new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 17

GenUP: Generative User Profilers as In-Context Learners for Next POI Recommender Systems

Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP.

One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles

Personalized chatbots focus on endowing chatbots with a consistent personality to behave like real users, give more informative responses, and further act as personal assistants. Existing personalized approaches tried to incorporate several text descriptions as explicit user profiles. However, the acquisition of such explicit profiles is expensive and time-consuming, thus being impractical for large-scale real-world applications. Moreover, the restricted predefined profile neglects the language behavior of a real user and cannot be automatically updated together with the change of user interests. In this paper, we propose to learn implicit user profiles automatically from large-scale user dialogue history for building personalized chatbots. Specifically, leveraging the benefits of Transformer on language understanding, we train a personalized language model to construct a general user profile from the user's historical responses. To highlight the relevant historical responses to the input post, we further establish a key-value memory network of historical post-response pairs, and build a dynamic post-aware user profile. The dynamic profile mainly describes what and how the user has responded to similar posts in history. To explicitly utilize users' frequently used words, we design a personalized decoder to fuse two decoding strategies, including generating a word from the generic vocabulary and copying one word from the user's personalized vocabulary. Experiments on two real-world datasets show the significant improvement of our model compared with existing methods. Our code is available at https://github.com/zhengyima/DHAP

The Foundation Model Transparency Index

Foundation models have rapidly permeated society, catalyzing a wave of generative AI applications spanning enterprise and consumer-facing contexts. While the societal impact of foundation models is growing, transparency is on the decline, mirroring the opacity that has plagued past digital technologies (e.g. social media). Reversing this trend is essential: transparency is a vital precondition for public accountability, scientific innovation, and effective governance. To assess the transparency of the foundation model ecosystem and help improve transparency over time, we introduce the Foundation Model Transparency Index. The Foundation Model Transparency Index specifies 100 fine-grained indicators that comprehensively codify transparency for foundation models, spanning the upstream resources used to build a foundation model (e.g data, labor, compute), details about the model itself (e.g. size, capabilities, risks), and the downstream use (e.g. distribution channels, usage policies, affected geographies). We score 10 major foundation model developers (e.g. OpenAI, Google, Meta) against the 100 indicators to assess their transparency. To facilitate and standardize assessment, we score developers in relation to their practices for their flagship foundation model (e.g. GPT-4 for OpenAI, PaLM 2 for Google, Llama 2 for Meta). We present 10 top-level findings about the foundation model ecosystem: for example, no developer currently discloses significant information about the downstream impact of its flagship model, such as the number of users, affected market sectors, or how users can seek redress for harm. Overall, the Foundation Model Transparency Index establishes the level of transparency today to drive progress on foundation model governance via industry standards and regulatory intervention.

FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset

Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B schuhmann2022laion, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.

Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond

Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on the ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.

Characterizing, Detecting, and Predicting Online Ban Evasion

Moderators and automated methods enforce bans on malicious users who engage in disruptive behavior. However, malicious users can easily create a new account to evade such bans. Previous research has focused on other forms of online deception, like the simultaneous operation of multiple accounts by the same entities (sockpuppetry), impersonation of other individuals, and studying the effects of de-platforming individuals and communities. Here we conduct the first data-driven study of ban evasion, i.e., the act of circumventing bans on an online platform, leading to temporally disjoint operation of accounts by the same user. We curate a novel dataset of 8,551 ban evasion pairs (parent, child) identified on Wikipedia and contrast their behavior with benign users and non-evading malicious users. We find that evasion child accounts demonstrate similarities with respect to their banned parent accounts on several behavioral axes - from similarity in usernames and edited pages to similarity in content added to the platform and its psycholinguistic attributes. We reveal key behavioral attributes of accounts that are likely to evade bans. Based on the insights from the analyses, we train logistic regression classifiers to detect and predict ban evasion at three different points in the ban evasion lifecycle. Results demonstrate the effectiveness of our methods in predicting future evaders (AUC = 0.78), early detection of ban evasion (AUC = 0.85), and matching child accounts with parent accounts (MRR = 0.97). Our work can aid moderators by reducing their workload and identifying evasion pairs faster and more efficiently than current manual and heuristic-based approaches. Dataset is available https://github.com/srijankr/ban_evasion{here}.

Personalized Image Generation with Large Multimodal Models

Personalized content filtering, such as recommender systems, has become a critical infrastructure to alleviate information overload. However, these systems merely filter existing content and are constrained by its limited diversity, making it difficult to meet users' varied content needs. To address this limitation, personalized content generation has emerged as a promising direction with broad applications. Nevertheless, most existing research focuses on personalized text generation, with relatively little attention given to personalized image generation. The limited work in personalized image generation faces challenges in accurately capturing users' visual preferences and needs from noisy user-interacted images and complex multimodal instructions. Worse still, there is a lack of supervised data for training personalized image generation models. To overcome the challenges, we propose a Personalized Image Generation Framework named Pigeon, which adopts exceptional large multimodal models with three dedicated modules to capture users' visual preferences and needs from noisy user history and multimodal instructions. To alleviate the data scarcity, we introduce a two-stage preference alignment scheme, comprising masked preference reconstruction and pairwise preference alignment, to align Pigeon with the personalized image generation task. We apply Pigeon to personalized sticker and movie poster generation, where extensive quantitative results and human evaluation highlight its superiority over various generative baselines.

"All of Me": Mining Users' Attributes from their Public Spotify Playlists

In the age of digital music streaming, playlists on platforms like Spotify have become an integral part of individuals' musical experiences. People create and publicly share their own playlists to express their musical tastes, promote the discovery of their favorite artists, and foster social connections. These publicly accessible playlists transcend the boundaries of mere musical preferences: they serve as sources of rich insights into users' attributes and identities. For example, the musical preferences of elderly individuals may lean more towards Frank Sinatra, while Billie Eilish remains a favored choice among teenagers. These playlists thus become windows into the diverse and evolving facets of one's musical identity. In this work, we investigate the relationship between Spotify users' attributes and their public playlists. In particular, we focus on identifying recurring musical characteristics associated with users' individual attributes, such as demographics, habits, or personality traits. To this end, we conducted an online survey involving 739 Spotify users, yielding a dataset of 10,286 publicly shared playlists encompassing over 200,000 unique songs and 55,000 artists. Through extensive statistical analyses, we first assess a deep connection between a user's Spotify playlists and their real-life attributes. For instance, we found individuals high in openness often create playlists featuring a diverse array of artists, while female users prefer Pop and K-pop music genres. Building upon these observed associations, we create accurate predictive models for users' attributes, presenting a novel DeepSet application that outperforms baselines in most of these users' attributes.

Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes

Evaluating fairness can be challenging in practice because the sensitive attributes of data are often inaccessible due to privacy constraints. The go-to approach that the industry frequently adopts is using off-the-shelf proxy models to predict the missing sensitive attributes, e.g. Meta [Alao et al., 2021] and Twitter [Belli et al., 2022]. Despite its popularity, there are three important questions unanswered: (1) Is directly using proxies efficacious in measuring fairness? (2) If not, is it possible to accurately evaluate fairness using proxies only? (3) Given the ethical controversy over inferring user private information, is it possible to only use weak (i.e. inaccurate) proxies in order to protect privacy? Our theoretical analyses show that directly using proxy models can give a false sense of (un)fairness. Second, we develop an algorithm that is able to measure fairness (provably) accurately with only three properly identified proxies. Third, we show that our algorithm allows the use of only weak proxies (e.g. with only 68.85%accuracy on COMPAS), adding an extra layer of protection on user privacy. Experiments validate our theoretical analyses and show our algorithm can effectively measure and mitigate bias. Our results imply a set of practical guidelines for practitioners on how to use proxies properly. Code is available at github.com/UCSC-REAL/fair-eval.

LLMs + Persona-Plug = Personalized LLMs

Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user's relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user's overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, . It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches.

WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models

The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.

Towards Fairness in Personalized Ads Using Impression Variance Aware Reinforcement Learning

Variances in ad impression outcomes across demographic groups are increasingly considered to be potentially indicative of algorithmic bias in personalized ads systems. While there are many definitions of fairness that could be applicable in the context of personalized systems, we present a framework which we call the Variance Reduction System (VRS) for achieving more equitable outcomes in Meta's ads systems. VRS seeks to achieve a distribution of impressions with respect to selected protected class (PC) attributes that more closely aligns the demographics of an ad's eligible audience (a function of advertiser targeting criteria) with the audience who sees that ad, in a privacy-preserving manner. We first define metrics to quantify fairness gaps in terms of ad impression variances with respect to PC attributes including gender and estimated race. We then present the VRS for re-ranking ads in an impression variance-aware manner. We evaluate VRS via extensive simulations over different parameter choices and study the effect of the VRS on the chosen fairness metric. We finally present online A/B testing results from applying VRS to Meta's ads systems, concluding with a discussion of future work. We have deployed the VRS to all users in the US for housing ads, resulting in significant improvement in our fairness metric. VRS is the first large-scale deployed framework for pursuing fairness for multiple PC attributes in online advertising.

MIRACLE: Towards Personalized Dialogue Generation with Latent-Space Multiple Personal Attribute Control

Personalized dialogue systems aim to endow the chatbot agent with more anthropomorphic traits for human-like interactions. Previous approaches have explored explicitly user profile modeling using text descriptions, implicit derivation of user embeddings, or utilizing handicraft prompts for ChatGPT-like models. However, textual personas are limited in describing multi-faceted attributes (e.g., language style, inner character nuances), implicit embedding suffers from personality sparsity, and handicraft prompts lack fine-grained and stable controllability. Hence, these approaches may struggle with complex personalized dialogue generation tasks that require generating controllable responses with multiple personal attributes. To this end, we propose \textsc{Miracle}, a novel personalized dialogue generation method through MultIple PeRsonal Attributes Control within Latent-Space Energy-based Models. ttributes Control within Latent-Space Energy-based Models. Specifically, our approach first disentangles complex personality into multi-faceted attributes. Subsequently, we employ a conditional variational auto-encoder to align with the dense personalized responses within a latent joint attribute space. We have also tailored a dedicated energy function and customized the ordinary differential equations sampling method to offer flexible attribute composition and precise attribute control. Extensive experiments demonstrate that Miracle outperforms several strong baselines in terms of personality controllability and response generation quality. Our dataset and code are available at https://github.com/LZY-the-boys/MIRACLE

AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap

The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.

Personalized Restoration via Dual-Pivot Tuning

Generative diffusion models can serve as a prior which ensures that solutions of image restoration systems adhere to the manifold of natural images. However, for restoring facial images, a personalized prior is necessary to accurately represent and reconstruct unique facial features of a given individual. In this paper, we propose a simple, yet effective, method for personalized restoration, called Dual-Pivot Tuning - a two-stage approach that personalize a blind restoration system while maintaining the integrity of the general prior and the distinct role of each component. Our key observation is that for optimal personalization, the generative model should be tuned around a fixed text pivot, while the guiding network should be tuned in a generic (non-personalized) manner, using the personalized generative model as a fixed ``pivot". This approach ensures that personalization does not interfere with the restoration process, resulting in a natural appearance with high fidelity to the person's identity and the attributes of the degraded image. We evaluated our approach both qualitatively and quantitatively through extensive experiments with images of widely recognized individuals, comparing it against relevant baselines. Surprisingly, we found that our personalized prior not only achieves higher fidelity to identity with respect to the person's identity, but also outperforms state-of-the-art generic priors in terms of general image quality. Project webpage: https://personalized-restoration.github.io

PrivPAS: A real time Privacy-Preserving AI System and applied ethics

With 3.78 billion social media users worldwide in 2021 (48% of the human population), almost 3 billion images are shared daily. At the same time, a consistent evolution of smartphone cameras has led to a photography explosion with 85% of all new pictures being captured using smartphones. However, lately, there has been an increased discussion of privacy concerns when a person being photographed is unaware of the picture being taken or has reservations about the same being shared. These privacy violations are amplified for people with disabilities, who may find it challenging to raise dissent even if they are aware. Such unauthorized image captures may also be misused to gain sympathy by third-party organizations, leading to a privacy breach. Privacy for people with disabilities has so far received comparatively less attention from the AI community. This motivates us to work towards a solution to generate privacy-conscious cues for raising awareness in smartphone users of any sensitivity in their viewfinder content. To this end, we introduce PrivPAS (A real time Privacy-Preserving AI System) a novel framework to identify sensitive content. Additionally, we curate and annotate a dataset to identify and localize accessibility markers and classify whether an image is sensitive to a featured subject with a disability. We demonstrate that the proposed lightweight architecture, with a memory footprint of a mere 8.49MB, achieves a high mAP of 89.52% on resource-constrained devices. Furthermore, our pipeline, trained on face anonymized data, achieves an F1-score of 73.1%.

A Synthetic Dataset for Personal Attribute Inference

Recently, powerful Large Language Models (LLMs) have become easily accessible to hundreds of millions of users worldwide. However, their strong capabilities and vast world knowledge do not come without associated privacy risks. In this work, we focus on the emerging privacy threat LLMs pose - the ability to accurately infer personal information from online texts. Despite the growing importance of LLM-based author profiling, research in this area has been hampered by a lack of suitable public datasets, largely due to ethical and privacy concerns associated with real personal data. In this work, we take two steps to address this problem: (i) we construct a simulation framework for the popular social media platform Reddit using LLM agents seeded with synthetic personal profiles; (ii) using this framework, we generate SynthPAI, a diverse synthetic dataset of over 7800 comments manually labeled for personal attributes. We validate our dataset with a human study showing that humans barely outperform random guessing on the task of distinguishing our synthetic comments from real ones. Further, we verify that our dataset enables meaningful personal attribute inference research by showing across 18 state-of-the-art LLMs that our synthetic comments allow us to draw the same conclusions as real-world data. Together, this indicates that our dataset and pipeline provide a strong and privacy-preserving basis for future research toward understanding and mitigating the inference-based privacy threats LLMs pose.

Integrating Summarization and Retrieval for Enhanced Personalization via Large Language Models

Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language processing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model's output, a straightforward approach is to incorporate past user data into the language model prompt, but this approach can result in lengthy inputs exceeding limitations on input length and incurring latency and cost issues. Existing approaches tackle such challenges by selectively extracting relevant user data (i.e. selective retrieval) to construct a prompt for downstream tasks. However, retrieval-based methods are limited by potential information loss, lack of more profound user understanding, and cold-start challenges. To overcome these limitations, we propose a novel summary-augmented approach by extending retrieval-augmented personalization with task-aware user summaries generated by LLMs. The summaries can be generated and stored offline, enabling real-world systems with runtime constraints like voice assistants to leverage the power of LLMs. Experiments show our method with 75% less of retrieved user data is on-par or outperforms retrieval augmentation on most tasks in the LaMP personalization benchmark. We demonstrate that offline summarization via LLMs and runtime retrieval enables better performance for personalization on a range of tasks under practical constraints.

The Text Anonymization Benchmark (TAB): A Dedicated Corpus and Evaluation Framework for Text Anonymization

We present a novel benchmark and associated evaluation metrics for assessing the performance of text anonymization methods. Text anonymization, defined as the task of editing a text document to prevent the disclosure of personal information, currently suffers from a shortage of privacy-oriented annotated text resources, making it difficult to properly evaluate the level of privacy protection offered by various anonymization methods. This paper presents TAB (Text Anonymization Benchmark), a new, open-source annotated corpus developed to address this shortage. The corpus comprises 1,268 English-language court cases from the European Court of Human Rights (ECHR) enriched with comprehensive annotations about the personal information appearing in each document, including their semantic category, identifier type, confidential attributes, and co-reference relations. Compared to previous work, the TAB corpus is designed to go beyond traditional de-identification (which is limited to the detection of predefined semantic categories), and explicitly marks which text spans ought to be masked in order to conceal the identity of the person to be protected. Along with presenting the corpus and its annotation layers, we also propose a set of evaluation metrics that are specifically tailored towards measuring the performance of text anonymization, both in terms of privacy protection and utility preservation. We illustrate the use of the benchmark and the proposed metrics by assessing the empirical performance of several baseline text anonymization models. The full corpus along with its privacy-oriented annotation guidelines, evaluation scripts and baseline models are available on: https://github.com/NorskRegnesentral/text-anonymisation-benchmark

Personalized Image Generation with Deep Generative Models: A Decade Survey

Recent advancements in generative models have significantly facilitated the development of personalized content creation. Given a small set of images with user-specific concept, personalized image generation allows to create images that incorporate the specified concept and adhere to provided text descriptions. Due to its wide applications in content creation, significant effort has been devoted to this field in recent years. Nonetheless, the technologies used for personalization have evolved alongside the development of generative models, with their distinct and interrelated components. In this survey, we present a comprehensive review of generalized personalized image generation across various generative models, including traditional GANs, contemporary text-to-image diffusion models, and emerging multi-model autoregressive models. We first define a unified framework that standardizes the personalization process across different generative models, encompassing three key components, i.e., inversion spaces, inversion methods, and personalization schemes. This unified framework offers a structured approach to dissecting and comparing personalization techniques across different generative architectures. Building upon this unified framework, we further provide an in-depth analysis of personalization techniques within each generative model, highlighting their unique contributions and innovations. Through comparative analysis, this survey elucidates the current landscape of personalized image generation, identifying commonalities and distinguishing features among existing methods. Finally, we discuss the open challenges in the field and propose potential directions for future research. We keep tracing related works at https://github.com/csyxwei/Awesome-Personalized-Image-Generation.

URHand: Universal Relightable Hands

Existing photorealistic relightable hand models require extensive identity-specific observations in different views, poses, and illuminations, and face challenges in generalizing to natural illuminations and novel identities. To bridge this gap, we present URHand, the first universal relightable hand model that generalizes across viewpoints, poses, illuminations, and identities. Our model allows few-shot personalization using images captured with a mobile phone, and is ready to be photorealistically rendered under novel illuminations. To simplify the personalization process while retaining photorealism, we build a powerful universal relightable prior based on neural relighting from multi-view images of hands captured in a light stage with hundreds of identities. The key challenge is scaling the cross-identity training while maintaining personalized fidelity and sharp details without compromising generalization under natural illuminations. To this end, we propose a spatially varying linear lighting model as the neural renderer that takes physics-inspired shading as input feature. By removing non-linear activations and bias, our specifically designed lighting model explicitly keeps the linearity of light transport. This enables single-stage training from light-stage data while generalizing to real-time rendering under arbitrary continuous illuminations across diverse identities. In addition, we introduce the joint learning of a physically based model and our neural relighting model, which further improves fidelity and generalization. Extensive experiments show that our approach achieves superior performance over existing methods in terms of both quality and generalizability. We also demonstrate quick personalization of URHand from a short phone scan of an unseen identity.

T2ISafety: Benchmark for Assessing Fairness, Toxicity, and Privacy in Image Generation

Text-to-image (T2I) models have rapidly advanced, enabling the generation of high-quality images from text prompts across various domains. However, these models present notable safety concerns, including the risk of generating harmful, biased, or private content. Current research on assessing T2I safety remains in its early stages. While some efforts have been made to evaluate models on specific safety dimensions, many critical risks remain unexplored. To address this gap, we introduce T2ISafety, a safety benchmark that evaluates T2I models across three key domains: toxicity, fairness, and bias. We build a detailed hierarchy of 12 tasks and 44 categories based on these three domains, and meticulously collect 70K corresponding prompts. Based on this taxonomy and prompt set, we build a large-scale T2I dataset with 68K manually annotated images and train an evaluator capable of detecting critical risks that previous work has failed to identify, including risks that even ultra-large proprietary models like GPTs cannot correctly detect. We evaluate 12 prominent diffusion models on T2ISafety and reveal several concerns including persistent issues with racial fairness, a tendency to generate toxic content, and significant variation in privacy protection across the models, even with defense methods like concept erasing. Data and evaluator are released under https://github.com/adwardlee/t2i_safety.

PhotoVerse: Tuning-Free Image Customization with Text-to-Image Diffusion Models

Personalized text-to-image generation has emerged as a powerful and sought-after tool, empowering users to create customized images based on their specific concepts and prompts. However, existing approaches to personalization encounter multiple challenges, including long tuning times, large storage requirements, the necessity for multiple input images per identity, and limitations in preserving identity and editability. To address these obstacles, we present PhotoVerse, an innovative methodology that incorporates a dual-branch conditioning mechanism in both text and image domains, providing effective control over the image generation process. Furthermore, we introduce facial identity loss as a novel component to enhance the preservation of identity during training. Remarkably, our proposed PhotoVerse eliminates the need for test time tuning and relies solely on a single facial photo of the target identity, significantly reducing the resource cost associated with image generation. After a single training phase, our approach enables generating high-quality images within only a few seconds. Moreover, our method can produce diverse images that encompass various scenes and styles. The extensive evaluation demonstrates the superior performance of our approach, which achieves the dual objectives of preserving identity and facilitating editability. Project page: https://photoverse2d.github.io/

Beyond Memorization: Violating Privacy Via Inference with Large Language Models

Current privacy research on large language models (LLMs) primarily focuses on the issue of extracting memorized training data. At the same time, models' inference capabilities have increased drastically. This raises the key question of whether current LLMs could violate individuals' privacy by inferring personal attributes from text given at inference time. In this work, we present the first comprehensive study on the capabilities of pretrained LLMs to infer personal attributes from text. We construct a dataset consisting of real Reddit profiles, and show that current LLMs can infer a wide range of personal attributes (e.g., location, income, sex), achieving up to 85% top-1 and 95.8% top-3 accuracy at a fraction of the cost (100times) and time (240times) required by humans. As people increasingly interact with LLM-powered chatbots across all aspects of life, we also explore the emerging threat of privacy-invasive chatbots trying to extract personal information through seemingly benign questions. Finally, we show that common mitigations, i.e., text anonymization and model alignment, are currently ineffective at protecting user privacy against LLM inference. Our findings highlight that current LLMs can infer personal data at a previously unattainable scale. In the absence of working defenses, we advocate for a broader discussion around LLM privacy implications beyond memorization, striving for a wider privacy protection.

Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System

Recommender systems play a pivotal role in mitigating information overload in various fields. Nonetheless, the inherent openness of these systems introduces vulnerabilities, allowing attackers to insert fake users into the system's training data to skew the exposure of certain items, known as poisoning attacks. Adversarial training has emerged as a notable defense mechanism against such poisoning attacks within recommender systems. Existing adversarial training methods apply perturbations of the same magnitude across all users to enhance system robustness against attacks. Yet, in reality, we find that attacks often affect only a subset of users who are vulnerable. These perturbations of indiscriminate magnitude make it difficult to balance effective protection for vulnerable users without degrading recommendation quality for those who are not affected. To address this issue, our research delves into understanding user vulnerability. Considering that poisoning attacks pollute the training data, we note that the higher degree to which a recommender system fits users' training data correlates with an increased likelihood of users incorporating attack information, indicating their vulnerability. Leveraging these insights, we introduce the Vulnerability-aware Adversarial Training (VAT), designed to defend against poisoning attacks in recommender systems. VAT employs a novel vulnerability-aware function to estimate users' vulnerability based on the degree to which the system fits them. Guided by this estimation, VAT applies perturbations of adaptive magnitude to each user, not only reducing the success ratio of attacks but also preserving, and potentially enhancing, the quality of recommendations. Comprehensive experiments confirm VAT's superior defensive capabilities across different recommendation models and against various types of attacks.

When Large Language Models Meet Personalization: Perspectives of Challenges and Opportunities

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Towards Flexible Interactive Reflection Removal with Human Guidance

Single image reflection removal is inherently ambiguous, as both the reflection and transmission components requiring separation may follow natural image statistics. Existing methods attempt to address the issue by using various types of low-level and physics-based cues as sources of reflection signals. However, these cues are not universally applicable, since they are only observable in specific capture scenarios. This leads to a significant performance drop when test images do not align with their assumptions. In this paper, we aim to explore a novel flexible interactive reflection removal approach that leverages various forms of sparse human guidance, such as points and bounding boxes, as auxiliary high-level prior to achieve robust reflection removal. However, incorporating the raw user guidance naively into the existing reflection removal network does not result in performance gains. To this end, we innovatively transform raw user input into a unified form -- reflection masks using an Interactive Segmentation Foundation Model. Such a design absorbs the quintessence of the foundational segmentation model and flexible human guidance, thereby mitigating the challenges of reflection separations. Furthermore, to fully utilize user guidance and reduce user annotation costs, we design a mask-guided reflection removal network, comprising our proposed self-adaptive prompt block. This block adaptively incorporates user guidance as anchors and refines transmission features via cross-attention mechanisms. Extensive results on real-world images validate that our method demonstrates state-of-the-art performance on various datasets with the help of flexible and sparse user guidance. Our code and dataset will be publicly available here https://github.com/ShawnChenn/FlexibleReflectionRemoval.

Big-data-driven and AI-based framework to enable personalization in wireless networks

Current communication networks use design methodologies that prevent the realization of maximum network efficiency. In the first place, while users' perception of satisfactory service diverges widely, current networks are designed to be a "universal fit," where they are generally over-engineered to deliver services appealing to all types of users. Also, current networks lack user-level data cognitive intelligence that would enable fast personalized network decisions and actions through automation. Thus, in this article, we propose the utilization of AI, big data analytics, and real-time non-intrusive user feedback in order to enable the personalization of wireless networks. Based on each user's actual QoS requirements and context, a multi-objective formulation enables the network to micro-manage and optimize the provided QoS and user satisfaction levels simultaneously. Moreover, in order to enable user feedback tracking and measurement, we propose a user satisfaction model based on the zone of tolerance concept. Furthermore, we propose a big-data-driven and AI-based personalization framework to integrate personalization into wireless networks. Finally, we implement a personalized network prototype to demonstrate the proposed personalization concept and its potential benefits through a case study. The case study shows how personalization can be realized to enable the efficient optimization of network resources such that certain requirement levels of user satisfaction and revenue in the form of saved resources are achieved.

Privacy Preservation in Artificial Intelligence and Extended Reality (AI-XR) Metaverses: A Survey

The metaverse is a nascent concept that envisions a virtual universe, a collaborative space where individuals can interact, create, and participate in a wide range of activities. Privacy in the metaverse is a critical concern as the concept evolves and immersive virtual experiences become more prevalent. The metaverse privacy problem refers to the challenges and concerns surrounding the privacy of personal information and data within Virtual Reality (VR) environments as the concept of a shared VR space becomes more accessible. Metaverse will harness advancements from various technologies such as Artificial Intelligence (AI), Extended Reality (XR), Mixed Reality (MR), and 5G/6G-based communication to provide personalized and immersive services to its users. Moreover, to enable more personalized experiences, the metaverse relies on the collection of fine-grained user data that leads to various privacy issues. Therefore, before the potential of the metaverse can be fully realized, privacy concerns related to personal information and data within VR environments must be addressed. This includes safeguarding users' control over their data, ensuring the security of their personal information, and protecting in-world actions and interactions from unauthorized sharing. In this paper, we explore various privacy challenges that future metaverses are expected to face, given their reliance on AI for tracking users, creating XR and MR experiences, and facilitating interactions. Moreover, we thoroughly analyze technical solutions such as differential privacy, Homomorphic Encryption (HE), and Federated Learning (FL) and discuss related sociotechnical issues regarding privacy.

DP-Adapter: Dual-Pathway Adapter for Boosting Fidelity and Text Consistency in Customizable Human Image Generation

With the growing popularity of personalized human content creation and sharing, there is a rising demand for advanced techniques in customized human image generation. However, current methods struggle to simultaneously maintain the fidelity of human identity and ensure the consistency of textual prompts, often resulting in suboptimal outcomes. This shortcoming is primarily due to the lack of effective constraints during the simultaneous integration of visual and textual prompts, leading to unhealthy mutual interference that compromises the full expression of both types of input. Building on prior research that suggests visual and textual conditions influence different regions of an image in distinct ways, we introduce a novel Dual-Pathway Adapter (DP-Adapter) to enhance both high-fidelity identity preservation and textual consistency in personalized human image generation. Our approach begins by decoupling the target human image into visually sensitive and text-sensitive regions. For visually sensitive regions, DP-Adapter employs an Identity-Enhancing Adapter (IEA) to preserve detailed identity features. For text-sensitive regions, we introduce a Textual-Consistency Adapter (TCA) to minimize visual interference and ensure the consistency of textual semantics. To seamlessly integrate these pathways, we develop a Fine-Grained Feature-Level Blending (FFB) module that efficiently combines hierarchical semantic features from both pathways, resulting in more natural and coherent synthesis outcomes. Additionally, DP-Adapter supports various innovative applications, including controllable headshot-to-full-body portrait generation, age editing, old-photo to reality, and expression editing.

Position Paper: Think Globally, React Locally -- Bringing Real-time Reference-based Website Phishing Detection on macOS

Background. The recent surge in phishing attacks keeps undermining the effectiveness of the traditional anti-phishing blacklist approaches. On-device anti-phishing solutions are gaining popularity as they offer faster phishing detection locally. Aim. We aim to eliminate the delay in recognizing and recording phishing campaigns in databases via on-device solutions that identify phishing sites immediately when encountered by the user rather than waiting for a web crawler's scan to finish. Additionally, utilizing operating system-specific resources and frameworks, we aim to minimize the impact on system performance and depend on local processing to protect user privacy. Method. We propose a phishing detection solution that uses a combination of computer vision and on-device machine learning models to analyze websites in real time. Our reference-based approach analyzes the visual content of webpages, identifying phishing attempts through layout analysis, credential input areas detection, and brand impersonation criteria combination. Results. Our case study shows it's feasible to perform background processing on-device continuously, for the case of the web browser requiring the resource use of 16% of a single CPU core and less than 84MB of RAM on Apple M1 while maintaining the accuracy of brand logo detection at 46.6% (comparable with baselines), and of Credential Requiring Page detection at 98.1% (improving the baseline by 3.1%), within the test dataset. Conclusions. Our results demonstrate the potential of on-device, real-time phishing detection systems to enhance cybersecurity defensive technologies and extend the scope of phishing detection to more similar regions of interest, e.g., email clients and messenger windows.

TETRIS: Towards Exploring the Robustness of Interactive Segmentation

Interactive segmentation methods rely on user inputs to iteratively update the selection mask. A click specifying the object of interest is arguably the most simple and intuitive interaction type, and thereby the most common choice for interactive segmentation. However, user clicking patterns in the interactive segmentation context remain unexplored. Accordingly, interactive segmentation evaluation strategies rely more on intuition and common sense rather than empirical studies (e.g., assuming that users tend to click in the center of the area with the largest error). In this work, we conduct a real user study to investigate real user clicking patterns. This study reveals that the intuitive assumption made in the common evaluation strategy may not hold. As a result, interactive segmentation models may show high scores in the standard benchmarks, but it does not imply that they would perform well in a real world scenario. To assess the applicability of interactive segmentation methods, we propose a novel evaluation strategy providing a more comprehensive analysis of a model's performance. To this end, we propose a methodology for finding extreme user inputs by a direct optimization in a white-box adversarial attack on the interactive segmentation model. Based on the performance with such adversarial user inputs, we assess the robustness of interactive segmentation models w.r.t click positions. Besides, we introduce a novel benchmark for measuring the robustness of interactive segmentation, and report the results of an extensive evaluation of dozens of models.

BARS: Towards Open Benchmarking for Recommender Systems

The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.

How to Boost Face Recognition with StyleGAN?

State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. On the other hand, self-supervised revolution in the industry motivates research on the adaptation of related techniques to facial recognition. One of the most popular practical tricks is to augment the dataset by the samples drawn from generative models while preserving the identity. We show that a simple approach based on fine-tuning pSp encoder for StyleGAN allows us to improve upon the state-of-the-art facial recognition and performs better compared to training on synthetic face identities. We also collect large-scale unlabeled datasets with controllable ethnic constitution -- AfricanFaceSet-5M (5 million images of different people) and AsianFaceSet-3M (3 million images of different people) -- and we show that pretraining on each of them improves recognition of the respective ethnicities (as well as others), while combining all unlabeled datasets results in the biggest performance increase. Our self-supervised strategy is the most useful with limited amounts of labeled training data, which can be beneficial for more tailored face recognition tasks and when facing privacy concerns. Evaluation is based on a standard RFW dataset and a new large-scale RB-WebFace benchmark. The code and data are made publicly available at https://github.com/seva100/stylegan-for-facerec.

MasterWeaver: Taming Editability and Identity for Personalized Text-to-Image Generation

Text-to-image (T2I) diffusion models have shown significant success in personalized text-to-image generation, which aims to generate novel images with human identities indicated by the reference images. Despite promising identity fidelity has been achieved by several tuning-free methods, they usually suffer from overfitting issues. The learned identity tends to entangle with irrelevant information, resulting in unsatisfied text controllability, especially on faces. In this work, we present MasterWeaver, a test-time tuning-free method designed to generate personalized images with both faithful identity fidelity and flexible editability. Specifically, MasterWeaver adopts an encoder to extract identity features and steers the image generation through additional introduced cross attention. To improve editability while maintaining identity fidelity, we propose an editing direction loss for training, which aligns the editing directions of our MasterWeaver with those of the original T2I model. Additionally, a face-augmented dataset is constructed to facilitate disentangled identity learning, and further improve the editability. Extensive experiments demonstrate that our MasterWeaver can not only generate personalized images with faithful identity, but also exhibit superiority in text controllability. Our code will be publicly available at https://github.com/csyxwei/MasterWeaver.

An Open-World, Diverse, Cross-Spatial-Temporal Benchmark for Dynamic Wild Person Re-Identification

Person re-identification (ReID) has made great strides thanks to the data-driven deep learning techniques. However, the existing benchmark datasets lack diversity, and models trained on these data cannot generalize well to dynamic wild scenarios. To meet the goal of improving the explicit generalization of ReID models, we develop a new Open-World, Diverse, Cross-Spatial-Temporal dataset named OWD with several distinct features. 1) Diverse collection scenes: multiple independent open-world and highly dynamic collecting scenes, including streets, intersections, shopping malls, etc. 2) Diverse lighting variations: long time spans from daytime to nighttime with abundant illumination changes. 3) Diverse person status: multiple camera networks in all seasons with normal/adverse weather conditions and diverse pedestrian appearances (e.g., clothes, personal belongings, poses, etc.). 4) Protected privacy: invisible faces for privacy critical applications. To improve the implicit generalization of ReID, we further propose a Latent Domain Expansion (LDE) method to develop the potential of source data, which decouples discriminative identity-relevant and trustworthy domain-relevant features and implicitly enforces domain-randomized identity feature space expansion with richer domain diversity to facilitate domain invariant representations. Our comprehensive evaluations with most benchmark datasets in the community are crucial for progress, although this work is far from the grand goal toward open-world and dynamic wild applications.

Discrimination through optimization: How Facebook's ad delivery can lead to skewed outcomes

The enormous financial success of online advertising platforms is partially due to the precise targeting features they offer. Although researchers and journalists have found many ways that advertisers can target---or exclude---particular groups of users seeing their ads, comparatively little attention has been paid to the implications of the platform's ad delivery process, comprised of the platform's choices about which users see which ads. It has been hypothesized that this process can "skew" ad delivery in ways that the advertisers do not intend, making some users less likely than others to see particular ads based on their demographic characteristics. In this paper, we demonstrate that such skewed delivery occurs on Facebook, due to market and financial optimization effects as well as the platform's own predictions about the "relevance" of ads to different groups of users. We find that both the advertiser's budget and the content of the ad each significantly contribute to the skew of Facebook's ad delivery. Critically, we observe significant skew in delivery along gender and racial lines for "real" ads for employment and housing opportunities despite neutral targeting parameters. Our results demonstrate previously unknown mechanisms that can lead to potentially discriminatory ad delivery, even when advertisers set their targeting parameters to be highly inclusive. This underscores the need for policymakers and platforms to carefully consider the role of the ad delivery optimization run by ad platforms themselves---and not just the targeting choices of advertisers---in preventing discrimination in digital advertising.

RestorerID: Towards Tuning-Free Face Restoration with ID Preservation

Blind face restoration has made great progress in producing high-quality and lifelike images. Yet it remains challenging to preserve the ID information especially when the degradation is heavy. Current reference-guided face restoration approaches either require face alignment or personalized test-tuning, which are unfaithful or time-consuming. In this paper, we propose a tuning-free method named RestorerID that incorporates ID preservation during face restoration. RestorerID is a diffusion model-based method that restores low-quality images with varying levels of degradation by using a single reference image. To achieve this, we propose a unified framework to combine the ID injection with the base blind face restoration model. In addition, we design a novel Face ID Rebalancing Adapter (FIR-Adapter) to tackle the problems of content unconsistency and contours misalignment that are caused by information conflicts between the low-quality input and reference image. Furthermore, by employing an Adaptive ID-Scale Adjusting strategy, RestorerID can produce superior restored images across various levels of degradation. Experimental results on the Celeb-Ref dataset and real-world scenarios demonstrate that RestorerID effectively delivers high-quality face restoration with ID preservation, achieving a superior performance compared to the test-tuning approaches and other reference-guided ones. The code of RestorerID is available at https://github.com/YingJiacheng/RestorerID.

Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective

Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.

Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems

Recent advancements in Large Language Models empower them to follow freeform instructions, including imitating generic or specific demographic personas in conversations. We define generic personas to represent demographic groups, such as "an Asian person", whereas specific personas may take the form of specific popular Asian names like "Yumi". While the adoption of personas enriches user experiences by making dialogue systems more engaging and approachable, it also casts a shadow of potential risk by exacerbating social biases within model responses, thereby causing societal harm through interactions with users. In this paper, we systematically study "persona biases", which we define to be the sensitivity of dialogue models' harmful behaviors contingent upon the personas they adopt. We categorize persona biases into biases in harmful expression and harmful agreement, and establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement. Additionally, we propose to investigate persona biases by experimenting with UNIVERSALPERSONA, a systematically constructed persona dataset encompassing various types of both generic and specific model personas. Through benchmarking on four different models -- including Blender, ChatGPT, Alpaca, and Vicuna -- our study uncovers significant persona biases in dialogue systems. Our findings also underscore the pressing need to revisit the use of personas in dialogue agents to ensure safe application.