End of training
Browse files
README.md
CHANGED
@@ -17,10 +17,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wmt20_mlqe_task1 dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- R Squared: 0.
|
22 |
-
- Mae: 0.
|
23 |
-
- Pearson R: 0.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -42,18 +42,20 @@ The following hyperparameters were used during training:
|
|
42 |
- learning_rate: 2e-05
|
43 |
- train_batch_size: 16
|
44 |
- eval_batch_size: 16
|
45 |
-
- seed:
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
-
- num_epochs:
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:|
|
54 |
-
| No log | 1.0 | 438 | 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
|
|
|
|
57 |
|
58 |
|
59 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wmt20_mlqe_task1 dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5090
|
21 |
+
- R Squared: 0.0865
|
22 |
+
- Mae: 0.5291
|
23 |
+
- Pearson R: 0.3627
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
42 |
- learning_rate: 2e-05
|
43 |
- train_batch_size: 16
|
44 |
- eval_batch_size: 16
|
45 |
+
- seed: 1986
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 5
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:|
|
54 |
+
| No log | 1.0 | 438 | 0.5544 | 0.0051 | 0.5990 | 0.3021 |
|
55 |
+
| 0.6821 | 2.0 | 876 | 0.5527 | 0.0082 | 0.5998 | 0.1601 |
|
56 |
+
| 0.7102 | 3.0 | 1314 | 0.5400 | 0.0309 | 0.5712 | 0.3027 |
|
57 |
+
| 0.7194 | 4.0 | 1752 | 0.5132 | 0.0791 | 0.5401 | 0.3557 |
|
58 |
+
| 0.6285 | 5.0 | 2190 | 0.5090 | 0.0865 | 0.5291 | 0.3627 |
|
59 |
|
60 |
|
61 |
### Framework versions
|