parole-study-viper commited on
Commit
6ed4adf
·
verified ·
1 Parent(s): df80a2b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -10
README.md CHANGED
@@ -10,10 +10,8 @@ pipeline_tag: reinforcement-learning
10
  tags:
11
  - text-to-sql
12
  ---
13
-
14
- ---
15
- library: gemma3-text-to-sql
16
- ---
17
  # Gemma 3 Text-to-SQL
18
 
19
  A powerful LoRA-fine-tuned adapter for Gemma 3 that converts natural language questions into SQL queries with high accuracy and contextual understanding.
@@ -58,7 +56,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
58
  model = AutoModelForCausalLM.from_pretrained(model_id)
59
 
60
  # Load adapter
61
- adapter_path = "your-username/gemma-3-text-to-sql" # Replace with your HF model path
62
  model = PeftModel.from_pretrained(model, adapter_path)
63
 
64
  # Format prompt
@@ -87,7 +85,7 @@ from mlx_lm.utils import get_model_path
87
 
88
  # Setup paths
89
  model_path = "lmstudio-community/gemma-3-27b-it-GGUF"
90
- adapter_path = "your-username/gemma-3-text-to-sql/adapter_model.safetensors"
91
 
92
  # Run generation
93
  prompt = "Convert the following natural language query to SQL: Find all customers in New York"
@@ -108,7 +106,7 @@ You can also use the Hugging Face Inference API:
108
  ```python
109
  import requests
110
 
111
- API_URL = "https://api-inference.huggingface.co/models/your-username/gemma-3-text-to-sql"
112
  headers = {"Authorization": f"Bearer {API_TOKEN}"}
113
 
114
  def query(payload):
@@ -214,11 +212,11 @@ If you use this model in your research or applications, please cite:
214
 
215
  ```bibtex
216
  @misc{gemma3-text-to-sql,
217
- author = {Your Name},
218
  title = {Gemma 3 Text-to-SQL: A LoRA-fine-tuned adapter for natural language to SQL conversion},
219
  year = {2025},
220
  publisher = {HuggingFace},
221
- howpublished = {\url{https://huggingface.co/your-username/gemma-3-text-to-sql}}
222
  }
223
  ```
224
 
@@ -235,4 +233,4 @@ We thank Google for releasing the Gemma 3 models and the Hugging Face team for t
235
  If you find any issues or have suggestions for improvement, please open an issue on the GitHub repository or reach out on the Hugging Face community forums.
236
 
237
 
238
- This model created by [@parole-study-viper]
 
10
  tags:
11
  - text-to-sql
12
  ---
13
+ library: gemma3-text-to-sql
14
+ ---
 
 
15
  # Gemma 3 Text-to-SQL
16
 
17
  A powerful LoRA-fine-tuned adapter for Gemma 3 that converts natural language questions into SQL queries with high accuracy and contextual understanding.
 
56
  model = AutoModelForCausalLM.from_pretrained(model_id)
57
 
58
  # Load adapter
59
+ adapter_path = "parole-study-viper/gemma-3-text-to-sql" # Replace with your HF model path
60
  model = PeftModel.from_pretrained(model, adapter_path)
61
 
62
  # Format prompt
 
85
 
86
  # Setup paths
87
  model_path = "lmstudio-community/gemma-3-27b-it-GGUF"
88
+ adapter_path = "parole-study-viper/gemma-3-text-to-sql/adapter_model.safetensors"
89
 
90
  # Run generation
91
  prompt = "Convert the following natural language query to SQL: Find all customers in New York"
 
106
  ```python
107
  import requests
108
 
109
+ API_URL = "https://api-inference.huggingface.co/models/parole-study-viper/gemma-3-text-to-sql"
110
  headers = {"Authorization": f"Bearer {API_TOKEN}"}
111
 
112
  def query(payload):
 
212
 
213
  ```bibtex
214
  @misc{gemma3-text-to-sql,
215
+ author = {parole-study-viper},
216
  title = {Gemma 3 Text-to-SQL: A LoRA-fine-tuned adapter for natural language to SQL conversion},
217
  year = {2025},
218
  publisher = {HuggingFace},
219
+ howpublished = {\url{https://huggingface.co/parole-study-viper/gemma-3-text-to-sql}}
220
  }
221
  ```
222
 
 
233
  If you find any issues or have suggestions for improvement, please open an issue on the GitHub repository or reach out on the Hugging Face community forums.
234
 
235
 
236
+ This model created by [@parole-study-viper]