSEC-Flow. Code will be available at https://github.com/ispc-lab/TMA.
Temporal Feature Matters: A Framework for Diffusion Model Quantization
The Diffusion models, widely used for image generation, face significant challenges related to their broad applicability due to prolonged inference times and high memory demands. Efficient Post-Training Quantization (PTQ) is crucial to address these issues. However, unlike traditional models, diffusion models critically rely on the time-step for the multi-round denoising. Typically, each time-step is encoded into a hypersensitive temporal feature by several modules. Despite this, existing PTQ methods do not optimize these modules individually. Instead, they employ unsuitable reconstruction objectives and complex calibration methods, leading to significant disturbances in the temporal feature and denoising trajectory, as well as reduced compression efficiency. To address these challenges, we introduce a novel quantization framework that includes three strategies: 1) TIB-based Maintenance: Based on our innovative Temporal Information Block (TIB) definition, Temporal Information-aware Reconstruction (TIAR) and Finite Set Calibration (FSC) are developed to efficiently align original temporal features. 2) Cache-based Maintenance: Instead of indirect and complex optimization for the related modules, pre-computing and caching quantized counterparts of temporal features are developed to minimize errors. 3) Disturbance-aware Selection: Employ temporal feature errors to guide a fine-grained selection between the two maintenance strategies for further disturbance reduction. This framework preserves most of the temporal information and ensures high-quality end-to-end generation. Extensive testing on various datasets, diffusion models and hardware confirms our superior performance and acceleration..
Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
With the release of large-scale motion datasets with textual annotations, the task of establishing a robust latent space for language and 3D human motion has recently witnessed a surge of interest. Methods have been proposed to convert human motion and texts into features to achieve accurate correspondence between them. Despite these efforts to align language and motion representations, we claim that the temporal element is often overlooked, especially for compound actions, resulting in chronological inaccuracies. To shed light on the temporal alignment in motion-language latent spaces, we propose Chronologically Accurate Retrieval (CAR) to evaluate the chronological understanding of the models. We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions. We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version. CAR reveals many cases where current motion-language models fail to distinguish the event chronology of human motion, despite their impressive performance in terms of conventional evaluation metrics. To achieve better temporal alignment between text and motion, we further propose to use these texts with shuffled sequence of events as negative samples during training to reinforce the motion-language models. We conduct experiments on text-motion retrieval and text-to-motion generation using the reinforced motion-language models, which demonstrate improved performance over conventional approaches, indicating the necessity to consider temporal elements in motion-language alignment.
Unsupervised Video Representation Learning by Bidirectional Feature Prediction
This paper introduces a novel method for self-supervised video representation learning via feature prediction. In contrast to the previous methods that focus on future feature prediction, we argue that a supervisory signal arising from unobserved past frames is complementary to one that originates from the future frames. The rationale behind our method is to encourage the network to explore the temporal structure of videos by distinguishing between future and past given present observations. We train our model in a contrastive learning framework, where joint encoding of future and past provides us with a comprehensive set of temporal hard negatives via swapping. We empirically show that utilizing both signals enriches the learned representations for the downstream task of action recognition. It outperforms independent prediction of future and past.
Faster Diffusion: Rethinking the Role of UNet Encoder in Diffusion Models
One of the key components within diffusion models is the UNet for noise prediction. While several works have explored basic properties of the UNet decoder, its encoder largely remains unexplored. In this work, we conduct the first comprehensive study of the UNet encoder. We empirically analyze the encoder features and provide insights to important questions regarding their changes at the inference process. In particular, we find that encoder features change gently, whereas the decoder features exhibit substantial variations across different time-steps. This finding inspired us to omit the encoder at certain adjacent time-steps and reuse cyclically the encoder features in the previous time-steps for the decoder. Further based on this observation, we introduce a simple yet effective encoder propagation scheme to accelerate the diffusion sampling for a diverse set of tasks. By benefiting from our propagation scheme, we are able to perform in parallel the decoder at certain adjacent time-steps. Additionally, we introduce a prior noise injection method to improve the texture details in the generated image. Besides the standard text-to-image task, we also validate our approach on other tasks: text-to-video, personalized generation and reference-guided generation. Without utilizing any knowledge distillation technique, our approach accelerates both the Stable Diffusion (SD) and the DeepFloyd-IF models sampling by 41% and 24% respectively, while maintaining high-quality generation performance. Our code is available in https://github.com/hutaiHang/Faster-Diffusion{FasterDiffusion}.
TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language Understanding
Large-scale video-language pre-training has made remarkable strides in advancing video-language understanding tasks. However, the heavy computational burden of video encoding remains a formidable efficiency bottleneck, particularly for long-form videos. These videos contain massive visual tokens due to their inherent 3D properties and spatiotemporal redundancy, making it challenging to capture complex temporal and spatial relationships. To tackle this issue, we propose an efficient method called TEmporal-Spatial Token Aggregation (TESTA). TESTA condenses video semantics by adaptively aggregating similar frames, as well as similar patches within each frame. TESTA can reduce the number of visual tokens by 75% and thus accelerate video encoding. Building upon TESTA, we introduce a pre-trained video-language model equipped with a divided space-time token aggregation module in each video encoder block. We evaluate our model on five datasets for paragraph-to-video retrieval and long-form VideoQA tasks. Experimental results show that TESTA improves computing efficiency by 1.7 times, and achieves significant performance gains from its scalability in processing longer input frames, e.g., +13.7 R@1 on QuerYD and +6.5 R@1 on Condensed Movie.
FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality
In this paper, we present \textit{FasterCache}, a novel training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation. By analyzing existing cache-based methods, we observe that directly reusing adjacent-step features degrades video quality due to the loss of subtle variations. We further perform a pioneering investigation of the acceleration potential of classifier-free guidance (CFG) and reveal significant redundancy between conditional and unconditional features within the same timestep. Capitalizing on these observations, we introduce FasterCache to substantially accelerate diffusion-based video generation. Our key contributions include a dynamic feature reuse strategy that preserves both feature distinction and temporal continuity, and CFG-Cache which optimizes the reuse of conditional and unconditional outputs to further enhance inference speed without compromising video quality. We empirically evaluate FasterCache on recent video diffusion models. Experimental results show that FasterCache can significantly accelerate video generation (\eg 1.67times speedup on Vchitect-2.0) while keeping video quality comparable to the baseline, and consistently outperform existing methods in both inference speed and video quality.
MeDM: Mediating Image Diffusion Models for Video-to-Video Translation with Temporal Correspondence Guidance
This study introduces an efficient and effective method, MeDM, that utilizes pre-trained image Diffusion Models for video-to-video translation with consistent temporal flow. The proposed framework can render videos from scene position information, such as a normal G-buffer, or perform text-guided editing on videos captured in real-world scenarios. We employ explicit optical flows to construct a practical coding that enforces physical constraints on generated frames and mediates independent frame-wise scores. By leveraging this coding, maintaining temporal consistency in the generated videos can be framed as an optimization problem with a closed-form solution. To ensure compatibility with Stable Diffusion, we also suggest a workaround for modifying observed-space scores in latent-space Diffusion Models. Notably, MeDM does not require fine-tuning or test-time optimization of the Diffusion Models. Through extensive qualitative, quantitative, and subjective experiments on various benchmarks, the study demonstrates the effectiveness and superiority of the proposed approach. Project page can be found at https://medm2023.github.io
VideoComposer: Compositional Video Synthesis with Motion Controllability
The pursuit of controllability as a higher standard of visual content creation has yielded remarkable progress in customizable image synthesis. However, achieving controllable video synthesis remains challenging due to the large variation of temporal dynamics and the requirement of cross-frame temporal consistency. Based on the paradigm of compositional generation, this work presents VideoComposer that allows users to flexibly compose a video with textual conditions, spatial conditions, and more importantly temporal conditions. Specifically, considering the characteristic of video data, we introduce the motion vector from compressed videos as an explicit control signal to provide guidance regarding temporal dynamics. In addition, we develop a Spatio-Temporal Condition encoder (STC-encoder) that serves as a unified interface to effectively incorporate the spatial and temporal relations of sequential inputs, with which the model could make better use of temporal conditions and hence achieve higher inter-frame consistency. Extensive experimental results suggest that VideoComposer is able to control the spatial and temporal patterns simultaneously within a synthesized video in various forms, such as text description, sketch sequence, reference video, or even simply hand-crafted motions. The code and models will be publicly available at https://videocomposer.github.io.
Smooth Video Synthesis with Noise Constraints on Diffusion Models for One-shot Video Tuning
Recent one-shot video tuning methods, which fine-tune the network on a specific video based on pre-trained text-to-image models (e.g., Stable Diffusion), are popular in the community because of the flexibility. However, these methods often produce videos marred by incoherence and inconsistency. To address these limitations, this paper introduces a simple yet effective noise constraint across video frames. This constraint aims to regulate noise predictions across their temporal neighbors, resulting in smooth latents. It can be simply included as a loss term during the training phase. By applying the loss to existing one-shot video tuning methods, we significantly improve the overall consistency and smoothness of the generated videos. Furthermore, we argue that current video evaluation metrics inadequately capture smoothness. To address this, we introduce a novel metric that considers detailed features and their temporal dynamics. Experimental results validate the effectiveness of our approach in producing smoother videos on various one-shot video tuning baselines. The source codes and video demos are available at https://github.com/SPengLiang/SmoothVideo{https://github.com/SPengLiang/SmoothVideo}.
Efficient Video Action Detection with Token Dropout and Context Refinement
Streaming video clips with large-scale video tokens impede vision transformers (ViTs) for efficient recognition, especially in video action detection where sufficient spatiotemporal representations are required for precise actor identification. In this work, we propose an end-to-end framework for efficient video action detection (EVAD) based on vanilla ViTs. Our EVAD consists of two specialized designs for video action detection. First, we propose a spatiotemporal token dropout from a keyframe-centric perspective. In a video clip, we maintain all tokens from its keyframe, preserve tokens relevant to actor motions from other frames, and drop out the remaining tokens in this clip. Second, we refine scene context by leveraging remaining tokens for better recognizing actor identities. The region of interest (RoI) in our action detector is expanded into temporal domain. The captured spatiotemporal actor identity representations are refined via scene context in a decoder with the attention mechanism. These two designs make our EVAD efficient while maintaining accuracy, which is validated on three benchmark datasets (i.e., AVA, UCF101-24, JHMDB). Compared to the vanilla ViT backbone, our EVAD reduces the overall GFLOPs by 43% and improves real-time inference speed by 40% with no performance degradation. Moreover, even at similar computational costs, our EVAD can improve the performance by 1.1 mAP with higher resolution inputs. Code is available at https://github.com/MCG-NJU/EVAD.
Boost Video Frame Interpolation via Motion Adaptation
Video frame interpolation (VFI) is a challenging task that aims to generate intermediate frames between two consecutive frames in a video. Existing learning-based VFI methods have achieved great success, but they still suffer from limited generalization ability due to the limited motion distribution of training datasets. In this paper, we propose a novel optimization-based VFI method that can adapt to unseen motions at test time. Our method is based on a cycle-consistency adaptation strategy that leverages the motion characteristics among video frames. We also introduce a lightweight adapter that can be inserted into the motion estimation module of existing pre-trained VFI models to improve the efficiency of adaptation. Extensive experiments on various benchmarks demonstrate that our method can boost the performance of two-frame VFI models, outperforming the existing state-of-the-art methods, even those that use extra input.
Temporal Residual Jacobians For Rig-free Motion Transfer
We introduce Temporal Residual Jacobians as a novel representation to enable data-driven motion transfer. Our approach does not assume access to any rigging or intermediate shape keyframes, produces geometrically and temporally consistent motions, and can be used to transfer long motion sequences. Central to our approach are two coupled neural networks that individually predict local geometric and temporal changes that are subsequently integrated, spatially and temporally, to produce the final animated meshes. The two networks are jointly trained, complement each other in producing spatial and temporal signals, and are supervised directly with 3D positional information. During inference, in the absence of keyframes, our method essentially solves a motion extrapolation problem. We test our setup on diverse meshes (synthetic and scanned shapes) to demonstrate its superiority in generating realistic and natural-looking animations on unseen body shapes against SoTA alternatives. Supplemental video and code are available at https://temporaljacobians.github.io/ .
Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation
Large text-to-image diffusion models have exhibited impressive proficiency in generating high-quality images. However, when applying these models to video domain, ensuring temporal consistency across video frames remains a formidable challenge. This paper proposes a novel zero-shot text-guided video-to-video translation framework to adapt image models to videos. The framework includes two parts: key frame translation and full video translation. The first part uses an adapted diffusion model to generate key frames, with hierarchical cross-frame constraints applied to enforce coherence in shapes, textures and colors. The second part propagates the key frames to other frames with temporal-aware patch matching and frame blending. Our framework achieves global style and local texture temporal consistency at a low cost (without re-training or optimization). The adaptation is compatible with existing image diffusion techniques, allowing our framework to take advantage of them, such as customizing a specific subject with LoRA, and introducing extra spatial guidance with ControlNet. Extensive experimental results demonstrate the effectiveness of our proposed framework over existing methods in rendering high-quality and temporally-coherent videos.
MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion
The spatio-temporal complexity of video data presents significant challenges in tasks such as compression, generation, and inpainting. We present four key contributions to address the challenges of spatiotemporal video processing. First, we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with masked token modeling to enhance spatiotemporal video compression. The model achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction quality by employing a novel training strategy with full frame masking. Second, we present MotionAura, a text-to-video generation framework that utilizes vector-quantized diffusion models to discretize the latent space and capture complex motion dynamics, producing temporally coherent videos aligned with text prompts. Third, we propose a spectral transformer-based denoising network that processes video data in the frequency domain using the Fourier Transform. This method effectively captures global context and long-range dependencies for high-quality video generation and denoising. Lastly, we introduce a downstream task of Sketch Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. Our models achieve SOTA performance on a range of benchmarks. Our work offers robust frameworks for spatiotemporal modeling and user-driven video content manipulation. We will release the code, datasets, and models in open-source.
TrackSSM: A General Motion Predictor by State-Space Model
Temporal motion modeling has always been a key component in multiple object tracking (MOT) which can ensure smooth trajectory movement and provide accurate positional information to enhance association precision. However, current motion models struggle to be both efficient and effective across different application scenarios. To this end, we propose TrackSSM inspired by the recently popular state space models (SSM), a unified encoder-decoder motion framework that uses data-dependent state space model to perform temporal motion of trajectories. Specifically, we propose Flow-SSM, a module that utilizes the position and motion information from historical trajectories to guide the temporal state transition of object bounding boxes. Based on Flow-SSM, we design a flow decoder. It is composed of a cascaded motion decoding module employing Flow-SSM, which can use the encoded flow information to complete the temporal position prediction of trajectories. Additionally, we propose a Step-by-Step Linear (S^2L) training strategy. By performing linear interpolation between the positions of the object in the previous frame and the current frame, we construct the pseudo labels of step-by-step linear training, ensuring that the trajectory flow information can better guide the object bounding box in completing temporal transitions. TrackSSM utilizes a simple Mamba-Block to build a motion encoder for historical trajectories, forming a temporal motion model with an encoder-decoder structure in conjunction with the flow decoder. TrackSSM is applicable to various tracking scenarios and achieves excellent tracking performance across multiple benchmarks, further extending the potential of SSM-like temporal motion models in multi-object tracking tasks. Code and models are publicly available at https://github.com/Xavier-Lin/TrackSSM.
Redefining Temporal Modeling in Video Diffusion: The Vectorized Timestep Approach
Diffusion models have revolutionized image generation, and their extension to video generation has shown promise. However, current video diffusion models~(VDMs) rely on a scalar timestep variable applied at the clip level, which limits their ability to model complex temporal dependencies needed for various tasks like image-to-video generation. To address this limitation, we propose a frame-aware video diffusion model~(FVDM), which introduces a novel vectorized timestep variable~(VTV). Unlike conventional VDMs, our approach allows each frame to follow an independent noise schedule, enhancing the model's capacity to capture fine-grained temporal dependencies. FVDM's flexibility is demonstrated across multiple tasks, including standard video generation, image-to-video generation, video interpolation, and long video synthesis. Through a diverse set of VTV configurations, we achieve superior quality in generated videos, overcoming challenges such as catastrophic forgetting during fine-tuning and limited generalizability in zero-shot methods.Our empirical evaluations show that FVDM outperforms state-of-the-art methods in video generation quality, while also excelling in extended tasks. By addressing fundamental shortcomings in existing VDMs, FVDM sets a new paradigm in video synthesis, offering a robust framework with significant implications for generative modeling and multimedia applications.
Fine-tuned CLIP Models are Efficient Video Learners
Large-scale multi-modal training with image-text pairs imparts strong generalization to CLIP model. Since training on a similar scale for videos is infeasible, recent approaches focus on the effective transfer of image-based CLIP to the video domain. In this pursuit, new parametric modules are added to learn temporal information and inter-frame relationships which require meticulous design efforts. Furthermore, when the resulting models are learned on videos, they tend to overfit on the given task distribution and lack in generalization aspect. This begs the following question: How to effectively transfer image-level CLIP representations to videos? In this work, we show that a simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is generally sufficient to bridge the domain gap from images to videos. Our qualitative analysis illustrates that the frame-level processing from CLIP image-encoder followed by feature pooling and similarity matching with corresponding text embeddings helps in implicitly modeling the temporal cues within ViFi-CLIP. Such fine-tuning helps the model to focus on scene dynamics, moving objects and inter-object relationships. For low-data regimes where full fine-tuning is not viable, we propose a `bridge and prompt' approach that first uses fine-tuning to bridge the domain gap and then learns prompts on language and vision side to adapt CLIP representations. We extensively evaluate this simple yet strong baseline on zero-shot, base-to-novel generalization, few-shot and fully supervised settings across five video benchmarks. Our code is available at https://github.com/muzairkhattak/ViFi-CLIP.
LVCHAT: Facilitating Long Video Comprehension
Enabling large language models (LLMs) to read videos is vital for multimodal LLMs. Existing works show promise on short videos whereas long video (longer than e.g.~1 minute) comprehension remains challenging. The major problem lies in the over-compression of videos, i.e., the encoded video representations are not enough to represent the whole video. To address this issue, we propose Long Video Chat (LVChat), where Frame-Scalable Encoding (FSE) is introduced to dynamically adjust the number of embeddings in alignment with the duration of the video to ensure long videos are not overly compressed into a few embeddings. To deal with long videos whose length is beyond videos seen during training, we propose Interleaved Frame Encoding (IFE), repeating positional embedding and interleaving multiple groups of videos to enable long video input, avoiding performance degradation due to overly long videos. Experimental results show that LVChat significantly outperforms existing methods by up to 27\% in accuracy on long-video QA datasets and long-video captioning benchmarks. Our code is published at https://github.com/wangyu-ustc/LVChat.
MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence. Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion. Despite achieving reasonable results, these approaches face challenges in maintaining temporal consistency throughout the animation due to the lack of temporal modeling and poor preservation of reference identity. In this work, we introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity. To achieve this, we first develop a video diffusion model to encode temporal information. Second, to maintain the appearance coherence across frames, we introduce a novel appearance encoder to retain the intricate details of the reference image. Leveraging these two innovations, we further employ a simple video fusion technique to encourage smooth transitions for long video animation. Empirical results demonstrate the superiority of our method over baseline approaches on two benchmarks. Notably, our approach outperforms the strongest baseline by over 38% in terms of video fidelity on the challenging TikTok dancing dataset. Code and model will be made available.
Selective Structured State-Spaces for Long-Form Video Understanding
Effective modeling of complex spatiotemporal dependencies in long-form videos remains an open problem. The recently proposed Structured State-Space Sequence (S4) model with its linear complexity offers a promising direction in this space. However, we demonstrate that treating all image-tokens equally as done by S4 model can adversely affect its efficiency and accuracy. To address this limitation, we present a novel Selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous mask-based token reduction methods used in transformers, our S5 model avoids the dense self-attention calculation by making use of the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form video understanding tasks more effectively. However, as is the case for most token reduction methods, the informative image tokens could be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive learning (LSMCL) approach that enables our model to predict longer temporal context using shorter input videos. We present extensive comparative results using three challenging long-form video understanding datasets (LVU, COIN and Breakfast), demonstrating that our approach consistently outperforms the previous state-of-the-art S4 model by up to 9.6% accuracy while reducing its memory footprint by 23%.
Streaming Long Video Understanding with Large Language Models
This paper presents VideoStreaming, an advanced vision-language large model (VLLM) for video understanding, that capably understands arbitrary-length video with a constant number of video tokens streamingly encoded and adaptively selected. The challenge of video understanding in the vision language area mainly lies in the significant computational burden caused by the great number of tokens extracted from long videos. Previous works rely on sparse sampling or frame compression to reduce tokens. However, such approaches either disregard temporal information in a long time span or sacrifice spatial details, resulting in flawed compression. To address these limitations, our VideoStreaming has two core designs: Memory-Propagated Streaming Encoding and Adaptive Memory Selection. The Memory-Propagated Streaming Encoding architecture segments long videos into short clips and sequentially encodes each clip with a propagated memory. In each iteration, we utilize the encoded results of the preceding clip as historical memory, which is integrated with the current clip to distill a condensed representation that encapsulates the video content up to the current timestamp. After the encoding process, the Adaptive Memory Selection strategy selects a constant number of question-related memories from all the historical memories and feeds them into the LLM to generate informative responses. The question-related selection reduces redundancy within the memories, enabling efficient and precise video understanding. Meanwhile, the disentangled video extraction and reasoning design allows the LLM to answer different questions about a video by directly selecting corresponding memories, without the need to encode the whole video for each question. Our model achieves superior performance and higher efficiency on long video benchmarks, showcasing precise temporal comprehension for detailed question answering.
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation
This paper presents a simple yet effective approach to modeling space-time correspondences in the context of video object segmentation. Unlike most existing approaches, we establish correspondences directly between frames without re-encoding the mask features for every object, leading to a highly efficient and robust framework. With the correspondences, every node in the current query frame is inferred by aggregating features from the past in an associative fashion. We cast the aggregation process as a voting problem and find that the existing inner-product affinity leads to poor use of memory with a small (fixed) subset of memory nodes dominating the votes, regardless of the query. In light of this phenomenon, we propose using the negative squared Euclidean distance instead to compute the affinities. We validated that every memory node now has a chance to contribute, and experimentally showed that such diversified voting is beneficial to both memory efficiency and inference accuracy. The synergy of correspondence networks and diversified voting works exceedingly well, achieves new state-of-the-art results on both DAVIS and YouTubeVOS datasets while running significantly faster at 20+ FPS for multiple objects without bells and whistles.
Learning Disentangled Representations for Time Series
Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts.
CPA: Camera-pose-awareness Diffusion Transformer for Video Generation
Despite the significant advancements made by Diffusion Transformer (DiT)-based methods in video generation, there remains a notable gap with controllable camera pose perspectives. Existing works such as OpenSora do NOT adhere precisely to anticipated trajectories and physical interactions, thereby limiting the flexibility in downstream applications. To alleviate this issue, we introduce CPA, a unified camera-pose-awareness text-to-video generation approach that elaborates the camera movement and integrates the textual, visual, and spatial conditions. Specifically, we deploy the Sparse Motion Encoding (SME) module to transform camera pose information into a spatial-temporal embedding and activate the Temporal Attention Injection (TAI) module to inject motion patches into each ST-DiT block. Our plug-in architecture accommodates the original DiT parameters, facilitating diverse types of camera poses and flexible object movement. Extensive qualitative and quantitative experiments demonstrate that our method outperforms LDM-based methods for long video generation while achieving optimal performance in trajectory consistency and object consistency.
TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models
Recent advances in text-to-video generation have demonstrated the utility of powerful diffusion models. Nevertheless, the problem is not trivial when shaping diffusion models to animate static image (i.e., image-to-video generation). The difficulty originates from the aspect that the diffusion process of subsequent animated frames should not only preserve the faithful alignment with the given image but also pursue temporal coherence among adjacent frames. To alleviate this, we present TRIP, a new recipe of image-to-video diffusion paradigm that pivots on image noise prior derived from static image to jointly trigger inter-frame relational reasoning and ease the coherent temporal modeling via temporal residual learning. Technically, the image noise prior is first attained through one-step backward diffusion process based on both static image and noised video latent codes. Next, TRIP executes a residual-like dual-path scheme for noise prediction: 1) a shortcut path that directly takes image noise prior as the reference noise of each frame to amplify the alignment between the first frame and subsequent frames; 2) a residual path that employs 3D-UNet over noised video and static image latent codes to enable inter-frame relational reasoning, thereby easing the learning of the residual noise for each frame. Furthermore, both reference and residual noise of each frame are dynamically merged via attention mechanism for final video generation. Extensive experiments on WebVid-10M, DTDB and MSR-VTT datasets demonstrate the effectiveness of our TRIP for image-to-video generation. Please see our project page at https://trip-i2v.github.io/TRIP/.
Neural Scene Chronology
In this work, we aim to reconstruct a time-varying 3D model, capable of rendering photo-realistic renderings with independent control of viewpoint, illumination, and time, from Internet photos of large-scale landmarks. The core challenges are twofold. First, different types of temporal changes, such as illumination and changes to the underlying scene itself (such as replacing one graffiti artwork with another) are entangled together in the imagery. Second, scene-level temporal changes are often discrete and sporadic over time, rather than continuous. To tackle these problems, we propose a new scene representation equipped with a novel temporal step function encoding method that can model discrete scene-level content changes as piece-wise constant functions over time. Specifically, we represent the scene as a space-time radiance field with a per-image illumination embedding, where temporally-varying scene changes are encoded using a set of learned step functions. To facilitate our task of chronology reconstruction from Internet imagery, we also collect a new dataset of four scenes that exhibit various changes over time. We demonstrate that our method exhibits state-of-the-art view synthesis results on this dataset, while achieving independent control of viewpoint, time, and illumination.
Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training
The correlation between the vision and text is essential for video moment retrieval (VMR), however, existing methods heavily rely on separate pre-training feature extractors for visual and textual understanding. Without sufficient temporal boundary annotations, it is non-trivial to learn universal video-text alignments. In this work, we explore multi-modal correlations derived from large-scale image-text data to facilitate generalisable VMR. To address the limitations of image-text pre-training models on capturing the video changes, we propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments. Whilst existing VMR methods are focusing on building temporal-aware video features, being aware of the text descriptions about the temporal changes is also critical but originally overlooked in pre-training by matching static images with sentences. Therefore, we extract visual context and spatial dynamic information from video frames and explicitly enforce their alignments with the phrases describing video changes (e.g. verb). By doing so, the potentially relevant visual and motion patterns in videos are encoded in the corresponding text embeddings (injected) so to enable more accurate video-text alignments. We conduct extensive experiments on two VMR benchmark datasets (Charades-STA and ActivityNet-Captions) and achieve state-of-the-art performances. Especially, VDI yields notable advantages when being tested on the out-of-distribution splits where the testing samples involve novel scenes and vocabulary.
Warped Diffusion: Solving Video Inverse Problems with Image Diffusion Models
Using image models naively for solving inverse video problems often suffers from flickering, texture-sticking, and temporal inconsistency in generated videos. To tackle these problems, in this paper, we view frames as continuous functions in the 2D space, and videos as a sequence of continuous warping transformations between different frames. This perspective allows us to train function space diffusion models only on images and utilize them to solve temporally correlated inverse problems. The function space diffusion models need to be equivariant with respect to the underlying spatial transformations. To ensure temporal consistency, we introduce a simple post-hoc test-time guidance towards (self)-equivariant solutions. Our method allows us to deploy state-of-the-art latent diffusion models such as Stable Diffusion XL to solve video inverse problems. We demonstrate the effectiveness of our method for video inpainting and 8times video super-resolution, outperforming existing techniques based on noise transformations. We provide generated video results: https://giannisdaras.github.io/warped_diffusion.github.io/.
Leveraging Temporal Contextualization for Video Action Recognition
We propose a novel framework for video understanding, called Temporally Contextualized CLIP (TC-CLIP), which leverages essential temporal information through global interactions in a spatio-temporal domain within a video. To be specific, we introduce Temporal Contextualization (TC), a layer-wise temporal information infusion mechanism for videos, which 1) extracts core information from each frame, 2) connects relevant information across frames for the summarization into context tokens, and 3) leverages the context tokens for feature encoding. Furthermore, the Video-conditional Prompting (VP) module processes context tokens to generate informative prompts in the text modality. Extensive experiments in zero-shot, few-shot, base-to-novel, and fully-supervised action recognition validate the effectiveness of our model. Ablation studies for TC and VP support our design choices. Our project page with the source code is available at https://github.com/naver-ai/tc-clip
TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition
Recent two-stream deep Convolutional Neural Networks (ConvNets) have made significant progress in recognizing human actions in videos. Despite their success, methods extending the basic two-stream ConvNet have not systematically explored possible network architectures to further exploit spatiotemporal dynamics within video sequences. Further, such networks often use different baseline two-stream networks. Therefore, the differences and the distinguishing factors between various methods using Recurrent Neural Networks (RNN) or convolutional networks on temporally-constructed feature vectors (Temporal-ConvNet) are unclear. In this work, we first demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. We demonstrate that using both RNNs (using LSTMs) and Temporal-ConvNets on spatiotemporal feature matrices are able to exploit spatiotemporal dynamics to improve the overall performance. However, each of these methods require proper care to achieve state-of-the-art performance; for example, LSTMs require pre-segmented data or else they cannot fully exploit temporal information. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.
Lightweight High-Speed Photography Built on Coded Exposure and Implicit Neural Representation of Videos
The compact cameras recording high-speed scenes with high resolution are highly demanded, but the required high bandwidth often leads to bulky, heavy systems, which limits their applications on low-capacity platforms. Adopting a coded exposure setup to encode a frame sequence into a blurry snapshot and retrieve the latent sharp video afterward can serve as a lightweight solution. However, restoring motion from blur is quite challenging due to the high ill-posedness of motion blur decomposition, intrinsic ambiguity in motion direction, and diverse motions in natural videos. In this work, by leveraging classical coded exposure imaging technique and emerging implicit neural representation for videos, we tactfully embed the motion direction cues into the blurry image during the imaging process and develop a novel self-recursive neural network to sequentially retrieve the latent video sequence from the blurry image utilizing the embedded motion direction cues. To validate the effectiveness and efficiency of the proposed framework, we conduct extensive experiments on benchmark datasets and real-captured blurry images. The results demonstrate that our proposed framework significantly outperforms existing methods in quality and flexibility. The code for our work is available at https://github.com/zhihongz/BDINR
Counting Out Time: Class Agnostic Video Repetition Counting in the Wild
We present an approach for estimating the period with which an action is repeated in a video. The crux of the approach lies in constraining the period prediction module to use temporal self-similarity as an intermediate representation bottleneck that allows generalization to unseen repetitions in videos in the wild. We train this model, called Repnet, with a synthetic dataset that is generated from a large unlabeled video collection by sampling short clips of varying lengths and repeating them with different periods and counts. This combination of synthetic data and a powerful yet constrained model, allows us to predict periods in a class-agnostic fashion. Our model substantially exceeds the state of the art performance on existing periodicity (PERTUBE) and repetition counting (QUVA) benchmarks. We also collect a new challenging dataset called Countix (~90 times larger than existing datasets) which captures the challenges of repetition counting in real-world videos. Project webpage: https://sites.google.com/view/repnet .
Holistic Representation Learning for Multitask Trajectory Anomaly Detection
Video anomaly detection deals with the recognition of abnormal events in videos. Apart from the visual signal, video anomaly detection has also been addressed with the use of skeleton sequences. We propose a holistic representation of skeleton trajectories to learn expected motions across segments at different times. Our approach uses multitask learning to reconstruct any continuous unobserved temporal segment of the trajectory allowing the extrapolation of past or future segments and the interpolation of in-between segments. We use an end-to-end attention-based encoder-decoder. We encode temporally occluded trajectories, jointly learn latent representations of the occluded segments, and reconstruct trajectories based on expected motions across different temporal segments. Extensive experiments on three trajectory-based video anomaly detection datasets show the advantages and effectiveness of our approach with state-of-the-art results on anomaly detection in skeleton trajectories.
Neural Video Compression with Feature Modulation
The emerging conditional coding-based neural video codec (NVC) shows superiority over commonly-used residual coding-based codec and the latest NVC already claims to outperform the best traditional codec. However, there still exist critical problems blocking the practicality of NVC. In this paper, we propose a powerful conditional coding-based NVC that solves two critical problems via feature modulation. The first is how to support a wide quality range in a single model. Previous NVC with this capability only supports about 3.8 dB PSNR range on average. To tackle this limitation, we modulate the latent feature of the current frame via the learnable quantization scaler. During the training, we specially design the uniform quantization parameter sampling mechanism to improve the harmonization of encoding and quantization. This results in a better learning of the quantization scaler and helps our NVC support about 11.4 dB PSNR range. The second is how to make NVC still work under a long prediction chain. We expose that the previous SOTA NVC has an obvious quality degradation problem when using a large intra-period setting. To this end, we propose modulating the temporal feature with a periodically refreshing mechanism to boost the quality. %Besides solving the above two problems, we also design a single model that can support both RGB and YUV colorspaces. Notably, under single intra-frame setting, our codec can achieve 29.7\% bitrate saving over previous SOTA NVC with 16\% MACs reduction. Our codec serves as a notable landmark in the journey of NVC evolution. The codes are at https://github.com/microsoft/DCVC.
PVC: Progressive Visual Token Compression for Unified Image and Video Processing in Large Vision-Language Models
Large Vision-Language Models (VLMs) have been extended to understand both images and videos. Visual token compression is leveraged to reduce the considerable token length of visual inputs. To meet the needs of different tasks, existing high-performance models usually process images and videos separately with different token compression strategies, limiting the capabilities of combining images and videos. To this end, we extend each image into a "static" video and introduce a unified token compression strategy called Progressive Visual Token Compression (PVC), where the tokens of each frame are progressively encoded and adaptively compressed to supplement the information not extracted from previous frames. Video tokens are efficiently compressed with exploiting the inherent temporal redundancy. Images are repeated as static videos, and the spatial details can be gradually supplemented in multiple frames. PVC unifies the token compressing of images and videos. With a limited number of tokens per frame (64 tokens by default), spatial details and temporal changes can still be preserved. Experiments show that our model achieves state-of-the-art performance across various video understanding benchmarks, including long video tasks and fine-grained short video tasks. Meanwhile, our unified token compression strategy incurs no performance loss on image benchmarks, particularly in detail-sensitive tasks.
VPN: Video Provenance Network for Robust Content Attribution
We present VPN - a content attribution method for recovering provenance information from videos shared online. Platforms, and users, often transform video into different quality, codecs, sizes, shapes, etc. or slightly edit its content such as adding text or emoji, as they are redistributed online. We learn a robust search embedding for matching such video, invariant to these transformations, using full-length or truncated video queries. Once matched against a trusted database of video clips, associated information on the provenance of the clip is presented to the user. We use an inverted index to match temporal chunks of video using late-fusion to combine both visual and audio features. In both cases, features are extracted via a deep neural network trained using contrastive learning on a dataset of original and augmented video clips. We demonstrate high accuracy recall over a corpus of 100,000 videos.
OCSampler: Compressing Videos to One Clip with Single-step Sampling
In this paper, we propose a framework named OCSampler to explore a compact yet effective video representation with one short clip for efficient video recognition. Recent works prefer to formulate frame sampling as a sequential decision task by selecting frames one by one according to their importance, while we present a new paradigm of learning instance-specific video condensation policies to select informative frames for representing the entire video only in a single step. Our basic motivation is that the efficient video recognition task lies in processing a whole sequence at once rather than picking up frames sequentially. Accordingly, these policies are derived from a light-weighted skim network together with a simple yet effective policy network within one step. Moreover, we extend the proposed method with a frame number budget, enabling the framework to produce correct predictions in high confidence with as few frames as possible. Experiments on four benchmarks, i.e., ActivityNet, Mini-Kinetics, FCVID, Mini-Sports1M, demonstrate the effectiveness of our OCSampler over previous methods in terms of accuracy, theoretical computational expense, actual inference speed. We also evaluate its generalization power across different classifiers, sampled frames, and search spaces. Especially, we achieve 76.9% mAP and 21.7 GFLOPs on ActivityNet with an impressive throughput: 123.9 Videos/s on a single TITAN Xp GPU.
Collaborative Tracking Learning for Frame-Rate-Insensitive Multi-Object Tracking
Multi-object tracking (MOT) at low frame rates can reduce computational, storage and power overhead to better meet the constraints of edge devices. Many existing MOT methods suffer from significant performance degradation in low-frame-rate videos due to significant location and appearance changes between adjacent frames. To this end, we propose to explore collaborative tracking learning (ColTrack) for frame-rate-insensitive MOT in a query-based end-to-end manner. Multiple historical queries of the same target jointly track it with richer temporal descriptions. Meanwhile, we insert an information refinement module between every two temporal blocking decoders to better fuse temporal clues and refine features. Moreover, a tracking object consistency loss is proposed to guide the interaction between historical queries. Extensive experimental results demonstrate that in high-frame-rate videos, ColTrack obtains higher performance than state-of-the-art methods on large-scale datasets Dancetrack and BDD100K, and outperforms the existing end-to-end methods on MOT17. More importantly, ColTrack has a significant advantage over state-of-the-art methods in low-frame-rate videos, which allows it to obtain faster processing speeds by reducing frame-rate requirements while maintaining higher performance. Code will be released at https://github.com/yolomax/ColTrack
Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking
We introduce Motion2VecSets, a 4D diffusion model for dynamic surface reconstruction from point cloud sequences. While existing state-of-the-art methods have demonstrated success in reconstructing non-rigid objects using neural field representations, conventional feed-forward networks encounter challenges with ambiguous observations from noisy, partial, or sparse point clouds. To address these challenges, we introduce a diffusion model that explicitly learns the shape and motion distribution of non-rigid objects through an iterative denoising process of compressed latent representations. The diffusion-based priors enable more plausible and probabilistic reconstructions when handling ambiguous inputs. We parameterize 4D dynamics with latent sets instead of using global latent codes. This novel 4D representation allows us to learn local shape and deformation patterns, leading to more accurate non-linear motion capture and significantly improving generalizability to unseen motions and identities. For more temporally-coherent object tracking, we synchronously denoise deformation latent sets and exchange information across multiple frames. To avoid computational overhead, we designed an interleaved space and time attention block to alternately aggregate deformation latents along spatial and temporal domains. Extensive comparisons against state-of-the-art methods demonstrate the superiority of our Motion2VecSets in 4D reconstruction from various imperfect observations. More detailed information can be found at https://vveicao.github.io/projects/Motion2VecSets/.
Multi-grained Temporal Prototype Learning for Few-shot Video Object Segmentation
Few-Shot Video Object Segmentation (FSVOS) aims to segment objects in a query video with the same category defined by a few annotated support images. However, this task was seldom explored. In this work, based on IPMT, a state-of-the-art few-shot image segmentation method that combines external support guidance information with adaptive query guidance cues, we propose to leverage multi-grained temporal guidance information for handling the temporal correlation nature of video data. We decompose the query video information into a clip prototype and a memory prototype for capturing local and long-term internal temporal guidance, respectively. Frame prototypes are further used for each frame independently to handle fine-grained adaptive guidance and enable bidirectional clip-frame prototype communication. To reduce the influence of noisy memory, we propose to leverage the structural similarity relation among different predicted regions and the support for selecting reliable memory frames. Furthermore, a new segmentation loss is also proposed to enhance the category discriminability of the learned prototypes. Experimental results demonstrate that our proposed video IPMT model significantly outperforms previous models on two benchmark datasets. Code is available at https://github.com/nankepan/VIPMT.
Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion Data and Natural Language
Due to recent advances in pose-estimation methods, human motion can be extracted from a common video in the form of 3D skeleton sequences. Despite wonderful application opportunities, effective and efficient content-based access to large volumes of such spatio-temporal skeleton data still remains a challenging problem. In this paper, we propose a novel content-based text-to-motion retrieval task, which aims at retrieving relevant motions based on a specified natural-language textual description. To define baselines for this uncharted task, we employ the BERT and CLIP language representations to encode the text modality and successful spatio-temporal models to encode the motion modality. We additionally introduce our transformer-based approach, called Motion Transformer (MoT), which employs divided space-time attention to effectively aggregate the different skeleton joints in space and time. Inspired by the recent progress in text-to-image/video matching, we experiment with two widely-adopted metric-learning loss functions. Finally, we set up a common evaluation protocol by defining qualitative metrics for assessing the quality of the retrieved motions, targeting the two recently-introduced KIT Motion-Language and HumanML3D datasets. The code for reproducing our results is available at https://github.com/mesnico/text-to-motion-retrieval.
Dynamic Concepts Personalization from Single Videos
Personalizing generative text-to-image models has seen remarkable progress, but extending this personalization to text-to-video models presents unique challenges. Unlike static concepts, personalizing text-to-video models has the potential to capture dynamic concepts, i.e., entities defined not only by their appearance but also by their motion. In this paper, we introduce Set-and-Sequence, a novel framework for personalizing Diffusion Transformers (DiTs)-based generative video models with dynamic concepts. Our approach imposes a spatio-temporal weight space within an architecture that does not explicitly separate spatial and temporal features. This is achieved in two key stages. First, we fine-tune Low-Rank Adaptation (LoRA) layers using an unordered set of frames from the video to learn an identity LoRA basis that represents the appearance, free from temporal interference. In the second stage, with the identity LoRAs frozen, we augment their coefficients with Motion Residuals and fine-tune them on the full video sequence, capturing motion dynamics. Our Set-and-Sequence framework results in a spatio-temporal weight space that effectively embeds dynamic concepts into the video model's output domain, enabling unprecedented editability and compositionality while setting a new benchmark for personalizing dynamic concepts.
Prune Spatio-temporal Tokens by Semantic-aware Temporal Accumulation
Transformers have become the primary backbone of the computer vision community due to their impressive performance. However, the unfriendly computation cost impedes their potential in the video recognition domain. To optimize the speed-accuracy trade-off, we propose Semantic-aware Temporal Accumulation score (STA) to prune spatio-temporal tokens integrally. STA score considers two critical factors: temporal redundancy and semantic importance. The former depicts a specific region based on whether it is a new occurrence or a seen entity by aggregating token-to-token similarity in consecutive frames while the latter evaluates each token based on its contribution to the overall prediction. As a result, tokens with higher scores of STA carry more temporal redundancy as well as lower semantics thus being pruned. Based on the STA score, we are able to progressively prune the tokens without introducing any additional parameters or requiring further re-training. We directly apply the STA module to off-the-shelf ViT and VideoSwin backbones, and the empirical results on Kinetics-400 and Something-Something V2 achieve over 30% computation reduction with a negligible ~0.2% accuracy drop. The code is released at https://github.com/Mark12Ding/STA.
Frame Interpolation with Consecutive Brownian Bridge Diffusion
Recent work in Video Frame Interpolation (VFI) tries to formulate VFI as a diffusion-based conditional image generation problem, synthesizing the intermediate frame given a random noise and neighboring frames. Due to the relatively high resolution of videos, Latent Diffusion Models (LDMs) are employed as the conditional generation model, where the autoencoder compresses images into latent representations for diffusion and then reconstructs images from these latent representations. Such a formulation poses a crucial challenge: VFI expects that the output is deterministically equal to the ground truth intermediate frame, but LDMs randomly generate a diverse set of different images when the model runs multiple times. The reason for the diverse generation is that the cumulative variance (variance accumulated at each step of generation) of generated latent representations in LDMs is large. This makes the sampling trajectory random, resulting in diverse rather than deterministic generations. To address this problem, we propose our unique solution: Frame Interpolation with Consecutive Brownian Bridge Diffusion. Specifically, we propose consecutive Brownian Bridge diffusion that takes a deterministic initial value as input, resulting in a much smaller cumulative variance of generated latent representations. Our experiments suggest that our method can improve together with the improvement of the autoencoder and achieve state-of-the-art performance in VFI, leaving strong potential for further enhancement.
InterTrack: Tracking Human Object Interaction without Object Templates
Tracking human object interaction from videos is important to understand human behavior from the rapidly growing stream of video data. Previous video-based methods require predefined object templates while single-image-based methods are template-free but lack temporal consistency. In this paper, we present a method to track human object interaction without any object shape templates. We decompose the 4D tracking problem into per-frame pose tracking and canonical shape optimization. We first apply a single-view reconstruction method to obtain temporally-inconsistent per-frame interaction reconstructions. Then, for the human, we propose an efficient autoencoder to predict SMPL vertices directly from the per-frame reconstructions, introducing temporally consistent correspondence. For the object, we introduce a pose estimator that leverages temporal information to predict smooth object rotations under occlusions. To train our model, we propose a method to generate synthetic interaction videos and synthesize in total 10 hour videos of 8.5k sequences with full 3D ground truth. Experiments on BEHAVE and InterCap show that our method significantly outperforms previous template-based video tracking and single-frame reconstruction methods. Our proposed synthetic video dataset also allows training video-based methods that generalize to real-world videos. Our code and dataset will be publicly released.
MagicEdit: High-Fidelity and Temporally Coherent Video Editing
In this report, we present MagicEdit, a surprisingly simple yet effective solution to the text-guided video editing task. We found that high-fidelity and temporally coherent video-to-video translation can be achieved by explicitly disentangling the learning of content, structure and motion signals during training. This is in contradict to most existing methods which attempt to jointly model both the appearance and temporal representation within a single framework, which we argue, would lead to degradation in per-frame quality. Despite its simplicity, we show that MagicEdit supports various downstream video editing tasks, including video stylization, local editing, video-MagicMix and video outpainting.
LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models
This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis. It is a highly desirable yet challenging task to simultaneously a) accomplish the synthesis of visually realistic and temporally coherent videos while b) preserving the strong creative generation nature of the pre-trained T2I model. To this end, we propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models, comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are two-fold: 1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding, adequately captures the temporal correlations inherent in video data. 2) Additionally, we validate that the process of joint image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of LaVie, we contribute a comprehensive and diverse video dataset named Vimeo25M, consisting of 25 million text-video pairs that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models in various long video generation and personalized video synthesis applications.
Efficient Long Video Tokenization via Coordinated-based Patch Reconstruction
Efficient tokenization of videos remains a challenge in training vision models that can process long videos. One promising direction is to develop a tokenizer that can encode long video clips, as it would enable the tokenizer to leverage the temporal coherence of videos better for tokenization. However, training existing tokenizers on long videos often incurs a huge training cost as they are trained to reconstruct all the frames at once. In this paper, we introduce CoordTok, a video tokenizer that learns a mapping from coordinate-based representations to the corresponding patches of input videos, inspired by recent advances in 3D generative models. In particular, CoordTok encodes a video into factorized triplane representations and reconstructs patches that correspond to randomly sampled (x,y,t) coordinates. This allows for training large tokenizer models directly on long videos without requiring excessive training resources. Our experiments show that CoordTok can drastically reduce the number of tokens for encoding long video clips. For instance, CoordTok can encode a 128-frame video with 128times128 resolution into 1280 tokens, while baselines need 6144 or 8192 tokens to achieve similar reconstruction quality. We further show that this efficient video tokenization enables memory-efficient training of a diffusion transformer that can generate 128 frames at once.
Contextually Customized Video Summaries via Natural Language
The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.
Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion
Recent years have seen a tremendous improvement in the quality of video generation and editing approaches. While several techniques focus on editing appearance, few address motion. Current approaches using text, trajectories, or bounding boxes are limited to simple motions, so we specify motions with a single motion reference video instead. We further propose to use a pre-trained image-to-video model rather than a text-to-video model. This approach allows us to preserve the exact appearance and position of a target object or scene and helps disentangle appearance from motion. Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input, while the text/image embedding injected via cross-attention predominantly controls motion. We thus represent motion using text/image embedding tokens. By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity. Once optimized on the motion reference video, this embedding can be applied to various target images to generate videos with semantically similar motions. Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks such as full-body and face reenactment, as well as controlling the motion of inanimate objects and the camera. We empirically demonstrate the effectiveness of our method in the semantic video motion transfer task, significantly outperforming existing methods in this context.